化学反应动力学第二章习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学反应动力学
第二章习题
1、The first-order gas reaction SO 2Cl 2 → SO 2 + Cl 2 has k = 2.20 ⨯ 10-5 s -1 at 593K,
(1) What percent of a sample of SO 2Cl 2 would be decomposed by heating at 593K for 1 hour?
(2) How long will it take for half the SO 2Cl 2 to decompose? 解:一级反应动力学方程为:
t k e Cl SO Cl SO ⋅-⋅=ο][][2222 ⇒
t k e Cl SO Cl SO ⋅-=ο
][]
[2222
(1) 反应达1小时时:60
601020.222225][][⨯⨯⨯--=e Cl SO Cl SO ο
=0.924=92.4%
已分解的百分数为:100%-92.4%=7.6% (2) 当
21][][2222=οCl SO Cl SO 时,7.315062
1
ln 1=-=k t s
5
21102.2693
.0-⨯=
t = 31500 s = 8.75 hour
2、T-butyl bromide is converted into t-butyl alcohol in a solvent containing 90 percent acetone and 10 percent water. The reaction is given by (CH 3)3CBr + H 2O → (CH 3)3COH + HBr
The following table gives the data for the concentration of t-utyl bromide versus time: T(min) 0 9 18 24 40 54 72 105 (CH 3)CBr (mol/L) 0.1056 0.0961 0.0856 0.0767 0.0645 0.0536 0.0432 0.0270 (1) What is the order of the reaction?
(2) What is the rate constant of the reaction? (3) What is the half-life of the reaction?
解: (1) 设反应级数为 n ,则 n A k dt A d ][]
[=-
⇒ kt A A n n =---1
1][1][1ο
若 n=1,则 ]
[][ln 1A A t k ο
=
t = 9 01047.00961.01056.0ln
91==k , t = 18 01167.00856.01056
.0ln 181==k t = 24 01332.00767.01056.0ln 241==
k , t = 40 01232.00645
.01056.0ln 401==k t = 54 01256.0=k , t = 72 01241.0=k , t = 105 01299.0=k
若 n=2,则 )][1
][1(
1ο
A A t k -= t : 9 18 24 40 54 k : 0.1040 0.1229 0.1487 0.1509 0.1701 若 n=1.5
t : 9 18 24 k : 0.0165 0.0189 0.0222 若 n=3
t : 9 18 24 k : 2.067 2.60 3.46
反应为一级。

(2) k = 0.0123 min -1= 2.05×10-4 s -1
(3)0123.0693
.021=t = 56.3 min = 3378 s
3、已知复杂反应:
的速率方程为]][[][]
[321111A A k A k dt
A d --=-,推导其动力学方程。

要求写出详细的推导过程。

解:设 0=t 时, ο][][11A A = ,ο][][22A A = ,ο][][33A A =
t t = 时, x A A -=ο][][11 ,x A A +=ο][][22 ,x A A +=ο][][33 代入 ]][[][]
[321111A A k A k dt
A d --=- 得:
)])([]([)]([32111x A x A k x A k dt
dx
++--=-οοο 212131321111][][][][][x k x A k x A k A A k x k A k ---------=οοοοο 212131132111)][][(][][][x k x A k A k k A A k A k -----++--=οοοοο 令 α = οοο][][][32111A A k A k -- , β = οο][][21311A k A k k --++ , γ = 1--k

2x x dt
dx
γβα++= , 移项积分:

⎰=++x
t dt x
x dx
02γβα A 1
A 2 + A 3
k -1

=-----+--
x
t x x dx
2
2
)
24)(24(γ
αγ
ββγαγββ
令 αγβ42-=q ,

=++--x
t q x q x dx
)
2)(2(γβ
γβ
qt q x q x x =++
--
22ln
γ
βγ
β
得动力学方程:qt q q q x q
x =+--++
-+
}{ln }22{ln
ββγ
βγ
β 4、已知复杂反应由下列两个基元反应组成:
求反应进行过程中,A 1物种浓度与A 3物种浓度间的关系。

要求写出详细的推导过程。

解:速率方程:
]][[][]
[212112A A k A k dt
A d -= (1)
]][[]
[2123A A k dt
A d = (2)
)2()
1(,得:][][][][2
222132A k A k k A d A d -= 设 0=t 时,ο][][22A A = ,0][3=A , 移项积分:
⎰⎰=-]
[][][03222122222][][][]
[A A A A d A d A k k A k ο A 1A 3
2
1
A 2
A 1A 2 +

