黄石市人教版七年级上册数学期末试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石市人教版七年级上册数学期末试卷及答案
一、选择题
1.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()
A.49 B.59
C.77 D.139
2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()
A.两点之间线段最短 B.两点确定一条直线
C.垂线段最短 D.两点之间直线最短
3.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44
⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )
A.208B.480
C.496D.592
4.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;

255
4045
n n
+-
=;③
255
4045
n n
++
=;④ 40m+25 = 45m- 5 .其中正确的是()
A.①③B.①②C.②④D.③④
5.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()
A.50°B.130°C.50°或 90°D.50°或 130°
6.若x=﹣1
3
,y=4,则代数式3x+y﹣3xy的值为()
A.﹣7 B.﹣1 C.9 D.7
7.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()
A .48°
B .42°
C .36°
D .33° 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )
A .8cm
B .2cm
C .8cm 或2cm
D .以上答案不对
9.下列式子中,是一元一次方程的是( )
A .3x+1=4x
B .x+2>1
C .x 2-9=0
D .2x -3y=0
10.点()5,3M 在第( )象限.
A .第一象限
B .第二象限
C .第三象限
D .第四象限
11.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程
3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1
B .﹣1
C .±1
D .a ≠1
12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .
A .2
B .3
C .4
D .6
二、填空题
13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.
14.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________
15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.
17.小马在解关于x 的一元一次方程
3232
a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.
19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.
20.已知一个角的补角是它余角的3倍,则这个角的度数为_____.
21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y
)2019的值为_____. 22.若4a +9与3a +5互为相反数,则a 的值为_____.
23.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.
三、压轴题
25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______;
(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.
26.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.
(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;
(2)当线段CE 运动到点A 在C 、E 之间时,
①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....
); ②求BE 与CF 的数量关系;
(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.
27.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.
(1)线段A 3A 4的长度= ;a 2= ;
(2)若|a 1﹣x |=a 2+a 4,求x 的值;
(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.
28.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
29.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.
(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)
(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?
(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
30.已知线段30AB cm =
(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?
(2)如图1,几秒后,点P Q 、两点相距10cm ?
(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.
31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.
(1)点D 表示的数是 ;(直接写出结果)
(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.
①求t 的值;
②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.
32.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.
(1)求A,B 两点之间的距离;
(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;
(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t 秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解.
【详解】
解:∵(5ab+4a+7b )+(3a-4ab )
=5ab+4a+7b+3a-4ab
=ab+7a+7b
=ab+7(a+b )
∴当a+b=7,ab=10时
原式=10+7×7=59.
故选B .
2.B
解析:B
【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.
3.C
解析:C
【解析】
【分析】
由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.
【详解】
解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,
第二行四个数分别为7,8,9,10x x x x ++++,
第三行四个数分别为14,15,16,17x x x x ++++,
第四行四个数分别为21,22,23,24x x x x ++++,
16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.
【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
4.A
解析:A
【解析】
【分析】
首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
【详解】
根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为
2554045
n n ++=,③正确,②错误; 所以正确的是①③.
故选A .
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变. 5.D
解析:D
【解析】
【分析】
根据题意画出图形,再分别计算即可.
【详解】
根据题意画图如下;
(1)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠BOD=180°﹣90°﹣40°=50°,
(2)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠AOD=50°,
∴∠BOD=180°﹣50°=130°,
故选D.
【点睛】
此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.6.D
解析:D
【解析】
【分析】
将x与y的值代入原式即可求出答案.
【详解】
当x=﹣1
3
,y=4,
∴原式=﹣1+4+4=7
故选D.
【点睛】
本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.A
解析:A
【解析】
【分析】
首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.
【详解】
解:
OB 平分AOC ∠,18AOB ∠=︒,
236AOC AOB ∴∠=∠=︒,
又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.
故选:A .
【点睛】
本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.
8.C
解析:C
【解析】
【分析】
根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC 的长度即可.
【详解】
解:当点C 在线段AB 上时,如图,
∵AC=AB−BC ,
又∵AB=5,BC=3,
∴AC=5−3=2;
②当点C 在线段AB 的延长线上时,如图,
∵AC=AB+BC ,
又∵AB=5,BC=3,
∴AC=5+3=8.
