2023_2024学年山东省济南市高新区九年级上册期中数学模拟测试卷(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023_2024学年山东省济南市高新区九年级上册期中数学
模拟测试卷
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷为1-3页,满分为40分;第Ⅱ卷为3-10页,满分为110分.本试题共10页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.
第I 卷(选择题 共40分)
注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案写在试卷上无效.
一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1.下列几何体中,同一个几何体从正面看和从上面看形状图不同的是( )
A .
B .
C .
D .
2.下列给出长度的四条线段中,是成比例线段的是( )A .1,2,3,4B .1,2,3,6
C .2,3,4,5
D .1,3,4,7
3.若反比例函数的图象经过点A (﹣3,4),则下列各点中也在这个函数图象的x
k
y =()0≠k 是( )A .(﹣2,3)
B .(4,﹣3)
C .(﹣6,﹣2)
D .(8,
)2
34.如图,过原点的一条直线与反比例函数的图象分别交于A 、B 两点,若A 点x
k
y =
()0≠k
的坐标为(3,﹣5),则B 点的坐标为( )
A .(3,﹣5)
B .(﹣5,3)
C .(﹣3,5)
D .(3,﹣5)
5.已知,,则它们的周长比为( )DEF ABC ∽△△41∶∶△△=DEF ABC S S A .1:2
B .1:4
C .2:1
D .4:1
6.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用寒假从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .B .C .D .2
1
3
1
6
1
9
2
7.已知点A (x 1,﹣3),B (x 2,﹣2),C (x 3,1)在反比例函数的图象上,则
x
a y 122+-=x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3
B .x 3<x 1<x 2
C .x 2<x 1<x 3
D .x 3<x 2<x 1
8.如图,在△ABC 中,点D 在AC 边上,连接BD ,若∠ABC =∠ADB ,AD =2,AC =6,则AB 的长为( )A .3
B .4
C .
D .3
3
2
第8题图 第9题图 第10题图
9.如图所示的是反比例函数()和一次函数的图象,x k
y =10,0>≠x k )0(2≠+=m n mx y 则下列结论正确的是( )A .反比例函数的解析式是 B .一次函数的解析式为x
y 6
1=62+-=x y C .当时,最大值为1
D .若,则6>x 1y 21y y <6
1<<x 10.勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG ,DG .若正方形ABCD 与EFGH 的边长之比为,则sin ∠DGE 等于( )15∶A .B .C .D .10
10
5
5
10
10
35
5
2第Ⅱ卷(非选择题 共110分)
注意事项:
1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)11.若,则=
.
7
2=-b
b a b
a 12.如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为
.
第12题图 第13题图
13.如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则的值为
EC
BE .
14.如图,为了测量一栋楼的高度,小王在他的脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到楼的顶部.如果小王身高1.55m ,他的眼睛距地面1.50m ,同时量得BC =0.3m ,CE =2m ,则楼高DE 为
m .
第14题图 第15题图
15.如图,在平面直角坐标系内,O 为坐标原点,点A 为直线上一动点,过A 作12+=x y AC ⊥x 轴,交x 轴于点C (点C 在原点右侧),交双曲线于点B ,且AC +BC =4,则当x
y 1
=△OAB 存在时,其面积为
.
16.已知曲线 C 1、C 2 分别是函数,的图象,边长为6的正
)(02
<-=x x
y )(0,0>>=k x x k y △ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为
.
三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分6分)
计算:12
23160sin 41
--+⎪⎭
⎫ ⎝⎛+-︒
18.(本题满分6分)
已知:如图△ABC 三个顶点的坐标分别为A (﹣2,﹣2)、B (﹣3,﹣4)、C (﹣1,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)以点C 为位似中心,在轴的左侧画出△A 1B 1C ,y 使△A 1B 1C 与△ABC 的位似比为2:1,并直接写出点A 1的坐标
;
(2)△A 1B 1C 的面积为 .
19.(本题满分6分)
如图,∠CAB =∠CBD ,AB =4,AC =6,BD =7.5,BC =5.求CD 的长.
20.(本题满分8分)
如图,在△ABC 中,∠B =45°,CD 是AB 边上的中线,过点
D 作D
E ⊥BC ,垂足为点E ,若CD =5,sin ∠BCD =.5
3
(1)求BC 的长;(2)求∠ACB 的正切值.
