高考物理带电粒子在磁场中的运动的基本方法技巧及练习题及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在磁场中的运动的基本方法技巧及练习题及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A
,一比荷
q
m
=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;
(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t
2
122L qE t m = 解得E=16N/C
(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0
tan v qE t m
θ=
可得θ=450粒子射入磁场时的速度大小为2v 0
粒子在磁场中做匀速圆周运动:2
v qvB m r
=
由几何关系可知2r L = 解得B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为
32π
,带负电的粒子转过的圆心角为2
π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r m
T v qB
ππ==; 带正电的粒子在磁场中运动的时间为:413
5.910s 4
t T -==⨯; 带负电的粒子在磁场中运动的时间为:421
2.010s 4
t T -=
=⨯ 带电粒子在AC 两点射入电场的时间差为4
12 3.910t t t s -∆=-=⨯
2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:
(1)带电粒子入射速度的大小;
(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.
【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d
m θ
【解析】
【分析】
画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】
(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .
由几何关系可知:cos d R
θ=
洛伦兹力做向心力:20
0v qv B m R
= 解得0cos qBd
v m θ
=
(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x
θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ
θ
=
(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B
解得2qB d
E mcos θ
=
【点睛】
此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.
3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀
强磁场区域并被偏转,最后两质子束发生相碰。

已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=
3
2
mv 02。

两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7
2
R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;
(2)如果某次实验时将磁场O 的圆心往上移了2
R
,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。

【答案】(1) 02v v =;02mv B eR =(2) 0336
l π++≥ 【解析】 【详解】
解:(1)对于单个质子进入加速电场后,则有:22
0011eU mv mv 22
=- 又:2
003eU mv 2
=
解得:0v 2v =;
根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R
根据洛伦磁力提供向心力有:2
v evB m r
=
可得磁场磁感应强度:0
2mv B eR
=
(2)磁场O
的圆心上移了
R
2
,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心
由于磁场上移了R 2,故sin ∠COF=R
2R
=12,∠COF=π6,∠DOF=∠FKD=π
3
对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,
下方粒子到达C 后最先到达D 点的粒子所需时间为00
(2)
(4)2
224R
R H R R t v v π
π++
-+'==
而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0
l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为
()0
00π1
R Rsin 2πR 62π3336t R 2v 2v -+-=
+=
要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336
l ++≥
4.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于
2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:
(1)磁场的磁感应强度B的大小;
(2)挡板端点P的坐标;
(3)挡板上被粒子打中的区域长度.
【答案】(1)mv
qR
(2)(21),0
R
⎡⎤
⎣⎦
21042
R
+-
【解析】
【分析】
【详解】
(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,

2
v qvB m
r
=
得:
mv B
qR =
(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点
2DP R =(21)OP R =+
P 点的坐标为((21)R +,0 )
(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①
过O 点做挡板的垂线交于G 点,
22(21)(122
OG R R =⋅
=+② 225-22=2
FG OF OG R
=-③
2
EG =
④ 挡板上被粒子打中的区域长度l =FE =
22R +5-222R 2+10-42R ⑤
5.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;
(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.
【答案】(1)Bvd (2)Bb π
(3)3B 2d 2b <U <22
1458
B d b
【解析】 【详解】
(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee
因为正电子的比荷是b ,有 E=
U d
联立解得:
u Bvd =
(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

4
T t =
m t =2t
2
111
v ev B m R =
T =122R m
v Be
=ππ 联立解得:t Bb
π
=
(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d
1ev B =m 2
11
v R
1
1U ev B e
d
=⑪ 联立解得:22
13U d B b =
临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣
14
d )2+9d 2=22R 2Bev =m 22
2
v R
Be 2v =
2
U e d 联立解得:
2221458
B d b
U =
解得:U 的范围是:3B 2d 2
b <U <221458
B d b
6.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。