=--]
[][322211
22][][)1]
[(
A A A A d A k k k ο
][)][]([][][ln 32222122121A A A A k k A k k k k =-----
οο
考虑物料平衡: ][][][][][31122A A A A A --+=οο,代入上式, 得[A 1]~[A 3]关系式为:
][)][][][][]([][])[][][]([ln 32311222131122121A A A A A A A k k A A A A k k k k =---+----+--
οοοο
οο 5、 Consider the reaction mechanism
k -1
k 1
k X C + D A + B X + B
i.
Write chemical rate equations for [A] and [X].
ii. Employing the steady-state approximation, show that an effective rate equation for [A] is d[A]/dt = -k eff [A][B]
iii.
Give an expression for k eff in terms of k 1, k -1, k 2, and [B].
解:ⅰ. ]][[]][[]
[11B X k B A k dt A d --=- ][]][[]][[]
[211X k B X k B A k dt
X d --=-
ⅱ. 对X 进行稳态近似,则 0]
[=dt
X d
即:2
11][]
][[][k B k B A k X +=
-
2
1111][]][[][]][[]
[k B k B A k B k B A k dt A d +-=-
-- ]][[][]][)[][][(2
12
121111B A k B k k k B A k B k B k k k +=+-
=---
即:
]][[]
[B A k dt
A d eff -= ⅲ. 2
12
1][k B k k k k eff +=-
6、 (a) The reaction 2 NO + O 2 → 2 NO 2 is third order. Assuming that a small amount of NO 3 exists in
rapid reversible equilibrium with NO and O2 and that the rate-determining step is the slow bimolecular reaction NO 3 + NO → 2 NO 2, derive the rate equation for this the mechanism.
(b) Another possible mechanism for the reaction 2 NO + O 2 → 2 NO 2 is (1) NO + NO → N 2O 2 k 1 (2) N 2O 2 → 2 NO k 2 (3) N 2O 2 + O 2 → 2 NO 2 k 3
Apply the steady state approximation to [N 2O 2] to obtain the rate law for d[NO 2]/dt.
If only a very small fraction of the N 2O 2 formed in (1) gose to form products in reaction (3), while most of the N 2O 2 reverts to NO in reaction (2), and if the activation energies are E 1 = 79.5 kJ/mol, E 2 = 205 kJ/mol, and E 3 = 84 kJ/mol, what is the overall activation energy?
(c) How would you distinguish experimentally between the mechanism suggested in part (a) and (b)? 解:(a ) 2222NO O NO →+ 机理为:
NO+O 2
NO
3
-1
快速平衡
NO 3+ NO
2NO 2
k 2
决速步
据快速平衡:
1
123]][[][-=k k
O NO NO
]][[][21
1
3O NO k k NO -=
][][2]][[2][221
21322O NO k k
k NO NO k dt NO d -== (b) (1)22O N NO NO →+ k 1 (2)NO O N 222→ k 2 (3)22222NO O O N →+ k 3 对 [N 2O 2] 进行稳态近似
0]][[][][]
[22232222122=--=O O N k O N k NO k dt
O N d ]
[][][2322
122O k k NO k O N +=
]
[][][2]][[2]
[232223122232O k k O NO k k O O N k dt NO d +=
= 若只有很少量的N 2O 2转变为 NO 2,而绝大部分转变为 NO ,k 2 >> k 3 [O 2],则:
][][2][222
3
12O NO k k k dt NO d = E a (overall) = E a1+ E a3 - E a2 =79.5 + 84 -205 = - 41.5 KJ*mol -1
(c) (1) 检测中间体 N 2O 2 或 NO 3 (2)大大增加O 2的浓度 第一历程为:
][][2][221
2
12O NO k k k dt NO d -= 第二历程为:
212][2]
[NO k dt
NO d = 测定速率常数大小是否与O 2浓度有关。

(3)作r ~ [O 2] ( 固定[NO] , 测不同[O 2] 下的反应速率 ) 第一历程为直线,第二历程不为线性。

7、复杂反应
常用来描述酶催化反应和热活化单分子反应,若其总包反应的反应速率方程为:
][][12
1211A k k k
k dt A d r +=-
=- 推导总包反应活化能与各元反应活化能的关系。

解: (1) 当 k -1>>k 2 时, ][][][1212111A Kk A k k k dt A d ==-
- )(1
1-=k k
K 反应机理中的第二步为决速步,总包反应速率常数为:2Kk k = 总包反应的活化能:121--+=a a a a E E E E 总 (2) 当 k -1 << k 2 时, ][]
[111A k dt
A d =-
反应机理中的第一步为决速步,总包反应速率常数为:1k k = 总包反应活化能:1a a E E =总
A 2A 1A 3
k k 1k -1
8、已知H 2 + Cl 2 → 2 HCl 反应的速率方程为:2/122]][[Cl H k r =
拟定该反应的反应机理。