综上可得:AC=2或8.
故选C .
【点睛】
本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.
9.A
解析:A
【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x 2−9=0是一元二次方程,故本选项错误;
D. 2x −3y=0是二元一次方程,故本选项错误。

故选A.
10.A
解析:A
【解析】
【分析】
根据平面直角坐标系中点的坐标特征判断即可.
【详解】
∵5>0,3>0,
∴点()5,3M 在第一象限.
故选A.
【点睛】
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.
11.A
解析:A
【解析】
要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31
a -,因为无解,所以a ﹣1=0,即a=1. 故选A .
点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.
12.C
解析:C
【解析】
【分析】
根据MN =CM +CN =
12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】
解:∵M 、N 分别是AC 、BC 的中点,
∴CM =12AC ,CN =12
BC , ∴MN =CM +CN =
12AC +12BC =12(AC +BC )=12AB =4. 故选:C .
【点睛】
本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键
二、填空题
13.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
14.-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b 的值即可得出结果.
【详解】
解:根据题意得:=(a-1)x2+(b-6)x+1,
由结果与x取值
解析:-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即
可得出结果.
【详解】
解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,
由结果与x 取值无关,得到a-1=0,b-6=0,
解得:a=1,b=6.
∴a-b=-5.
【点睛】
此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.
15.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2
(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.-22
【解析】
【分析】
将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.
【详解】
解:当m ﹣2n =2时,
原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )
=2×(﹣2)3
解析:-22
【解析】
【分析】
将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】
解:当m﹣2n=2时,
原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)
=2×(﹣2)3﹣3×2
=﹣16﹣6
=﹣22,
故答案为:﹣22.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.
【详解】
∵方程32
3
2
a x
x
+
=的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.18.16
【解析】
【分析】
本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.
【详解】
设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,
a+b+c+
解析:16
【解析】
【分析】
本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.
【详解】
设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,
a+b+c+d=37①;2a=b+2=c-3=2
d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,
∴这四堆苹果中个数最多的一堆为16.
故答案为16.
【点睛】
本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.
19.(4n+1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=
解析:(4n +1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=1+4×3,
……
∴摆第n个图案需要火柴棒(4n+1)根,
故答案为(4n+1).
【点睛】
本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.
20.45°
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α
解析:45°
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,
根据题意得,180°-α=3(90°-α),
解得α=45°.
故答案为:45°.
【点睛】
本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.
21.﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】
由题意得:x+2=0,y﹣2=0,
解得:x=﹣2,y=2,
所以,()2019=()201
解析:﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,
所以,(x
y
)2019=(
2
2
)2019=(﹣1)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
22.-2
【解析】
【分析】
利用相反数的性质求出a的值即可.
【详解】
解:根据题意得:4a+9+3a+5=0,
移项合并得:7a=﹣14,
解得:a=﹣2,
故答案为:﹣2.
【点睛】
本题考查了解
解析:-2
【解析】
【分析】
利用相反数的性质求出a的值即可.
【详解】
解:根据题意得:4a+9+3a+5=0,
移项合并得:7a=﹣14,
解得:a=﹣2,
故答案为:﹣2.
【点睛】
本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.23.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.24.-17
【解析】
【分析】
根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.
【详解】
∵a※b=a﹣b+2ab,
∴(﹣2)※3
=﹣2﹣3+2×(﹣2)×3
=﹣
解析:-17
【解析】
【分析】
根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.
【详解】
∵a※b=a﹣b+2ab,
∴(﹣2)※3
=﹣2﹣3+2×(﹣2)×3
=﹣2﹣3﹣12
=﹣17.
故答案为:﹣17.
【点睛】
此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.
三、压轴题
25.(1)4;(2)
12或72;(3)27或2213
或2 【解析】
【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13
= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
解得:t=2.
综上所述:t 的值为,2或
27或2213. 【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或
487或527 【解析】
【分析】
(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;
(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案
(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解
【详解】
(1)数轴上A 、B 两点对应的数分别是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵点F 是AE 的中点,∴AF=EF=7,
,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,
故答案为16,6,2;
(2)∵点F 是AE 的中点,∴AF=EF ,
设AF=EF=x,∴CF=8﹣x ,
∴BE=16﹣2x=2(8﹣x ),
∴BE=2CF.