21.(本题满分8分)
如图,在平面直角坐标系中,O 为坐标原点,直线交y 轴于点A ,交x 轴于点2+=x y B ,与双曲线在一,三象限分别交于C ,D 两点,()0≠=
k x
k
y AB =
BC ,连接CO ,DO .2
1
(1)求的值;
k
(2)求△CDO的面积.
22.(本题满分8分)
某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能
加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.
请结合图中所给信息解答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图补充完整;
(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社
团;
(4)在书法社团活动中,甲、乙、丙、丁四人平时的表现优秀,其中甲、乙是男同学,丙、
丁是女同学.现决定从这四人中任选两名参加全市书法大赛,求恰好选中一男一女的概率(用画树状图或列表法求解).
23.(本题满分10分)
图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.
(1)求真空管上端B到水平线AD的距离.
(2)求安装热水器的铁架水平横管BC的长度.(结果精确到0.1米)
参考数据:,,,,,5337sin ≈
5437cos ≈ 4337tan ≈ 8322sin ≈ 16
1522cos ≈ .
4.022tan ≈
24.(本题满分10分)综合与实践
视力表中蕴含着很多数学知识,如:每个“
”形图都是正方形结构,同一行的“
”是全
等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.
素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值n ,测得对应行的“”
形图边长b (mm ),在平面直角坐标系中描点如图1.
探究1 检测距离为5米时,归纳n 与b 的关系式,并求视力值1.2所对应行的“
”形图边长.
素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“”形图所成的角叫做分
辨视角.视力值与分辨视角(分)的对应关系近似满足.
θn θ()105.01≤≤=θθn 探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.
0.1≥n θ
素材3 如图3,当确定时,在A处用边长为b1的Ⅰ号“”测得的视力与在B处用边长为b2的
Ⅱ号“”测得的视力相同.
探究3 若视力值为1.2,求检测距离为3米时,所对应行的“”形图边长.
25.(本题满分12分)
【问题背景】
数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形
产生了极大兴趣并展开探究.
【探究发现】
如图1,在△ABC 中,∠A =36°,AB =AC .
(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE = °,设AC =1,BC =x ,那么AE =
(用含x 的式子表示);
(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证
215-=AC BC 腰底明:;
2
15-=AC BC 腰底【拓展应用】
当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.
(3)如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.
26.(本题满分12分)
如图①,在Rt△ABC中,∠B=90°,AB=2,BC=6,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C顺时针方向旋转,记旋转角为α.
(1)问题发现
AE
当α=0°时,= .
BD
(2)拓展探究
AE
试判断:当0°≤α<360°时,的大小有无变化?请仅就图②的情况给出证明.
BD
(3)问题解决
当△EDC旋转至A,D,E三点共线时,如图③,图④,直接写出线段AE的长.
参考答案及评分标准
一、选择题
题号12345678910答案
C
B
B
C
A
B
B
D
D
A
二、填空题:(本大题共6个小题,每小题4分,共24分.)11.
. 12.. 13.. 14.10. 15.1. 16.6.
79952
3
三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)
17.(本题6分)解:原式 (432232)
3
4-++⨯=分
3
22332-++= (6)
5=分
18.(本题6分)
解:(1)如图,△A 1B 1C 即为所求.