托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。

相当于给反应物制作一个无形的容器。

2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。

(1)2018年11月16日,国际计量大会利用玻尔兹曼常量将热力学温度重新定义。

玻尔兹曼常量k 可以将微观粒子的平均动能与温度定量联系起来,其关系式为3
2
k E kT =
,其中k=1.380649×10-23J/K 。

请你估算温度为一亿度时微观粒子的平均动能(保留一位有效数字)。

(2)假设质量为m 、电量为q 的微观粒子,在温度为T 0时垂直进入磁感应强度为B 的匀强磁场,求粒子运动的轨道半径。

(3)东方超环的磁约束原理可简化如图。

在两个同心圆环之间有很强的匀强磁场,两圆半径分别为r 1、r 2,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大都不会穿出磁场的外边缘,而被约束在该区域内。

已知带电粒子质量为m 、电量为q 、速度为v ,速度方向如图所示。

要使粒子不从大圆中射出,求环中磁场的磁感应强度最小值。

【答案】(1)15
210J k E -≈⨯ (2)03kmT
(3)()
222212 r mv
q r r - 【解析】
【详解】
(1)微观粒子的平均动能:15
3
2102
k E kT -=
≈⨯J (2)
2031
kT mv 22
= 解得: 0
3kT v m
=
由2
v Bqv m R
= 03kmT R Bq
=
(3)磁场最小时粒子轨迹恰好与大圆相切,如图所示
设粒子轨迹半径为r ,由几何关系得:()2
2221r r r r -=+
解得22
212
:r 2r r r -=
由牛顿第二定律 2
qvB m v r
=
解得:()
222212B r mv
q r r =
-
7.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.
(1)求第I 象限内磁场的磁感应强度B 1;
(2)计算说明速率为5v 、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mv
B qL
=(2)故速率为v
5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL
=
-(或2(17317)'4mv
B qL +=),垂直坐标平面向外
【解析】 【详解】
(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①
由牛顿运动定律得2
1v qvB m R
=②
得1mv B qL
=
③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式
222()R L y R -+=④
得这两种粒子在y 轴上的交点到O 的距离分别为3L 、17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥
(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有
15172917L L R L L
-= 又221
(9)9v q vB m R ⋅=⑨
解得2217(517)mv B qL
=
-(或2(51717)4mv
B qL =)⑩
若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里
同理:21732917L
L
R L L
-=
2
22
(9)9'v q vB m R ⋅=
解得2217'(173)m B qL
=
-(或2(17317)'4mv
B qL +=)
8.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(
q
m
)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:
(1)电场强度的大小; (2)带电微粒的初速度;
(3)带电微粒做圆周运动的圆心坐标.
【答案】(1)g k (2)2g
kB
(3)2222232(,)28g k B L L k B g -
【解析】 【分析】 【详解】
(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=q
k m
解得g E k
=
(2)由几何关系:2R cos θ=L ,
粒子做圆周运动的向心力等于洛伦兹力:2
v qvB m r
= ;

cos y v v
θ=
在进入复合场之前做平抛运动:y gt =v
0L v t =
解得0
2g v kB
=
(3)由2
12
h gt =
其中2kBL t g = ,
则带电微粒做圆周运动的圆心坐标:'3
2
O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-
9.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:
(1)第1个小球的带电量大小; (2)磁场的磁感强度的大小B ;
(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.
【答案】(1) 20
12mv q Eh
=;(2) 02E B v =;(3)存在,0E B v '= 【解析】 【详解】
(1)设第1球的电量为1q ,研究A 到C 的运动:
2
112q E h t m
=
02h v t =
解得:2
12mv q Eh
=

(2)研究第1球从A 到C 的运动:
12
y q E
v h m
= 解得:0y v v =
tan 1y v v θ=
=,45o θ=,02v v =;
研究第1球从C 作圆周运动到达O 的运动,设磁感应强度为B
由21v q vB m R =得
1
mv
R q B = 由几何关系得:22sin R h θ= 解得:0
2E B v =
; (3)后面抛出的小球电量为q ,磁感应强度B '
①小球作平抛运动过程
02hm
x v t v qE
== 2
y qE v h m
=
②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:sin
mv
x qB θ'
= 解得:0
E B v '=

