静电纺丝论文:静电纺取向纳米纤维及其纤维束制备的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电纺丝论文:静电纺取向纳米纤维及其纤维束制备的研究
【中文摘要】本文主要对旋转滚筒接收制备静电纺纳米纤维进行了研究。
通过将静电纺丝与传统纺纱中的涡流纺纱相结合,自主研发了一种获取静电纺纳米纤维束的新型的接收装置,并对该接收装置的纺丝原理、纺丝工艺参数等进行了初步的探讨。
首先研究了滚筒法制备静电纺取向纳米纤维的纺丝工艺。
选用质量分数为12%的聚丙烯腈(PAN)溶液作为纺丝液,当纺丝电压为12kV,纺丝距离为12cm和纺丝流率为0.01ml/min时,考虑到射流的稳定和节约能源,选取获取具有一定取向排列的静电纺纳米纤维的滚筒最佳转速为150rpm。
然后通过在纺丝液中分别添加活性碳、氯化锂来制备静电纺取向纳米纤维膜,研究了添加剂的加入对纤维形貌、结构和力学性能的影响。
研究发现,添加剂加入后都能改善纤维的取向程度,且氯化锂加入后,纤维在滚
筒上的沉积面积减小。
随着活性碳含量的增加,所得纤维的直径逐渐增加,而添加氯化锂后,纤维直径的变化不是很明显,但是当氯化锂含量为0.6%时,纤维间出现集束的现象。
通过XRD分析可知,氯化锂的加入能提高聚丙烯腈大分子的规整排列。
通过力学性能分析发现,随着活性碳含量的增加,纤维的力学性能变差,且活性碳对力学性能的
影响明显,而随着氯化锂含量的增加,纤维的拉伸应力呈现先减小后
增加的趋势,且当氯化锂含量为0.6%时,静电纺取向纳米纤维的拉伸应变提高。
最后,采用漏斗型管道作为静电纺接收装置,并对漏斗后端的圆柱形管道切向抽真空,使得在整个漏斗型管道内部及漏斗口部分
形成一定的气流场,从而对纤维进行集聚,形成纤维束。
此外,采用质量分数为12%的聚丙烯腈溶液作为纺丝液,对新型静电纺丝装置的纺丝工艺参数进行了初步的探讨,研究了纺丝距离、纺丝流率、真空泵的抽气速率等因素对静电纺纳米纤维束的形成的影响。
通过实验发现,当纺丝距离为3cm,纺丝流率为0.005ml/min,真空泵的抽气速率为
6L/s时,能获得集束性能良好的静电纺纳米纤维束。
当在纺丝液中添加0.6%的氯化锂后,纤维束的制取较纯的聚丙烯腈溶液容易。
【英文摘要】The rotating drum was used as collector to preparation electrospinning orientation nanofibers. and in order to obtain nanofiber bundles, a novel electrospinning device was studied, meanwhile, the spinning principle, and process parameters of the novel device are primarily discussed.The process parameters of electrospinning polyacrylonitrile (PAN) orientation nanofibers were studied. We chose mass fraction of 12% PAN solution as spinning solution, and spinning voltage is 12kV, spinning distance is 12cm , spinning flow rate of 0.01 ml/min. Comparison with the jet stability and energy saving, we selected the best rotating rate is 18m/min to obtain orientation nanofibers.Added active carbon, LiCl respectively in spinning solution to preparation electrospinning orientation nanofiber membranes, we studied the affect on fiber morphology, structure and mechanical
properties. Research found that additive in spinning solution can improve fiber orientation degree, and fiber deposition area on the drum is reduced by adding LiCl. With the increase of activated carbon content, the diameter of fiber gradually increases, and added LiCl, fiber diameter change is not obvious, but when licl content 0.6%, fiber appear cluster phenomenon. By XRD analysis, we found that with the increase of LiCl, the arrangement of polyacrylonitrile macromolecules are significantly. And through mechanical performance analysis found, with the increase of activated carbon content, the mechanical properties of the fiber becomes poor, and activated carbon effect the mechanics properties is obvious. But with the increase of LiCl, fiber breakage strength present first decreased and then increased, and when LiCl content is 0.6%, electrospinning orientation nanofibers has good mechanical ed a funnel type pipe as electrospinning collector, and vacuumize the cylindrical funnel pipe, which makes the whole funnel type pipe form certain air flow, and then the fibers aggregation form fiber bundles. In addition, the spinning process parameters of the novel electrospinning device was carried on the preliminary discussion using 12% of PAN spinning solution, which including spinning distance,
spinning feed rate, vacuum pump lashing velocity and so on. Through the experiments, we found that when the spinning distance is 3cm, spinning feed rate is 0.005 ml/min, vacuum suction rate is 6L/s, can obtain the ideal electrospinning nanofiber bundles. And when adding 0.6% of LiCl in the spinning solution, fiber bundles prepared more easily than pure polyacrylonitrile solution.