故答案为①162x -②2BE CF =;
(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,
=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,
解得:t=1或3;
②当6<t ≤8时,P 对应数()33126t 22
t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12
t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527
; 故答案为t=1或3或
487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健
27.(1)4,16;(2)x =﹣28或x =52;(3)线段MN 的运动速度为9单位长度/秒.
【解析】
【分析】
(1)由A 1A 2=A 2A 3=……=A 19A 20结合|a 1﹣a 4|=12可求出A 3A 4的值,再由a 3=20可求出a 2=16;
(2)由(1)可得出a 1=12,a 2=16,a 4=24,结合|a 1﹣x|=a 2+a 4可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论;
(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.
【详解】
解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,
∴3A3A4=12,
∴A3A4=4.
又∵a3=20,
∴a2=a3﹣4=16.
故答案为:4;16.
(2)由(1)可得:a1=12,a2=16,a4=24,
∴a2+a4=40.
又∵|a1﹣x|=a2+a4,
∴|12﹣x|=40,
∴12﹣x=40或12﹣x=﹣40,
解得:x=﹣28或x=52.
(3)根据题意可得:A1A20=19A3A4=76.
设线段MN的运动速度为v单位/秒,
依题意,得:9v=76+5,
解得:v=9.
答:线段MN的运动速度为9单位长度/秒.
【点睛】
本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.
28.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
29.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8﹣22=﹣14,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,
∴点P表示的数是8﹣5t.
故答案为:﹣14,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=22,解得t=2.5;
②点P 、Q 相遇之后,
由题意得3t ﹣2+5t =22,解得t =3.
答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;
(3)设点P 运动x 秒时,在点C 处追上点Q ,
则AC =5x ,BC =3x ,
∵AC ﹣BC =AB ,
∴5x ﹣3x =22,
解得:x =11,
∴点P 运动11秒时追上点Q ;
(4)线段MN 的长度不发生变化,都等于11;理由如下:
①当点P 在点A 、B 两点之间运动时:
MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12
×22=11; ②当点P 运动到点B 的左侧时:
MN =MP ﹣NP =
12AP ﹣12BP =12(AP ﹣BP )=12
AB =11, ∴线段MN 的长度不发生变化,其值为11.
【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
30.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .
【解析】
【分析】
(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.
【详解】
解:(1)设经过ts 后,点P Q 、相遇.
依题意,有2330t t +=,
解得:6t =.
答:经过6秒钟后,点P Q 、相遇;
(2)设经过xs ,P Q 、两点相距10cm ,由题意得
231030x x ++=或231030x x +-=,
解得:4x =或8x =.
答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;
(3)点P Q 、只能在直线AB 上相遇,
则点P 旋转到直线AB 上的时间为:
()120430s =或()1201801030
s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;
或10306y =-,
解得 2.4y =,
答:点Q 的速度为7/cm s 或2.4/cm s .
【点睛】
本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.
31.(1)16;(2)①t 的值为3或
143秒;②存在,P 表示的数为314. 【解析】
【分析】
(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,
(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=
143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.
【详解】
(1)16
(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.
当BC =2,点B 在点C 的右边时,
由题意得:32-10-2BC t t =+=(),
解得:t =3,
当AD=2,点A 在点D 的左边时,
由题意得:16--22AD t t ==,
解得:t =143
. 综上,t 的值为3或
143秒 ②存在,理由如下:
当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,
-3BD PA PC =,
()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤
314
x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163
,D 点表示的数为343
. 则37343816-1-|-|3333
BD PA x PC x ====,,, -3BD PA PC =,
∴ 28161--|-|33
x x ⎛
⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733
x ≤≤, x ∴无解
综上,P 表示的数为
314
. 【点睛】
本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.
32.2+t 6-2t 或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)、设BC 的长为x ,则AC=2x ,根据AB 的长度得出x 的值,从而得出点C 所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t ≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t >3,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.
(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=8
3
,∴C点表示的数为6-
8 3=
10
3

(3)①2+t;6-2t或2t-6.
②当2+t=6-2t时,解得t=4
3
,当2+t=2t-6时,解得t=8.∴t=
4
3
或8.
点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.。

相关文档
最新文档