10.如图所示,在xoy 平面(纸面)内,存在一个半径为R=02.m 的圆形匀强磁场区域,磁感应强度大小为B=1.0T ,方向垂直纸面向里,该磁场区域的左边缘与y 轴相切于坐标原点O.在y 轴左侧、-0.1m≤x≤0的区域内,存在沿y 轴负方向的匀强电场(图中未标出),电场强
度的大小为E=10×104N/C .一个质量为m=2.0×10-9kg 、电荷量为q=5.0×10-
5C 的带正电粒
子,以v 0=5.0×103m/s 的速度沿y 轴正方向、从P 点射入匀强磁场,P 点的坐标为(0.2m ,
-0.2m),不计粒子重力.
(1)求该带电粒子在磁场中做圆周运动的半径; (2)求该带电粒子离开电场时的位置坐标;
(3)若在紧靠电场左侧加一垂直纸面的匀强磁场,该带电粒子能回到电场,在粒子回到电场前瞬间,立即将原电场的方向反向,粒子经电场偏转后,恰能回到坐标原点O ,求所加匀强磁场的磁感应强度大小. 【答案】(1)0.2r m = (2)()0.1,0.05m m -- (3)14B T = 【解析】 【分析】
粒子进入电场后做类平抛运动,将射出电场的速度进行分解,根据沿电场方向上的速度,结合牛顿第二定律求出运动的时间,从而得出类平抛运动的水平位移和竖直位移,即得出射出电场的坐标.先求出粒子射出电场的速度,然后根据几何关系确定在磁场中的偏转半径,然后根据公式B mv
qR
=求得磁场强度 【详解】
(1)带正电粒子在磁场中做匀速圆周运动,由牛顿第二定律有:20
0v qv B m r
=
解得:0.2r m =
(2)由几何关系可知,带电粒子恰从O 点沿x 轴负方向进入电场,带电粒子在电场中做类平抛运动,设粒子在电场中的加速度为a ,到达电场边缘时,竖直方向的位移为y ,有:
0L v t =,212
y at
=
由牛顿第二定律有:qE ma = 联立解得:0.05y m =
所以粒子射出电场时的位置坐标为()0.1,0.05m m -- (3)粒子分离电场时,沿电场方向的速度y v at = 解得:3
0 5.010/y v v m s ==⨯ 则粒子射出电场时的速度:02v v =
设所加匀强磁场的磁感应强度大小为1B ,粒子磁场中做匀速圆周运动的半径为1r ,由几何关系可知:12r m =
由牛顿第二定律有:2
11
v qvB m r =
联立解得:14B T =
11.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷
9110q
m
=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:
(1)粒子源发射的粒子进入磁场时的速度大小;
(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);
(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.
【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤
【解析】 【分析】
(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2
v qvB m R
=求解速度;
(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】
(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,
由2
v qvB m
R
= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s
(2)粒子在磁场中运动的时间61121044
R t s v ππ-=
⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间
62 1.010x
t s v
-=
=⨯ 总时间6612110 1.8104t t t s s π--⎛⎫
=+=+⨯=⨯
⎪⎝⎭
(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qE
a m s m
==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫=
=⨯⨯⨯= ⎪⨯⎝⎭
打在屏上的纵坐标为0.75;
经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.
12.如图所示,在x 轴上方有垂直xOy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xOy 平面,图象如图所示.一质量为m ,电量为-q 的粒子在02
3
t t =
时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,20t t =时第一次到达x 轴,并且速度垂直于x 轴经过C
点,C 与原点O 的距离为3L .第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L .(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示)
(1)求此粒子从A 点射出时的速度υ0; (2)求电场强度E 0的大小和方向;
(3)粒子在09t t =时到达M 点,求M 点坐标.
【答案】(1)002qB L v m = (2)202πqB L
E m
= (3)(9L ,3π2-L ) 【解析】
试题分析:(1)设粒子在磁场中做圆周运动的半径为R 1,由牛顿第二定律得