【关键词】静电纺丝取向纳米纤维纳米纤维束新型装置
【英文关键词】Electrospinning Orientation nanofibers Nanofiber bundles Novel device 【目录】静电纺取向纳米纤维及其纤维束制备的研究摘要
5-6Abstract6-7目录8-11第一章绪论11-221.1 静电纺丝
11-131.1.1 静电纺丝的基本原理11-121.1.2 静电纺丝的影响因素12-131.2 静电纺中纳米纤维的形态13-181.2.1 无序状纳米纤维与取向排列纳米纤维13-141.2.2 螺旋状纳米纤维的制取14-151.2.3 多孔纳米纤维与中空纳米纤维151.2.4 其他新型静电纺丝装置
15-181.3 静电纺丝纳米纤维束或纳米纤维纱的制备18-201.3.1 双电极法181.3.2 水浴法18-191.3.3 机械加捻法191.3.4 其他制备方法19-201.4 论文的研究思路及主要内容20-22第二章滚筒法制备取向聚丙烯腈纳米纤维22-302.1 实验部分22-232.1.1 主要材料与仪器222.1.2 静电纺丝溶液的配置及工艺参数的设置22-232.1.3 FE-SEM 形貌观察232.2 结果与讨论23-292.2.1 滚筒转速对纤维直
径的影响23-272.2.2 滚筒转速对纤维沿滚筒旋转方向取向排列的影响27-282.2.3 滚筒转速对纤维膜宽度的影响28-292.3 本章小结
29-30第三章添加剂对取向聚丙烯腈纳米纤维的影响30-413.1 实验部分30-313.1.1 主要材料与仪器30-313.1.2 结构表征与力学性能测试313.1.3 试样的制备313.2 结果与讨论31-393.2.1 活性碳与氯化锂的加入对纤网形态的影响31-333.2.2 活性碳与氯化锂的加入对静电纺取向纤维直径的影响33-353.2.3 活性碳与氯化锂的加入对纤维取向排列的影响35-363.2.4 活性碳与氯化锂的加入对纤维结构的影响36-383.2.5 力学性能分析38-393.3 本章小结39-41第四章漏斗型接收装置制备静电纺纳米纤维束的成形机理初析41-504.1 静电纺丝射流运动形态41-424.2 涡流纺纱原理42-444.2.1 涡流场的形成424.2.2 涡流纺纱成纱原理42-444.3 漏斗接收装置的成型构
思44-494.3.1 漏斗型接收装置的构成45-474.3.2 漏斗接收装置的接收过程初析47-494.4 本章小结49-50第五章静电纺纳米纤维束的制备与工艺探讨50-615.1 实验部分50-515.1.1 主要材料与仪器505.1.2 FE-SEM 形貌观察505.1.3 静电纺丝工艺参数设置50-515.2 结果与讨论51-605.2.1 纺丝距离对静电纺纳米纤维束制备的影响
51-555.2.2 纺丝流率对静电纺纳米纤维束制备的影响55-565.2.3 抽气速率对静电纺纳米纤维束成型的影响56-585.2.4 添加氯化锂后对静电纺纳米纤维束的影响58-605.3 本章小结60-61第六章结论与展望61-636.1 结论61-626.2 展望62-63参考文献63-70攻读硕士期间发表论文情况70-71致谢71。