要求写出详细推导过程。

解:写出反应体系可能存在的各基元反应:
E a (KJ/mol ) E a (KJ/mol )
Cl Cl Cl +→2 117.2 2H Cl HCl H +→+ 20.9 H H H +→2 436 M Cl M Cl Cl +→++2 0.0 HCl H H Cl +→+2 25.1 M HCl M Cl H +→++ 0.0 Cl HCl Cl H +→+2 8.4~15.1 M H M H H +→++2 0.0
根据活化能大小,拟定可能的反应机理:
Cl Cl Cl +→2 117.2 (1) k 1 HCl H H Cl +→+2 25.1 (2) k 2 Cl HCl Cl H +→+2 8.4~15.1 (3) k 3 M Cl M Cl Cl +→++2 0.0 (4) k 4
总包反应产生HCl 的生成速率:
]][[]][[]
[2322Cl H k H Cl k dt
HCl d +=
对活性中间体H 、Cl 应用稳态近似:
0][2]][[]][[][2]
[24232221=-+-=Cl k Cl H k H Cl k Cl k dt Cl d (5)
0]][[]][[]
[2322=-=Cl H k H Cl k dt H d (6)
(5)+(6)得: 0][][2421=-Cl k Cl k ⇒ 2124
1
]}[{
][Cl k k Cl ss = 代入(6)得:2
12322
14
12]
[][)(
][Cl k H k k k H ss =
则有: ][][][)(][]}[{][22
1
2
3
221
412322
124
12Cl Cl k H k k k k H Cl k k k dt HCl d += 21222
14
12]][[)(
2Cl H k k k =
则: 2122212221412]][[]][[)(]
[21Cl H k Cl H k k k dt HCl d r ===
,其中 214
12)(k k k k =
9、使用稳态近似推导复杂反应:
的动力学方程,要求写出详细推导过程,并得到反应体系中各物种随时间的变化关系式。

解:
][]
[111A k dt
A d -= 222112][2][]
[A k A k dt
A d -=
2223][]
[A k dt
A d = 对 [A 2] 稳态近似,得:2112
1
2]}[2{][A k k A = t k e A A 1][][11-=ο
22112
12
121][)2(
][t k e A k k A -=ο
t k e A k
A k dt A d 1][2
][][112223-==ο 积分后,得: )]exp(1[][2
1
][113t k A A --=ο
10、Consider the following set of four reactions in three components:
Numerical values are assigned to the rate constants and initial conditions as follows: k 1 = 1, k 2 = 499.5, k 3 = 499.5, k 4 = 1, [A 1]0 = 2, [A 2] 0 = 1, [A 3] 0 = 0, Using the Laplace transform method solve for [A 1], [A 2], [A 3].
A 1 A 2
2 A 2 A 3k 2
A
A 2
A 3
k 4
解:速率方程为:
][])[(]
[221311A k A k k dt
A d ++-=
])[(][]
[242112A k k A k dt
A d +-=
][][]
[24133A k A k dt
A d += 对上面三式进行laplace 变换: ][][)(][][2213111A L k A L k k A A PL ++-=-ο ][)(][][][2421132A L k k A L k A A PL +-=-ο ][][][][241333A L k A L k A A PL +=-ο ο][][][)(122131A A L k A L k k P =-++ ο][][)(][224211A A L k k P A L k =+++- ο][][][][332413A A PL A L k A L k =+-- 2][5.499][)5.500(21=-+A L A L P (1) 1][)5.500(][21=++-A L P A L (2) 0][][][5.499321=+--A PL A L A L (3) 由(2)得:1][)5.500(][21-+=A L P A L 代入(1) 可得: 2][5.4995.500][)5.500(222=---+A L P A L P
即: 25.500][5.499][)5.50025.500(2222=---+⨯+P A L A L P P
5
22105.210015
.502][⨯+++=
P P P A L
1)5.500(10
5.210015
.502][5
2
1-+⨯+++=P P P P A L 5
2105.210011501
2⨯+++=P P P ]}[][5.499{1
][213A L A L P
A L +=
]105.210012
.502105.2100110515.49925.499[15252
⨯++++⨯++⨯+⨯=P P P P P P P
5
25
105.2100110502.710001⨯++⨯+=P P P P
)523)(478(1501
)523)(478(2][1+++++=
P P P P P A L
)
523)(478(5
.502][2+++=
P P P A L
)
523)(478(10502.7)523)(478(1000][5
3++⨯+++=P P P P P A L
用laplace 变换:
)(478
5231501
]478523[47852312][5234784785231t t t t e e e e A ------+⨯-⨯-⨯
=
t t e e 5234781.101.12---=
)(478
5235
.502]478523[4785231][5234784785232t t t t e e e e A ------+⨯-⨯-=
t t e e 523478456.0544.0--+=
)
523478(478
52311[47852310502.7)(4785231000][47852355234783t t t
t e e e e A ----⨯-⨯-+⨯⨯+--= )523478(45
3
32.2222.22478523523478t t t t e e e e ----⨯-⨯+
+-= 365.96.12523478++-=--t t e e。

相关文档
最新文档