根据题意由几何关系可得

联立①②得

(2)粒子在第一象限磁场中运动的周期设为T 1,可得

粒子在第四象限磁场中运动的周期设为T 2,可得

根据题意由几何关系可得⑥ 由④⑤⑥可得


综上可以判断3t 0—4 t 0粒子在第四象限的磁场中刚好运动半个周期,半径为

由牛顿第二定律得

2 t0—
3 t0,粒子做匀减速直线运动,
qE=ma 11
12
综上解得
13
(3)由题意知,粒子在8 t0时刚在第四象限做完半个圆周运动,
x=9L 14
粒子在电场中减速运动的时间为t0,由运动学公式可得
15
联立③ ⑨⑩1112可解得
16
联立可得M点的坐标为
(9L,) 17
考点:带电粒子在电场及在磁场中的运动.
13.(20分)如图所示,平面直角坐标系xOy的第二象限内存在场强大小为E,方向与x 轴平行且沿x轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。

现将一挡板放在第二象限内,其与x,y轴的交点M、N到坐标原点的距离均为2L。

一质量为m,电荷量绝对值为q的带负电粒子在第二象限内从距x轴为L、距y轴为2L的A点由静止释放,当粒子第一次到达y轴上C点时电场突然消失。

若粒子重力不计,粒子与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。

求:
(1)C 点的纵坐标。

(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长?
【答案】(1)3L ;(2)qL mE B 221=;(3)qL Em B 2322=;9(2)24mL
t qE
π+=总。

【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 2
02
1mv qEL = (1分)
粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L =
(1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分) (2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x 2== (1分) 沿y 轴方向的速度为m
qEL
v v y 20=
= (1分) 此时粒子在C 点的速度为m
qEL
v 2= (1分)
粒子的速度方向与x 轴的夹角
x
y v v =
θtan
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为 L r 2
2
1=
(2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)
要是粒子再次打到挡板上,磁感应强度的最大值为
qL
mE
B 22
1= (1分) (3)当磁感应强度为B 2时,粒子做半径为r 2的圆周运动到达y 轴上的O 点,之后做直线运动打到板上,L r 2
2
32=
(2分) 此时的磁感应强度为qL
Em
B 2322=
(1分)
此后粒子返回到O 点,进入磁场后做匀速圆周运动,由对称性可知粒子将到达D 点,接着做直线运动到达C 点 从A 到板,有2121t m Eq L =
qE
mL
t 21=
(1分) 在磁场中做圆周运动的时间 qE
mL
T t 24
9232π
==
(1分) 从O 到板再返回O 点作直线运动的时间qE
mL
t 23=
(1分) 从x 轴上D 点做匀速直线运动到C 点的时间为qE
mL
t 2234=
(1分)
总时间为qE
mL
t t t t t t 24)2(94321π+=++++=总 (1分)
考点:带电粒子在磁场中的运动,牛顿第二定律,平抛运动。

14.如图所示,足够大的平行挡板A 1,A 2竖直放置,间距为6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面yN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1,A 2上各有位置正对的小孔S 1,S 2,两孔与分界面yN 的距离为L .质量为m ,电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到yN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.
(1)若k =1,求匀强电场的电场强度E ;
(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式
和Ⅱ区的磁感应强度B与k的关系式.
【答案】(1)(2),
【解析】
试题分析:(1)粒子在电场中,由动能定理有qEd=mv2-0 ①
粒子在Ⅰ区洛伦兹力提供向心力 qvB0=②
当k=1时,由几何关系得r=L ③
由①②③解得E=④
(2)由于2<k<3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知
(r-L)2+(kL)2=r2⑤
解得r=⑥
由②⑥解得v=⑦
粒子在Ⅱ区洛伦兹力提供向心力 qvB=⑧
由对称性及几何关系可知⑨
解得r1=⑩
由⑧⑩解得B=
考点:带电粒子在电场中的运动、带电粒子在匀强磁场中的运动
15.
磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s发出质量为m、电量为q的粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不。

相关文档
最新文档