《用列举法求概率》课件(第2课时)PPT (高效课堂)获奖 人教数学20222
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.布置作业
教科书习题 第 4~7 题.
轴对称
引出新知
引言 对称现象无处不在,从自然景观到艺术作 品,从建筑物到交通标志,甚至日常生活用品,都可 以找到对称的例子,对称给我们带来美的感受!
探索新知
问题1 如图,把一张纸对折,剪出一个图案(折 痕处不要完全剪断),再打开这张对折的纸,就得到了 美丽的窗花.观察得到的窗花,你能发现它们有什么共 同的特点吗?
P(3 个辅音)=122
1 =6
.
3.练习巩固
练习 经过某十字路口的汽车,可能直行,也可能 向左转或向右转.如果这三种可能性大小相等,求三辆 汽车经过这个十字路口时,下列事件的概率:
(1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.
4.课堂小结
(1)画树状图法求概率的一般步骤是什么? (2)相对列表法,画树状图法在列举试验所有等 可能结果方面有什么优势?
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
C C DD E ECCDDE E
H I HI H IHIHIHI
这些结果的可能性相等.
(1)只有 1 个元音字母的结果有 5 种,所以
P(1
个元音)=
5 12
.
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
H I HI H IHIHIHI
这些结果的可能性相等.
全部为元音字母的结果有 1 种,所以
P(3
个元音)=
1 12
.
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
C C DD E ECCDDE E
H I HI H IHIHIHI
这些结果的可能性相等.
(2)全是辅音字母的结果有 2 种,所以
段被对称轴垂直平分;对称 B 轴垂直平分对称点所连线段.
CN
A′
B′ C′
探索新知
问题4 下图是一个轴对称图形,你能发现什么结
论?能说明理由吗? l
结论:
直线l 垂直线段AA′,BB′, 直线l平分线段AA′,BB′(或直 A
线l 是线段AA′,BB′的垂直平分
线).
B
A′ B′
探索新知
问题4 下图是一个轴对称图形,你能发现什么结
(2)取出的 3 个小球上全是辅音字母的概率是多 少?
2.探究新知
解:根据题意,可以画出如下树状图:
甲
A
B
乙
C DE C D E
丙 H IH IH I H I H I H I
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB C C DD E ECCDDE E H I HI H IHIHIHI 这些结果的可能性相等.
课堂练习
练习2 如图所示的每幅图形中的两个图案是轴对称 的吗?如果是,试着找出它们的对称轴,并找出一对对 称点.
课堂小结
(1)本节课学习了哪些主要内容? (2)轴对称图形和两个图形成ห้องสมุดไป่ตู้对称的区别与联系是
什么? (3)成轴对称的两个图形有什么性质?轴对称图形有
什么性质?我们是怎么探究这些性质的?
布置作业
线段AA′,BB′和CC′,并且直线MN 还平分线段
AA′,BB′和CC′”.如
M
果将其中的“三角形”改为
A
A′
“四边形”“五边形”…其
P
他条件不变,上述结论还成
立吗?
B
B′
C N C′
探索新知
问题3 如图,△ABC 和△A′B′C′关于直线MN
对称,点A′,B′,C′分别是点A,B,C 的对称点,线
教科书习题13.1第1、2、3、4、5题.
九年级 上册
用列举法求概率(第2课时)
课件说明
• 本课是在学生已经学习了用列表法求概率的基础上, 继续用画树状图法求概率,深化学生对用列举法求概 率的认识.
课件说明
• 学习目标: 用画树状图法求事件的概率.
• 学习重点: 用画树状图法求事件的概率.
1.复习引入
问题 抛掷三枚质地均匀的硬币,三枚正面朝上 的概率是多少?为什么?
探索新知
问题3 如图,△ABC 和△A′B′C′关于直线MN
对称,点A′,B′,C′分别是点A,B,C 的对称点,线
段AA′,BB′,CC′与直线MN 有什么关系?
M
A
A′
追问1 你能说明其中
P
的道理吗?
B
B′
C N C′
探索新知
追问2 上面的问题说明“如果△ABC 和
△A′B′C′关于直线MN 对称,那么,直线MN 垂直
2.探究新知
例 甲口袋中装有 2 个相同的小球,它们分别写有 字母 A 和 B;乙口袋中装有 3 个相同的小球,它们分别 写有字母 C,D 和 E;丙口袋中装有 2 个相同的小球, 它们分别写有字母 H 和 I.从三个口袋中各随机取出 1 个小球.
(1)取出的 3 个小球上恰好有 1 个、2 个和3 个元 音字母的概率分别是多少?
AAAAAABBBBBB
C C DD E ECCDDE E
H I HI H IHIHIHI
这些结果的可能性相等.
有 2 个元音字母的结果有 4 种,所以
P(2 个元音)=124
1 =3
.
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
C C DD E ECCDDE E
段AA′,BB′,CC′与直线MN 有什么关系?
M
A
A′
经过线段中点并且垂直
P
于这条线段的直线,叫做这
条线段的垂直平分线.
B
B′
C N C′
探索新知
追问3 你能用数学语言概括前面的结论吗?
成轴对称的两个图形的性质:
如果两个图形关于某条 直线对称,那么对称轴是任 何一对对应点所连线段的垂
M A
P
直平分线.即对称点所连线
探索新知
如果一个平面图形沿一条直线折叠,直线两旁的部 分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴.这时,我们也说这个图形关于这条
直线(成轴)对称.
追问 你能举出一些轴对称图形的例子吗?
探索新知
问题2 观察下面每对图形(如图),你能类比前 面的内容概括出它们的共同特征吗?
共同特征: 每一对图形沿着虚线折叠,左边的图形都能与右边 的图形重合.
探索新知
把一个图形沿着某一条直线折叠,如果它能够与另 一个图形重合,那么就说这两个图形关于这条直线(成 轴)对称,这条直线叫做对称轴,折叠后重合的点是对 应点,叫做对称点.
追问1 你能再举出一些两个图形成轴对称的例子吗?
探索新知
追问2 你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗?
论?能说明理由吗? l
追问 你能用数学语言概括前面
的结论吗?
A
A′
B
B′
探索新知
问题4 下图是一个轴对称图形,你能发现什么结
论?能说明理由吗? l
轴对称图形的性质:
轴对称图形的对称轴,是任何 一对对应点所连线段的垂直平分线.A
A′
B
B′
课堂练习
练习1 如图所示的每个图形是轴对称图形吗?如 果是,指出它的对称轴.
两者的区别: 轴对称图形指的是一个图形沿对称轴折叠后这个图 形的两部分能完全重合,而两个图形成轴对称指的是两 个图形之间的位置关系,这两个图形沿对称轴折叠后能 够重合.
探索新知
追问2 你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗?
两者的联系: 把成轴对称的两个图形看成一个整体,它就是一个 轴对称图形.把一个轴对称图形沿对称轴分成两个图 形,这两个图形关于这条轴对称.