·········································································
2分
(1)(﹣3,0)····································································································4分(2)
8················································································································6分19.(本题6分)
解:(1)·········································································
545
,5.7,6,4==∴====BC AB BD AC BC BD AC AB 2分
································································································CBD CAB ∠=∠∴3分
·······
··················································································
BCD ABC ∆∆∴∽.....4分. (55)
4=∴
CD BC 分····················································································642554545=⨯==
∴BC CD 分
20.(本题8分)
解:(1),5
3sin ,=∠⊥BCD BC DE ,5
3=∴
CD DE ,·······························································································3553=⨯=∴DE 1分
,·········································································································4=∴CE 2分
,,··············································································· 45=∠B 3==∴BE DE ··················3分
,·························································································7=+=∴CE BE BC 4分
(2),
F BC AF A 于点作过点⊥的中位线
是的中点
是∥ABF DE DE ∆∴∴AB D AF
,········································································662,62====∴BE BF DE AF 分
,························································································71=-=∴BF BC CF 分
,·····················································································86tan ==
∠∴CF
AF ACB 分21.(本题8分)
(1)解:(1)在y =x +2中,令x =0得y =2,令y =0得x =﹣2,
∴A (0,2),B (﹣2,0),····································································· ·········2分∵AB =BC ,2
1∴A 为BC 中点,
∴C (2,4),··································································································3分
把C (2,4)代入得:,x k y =2
4k =解得k =8,······································································································4分
(2)由得:或,⎪⎩
⎪⎨⎧=+=x y x y 82⎩⎨⎧==42y x ⎩⎨⎧-=-=24y x ··························································5分
∴D (﹣4,﹣2),·······················································································6分
∴S △DOC =S △DOB +S △COB
=×2×2+×2×4=2+4=6,·····································8分22.(本题8分)
解:(1)
360,·······································································································2分
(2)补充条形统计图如下图:
··················································································
3分
(3)(人),300360
601800=⨯答:这1800名学生中有300人参加了篮球社团,
·····················································5分
(4)设甲乙为男同学,丙丁为女同学,画树状图如下:
····································································
7分
∵一共有12种可能的情况,恰好选择一男一女有8种,
∴. (83)
2128)(==
一男一女P 分
23.(本题10分)解:如图,
(1)过B 作BF ⊥AD 于F ,
················································································1分
在Rt △ABF 中,
,·······································································2分AB BF BAF =
∠sin 则 =≈=1.8(米),BAF AB BF ∠=sin 37sin 3⨯5
3
3⨯············································3分
答:真空管上端B 到AD 的距离约为1.8米;,
·························································4分
(2)在Rt △ABF 中,cos ∠BAF =,
则=≈2.4(米),
BAF AB AF ∠=cos 37cos 3⨯·······················································5分
∵BF ⊥AD ,CD ⊥AD ,BC ∥FD ,
∴四边形BFDC 是矩形,
∴BF =CD ,BC =FD ,··························································································6分
∵EC =0.5米,
∴DE =CD ﹣CE =1.3米,······················································································7分
在Rt △EAD 中,,AD DE EAD =
∠tan
则≈=3.25(米),
EAD DE AD ∠=tan ···································································9分
∴BC =DF =AD ﹣AF =3.25﹣2.4≈0.9(米),·····························································10分
答:安装热水器的铁架水平横管BC 的长度约为0.9米.
24.(本题10分)
解:
探究1:
由图象中的点的坐标规律得到n 与b 成反比例关系,
设
,·································································································1)0(≠=k b
k n
分
将其中一点(9,0.8)代入得:,98.0k =
解得:k =7.2,
∴,········································································································b n 2.7=
··3分
将 n =1.2 代入得:b n 2.7=b =6;···········································································4分
答:检测距离为5米时,视力值1.2所对应行的“E ”形图边长为6mm ,视力值1.2所对应行的“E ”形图边长为6mm ;
探究2:
∵,
θ1
=n ∴在自变量θ的取值范围内,n 随着θ的增大而减小,
···················································5分
∴当n ≥1.0时,0<θ≤1.0,
∵0.5≤θ≤10,
∴0.5≤θ≤1.0;···································································································6分
探究3:
由素材可知,当某人的视力确定时,其分辨视角也是确定的,由相似三角形性质可得,2
211检测距离检测距离b b =··········································································8分
由探究1知b 1=6, ∴,3
b 562=解得,5182=b ···································································································9分
答:检测距离为3m 时,视力值1.2所对应行的“E ”形图边长为
························10mm 5
18分25.(本题12分)
解:(1)
72,1﹣x ,·································································································4分
(2)证明:由(1)知:∠CBD =∠EBD =36°,
∴∠A =∠CBD ,·································································································5分
∵∠C =∠C ,
∴△ABC ∽△BDC ································································································6分∴······································································································CD
BC BC AC =7分即,解得x x x -=112
15-=x ∴; (2)
15-=AC BC 腰底·8分
(3)如图,
在AC 上截取AE =AD ,连接DE ,
∵四边形ABCD 是菱形,
∴∠ACD =,∠DAC =∠BAC =, 3621=∠BCD 362
1=∠DAB AD =AB =1,CD ∥AB ,·····················································································。