物理化学期终概念上45页PPT
合集下载
物理化学全套课件 完整版
![物理化学全套课件 完整版](https://img.taocdn.com/s3/m/f95cf78ca1c7aa00b52acb62.png)
物理化学
Physical Chemistry
1
绪论
Preface
2
一、什么是物理化学?
无机化学
分析化学
有机化学 化学 物理化学
生物化学
高分子化学
物理化学是化学学科的一个分支 3
温度变化 压力变化 体积变化 状态变化
热
电
化学反应
原子、分子间的分离与组合
化学
密 不 可 分
物理学
光
磁
热学、电学、光学、磁学是物理学的重要分支
М В Ломоносов 8
十九世纪中叶形成:
1887年俄国科学家W.Ostwald(1853~1932)和荷兰科学家 J.H.van’t Hoff (1852~1911)合办了第一本“物理化学杂志” 。
W. Ostwald
J. H. van’t Hoff
(1853~1932)
(1852~1911)
理想气体定义: 服从 pV=nRT 的气体为理想气体 或服从理想气体模型的气体为理想气体
(低压气体)p0 理想气体
20
3. 摩尔气体常数 R mole gas constant R
R 是通过实验测定确定出来的
例:测300 K时,N2、He、 CH4 pVm ~ p 关系,作图
p0时:
5000
(1)分子间力
吸引力 分子相距较远时,有范德华力;
排斥力 分子相距较近时,电子云及核产生排斥作用。
E吸引 -1/r 6
E排斥 1/r n
Lennard-Jones理论:n = 12
E总
E吸
引+E排
斥=
-A r6
B r 12
式中:A-吸引常数;B-排斥常数
Physical Chemistry
1
绪论
Preface
2
一、什么是物理化学?
无机化学
分析化学
有机化学 化学 物理化学
生物化学
高分子化学
物理化学是化学学科的一个分支 3
温度变化 压力变化 体积变化 状态变化
热
电
化学反应
原子、分子间的分离与组合
化学
密 不 可 分
物理学
光
磁
热学、电学、光学、磁学是物理学的重要分支
М В Ломоносов 8
十九世纪中叶形成:
1887年俄国科学家W.Ostwald(1853~1932)和荷兰科学家 J.H.van’t Hoff (1852~1911)合办了第一本“物理化学杂志” 。
W. Ostwald
J. H. van’t Hoff
(1853~1932)
(1852~1911)
理想气体定义: 服从 pV=nRT 的气体为理想气体 或服从理想气体模型的气体为理想气体
(低压气体)p0 理想气体
20
3. 摩尔气体常数 R mole gas constant R
R 是通过实验测定确定出来的
例:测300 K时,N2、He、 CH4 pVm ~ p 关系,作图
p0时:
5000
(1)分子间力
吸引力 分子相距较远时,有范德华力;
排斥力 分子相距较近时,电子云及核产生排斥作用。
E吸引 -1/r 6
E排斥 1/r n
Lennard-Jones理论:n = 12
E总
E吸
引+E排
斥=
-A r6
B r 12
式中:A-吸引常数;B-排斥常数
物理化学整理PPT0-25393页PPT
![物理化学整理PPT0-25393页PPT](https://img.taocdn.com/s3/m/33eb50565a8102d276a22ff7.png)
pVZnRT pVmZRT
(1) Z的意义:压缩因子。Z与1的差值 代表气体对理想气体的偏差 程度,理想气体的Z=1。
pVZnRT pVmZRT
(2) 如何求Z:Z不是特性参数,随气体状态而改变 Z = f(T, p)
Z pVm 代入对比参数 ( pcpr)(VcVr)
RT
R(TcTr )
启示:f (pr, Vr, Tr)=0。即不同气体如果它们具有相同的pr 和Tr,则Vr必相同。称它们处在相同对比状态。
2. 对比状态原理: 处在相同对比状态的各种气体(乃至 液体),具有相近的物性(如摩尔热容、 膨胀系数、压缩系数、黏度等)。
三、用压缩因子图计算实际气体 (Calculation of real gases with compression factor figure)
2. 分压定律: 对理想气体混合物
pBpBx nVR xB T(nB V )xR TnB V RT
∴ 在理想气体混合物中,任意组 分气体的分压等于同温下该气体 在容器中单独存在时的压力
§1-2 实际气体 (Real gas)
一、实际气体状态方程 (Equation of state for real gas)
z
xy xz zxxy
大纲(一) 气体的PVT关系
• 1、理想气体状态方程 • 2、理想气体混合物 • 3、气体的液化及临界参数 • 4、真实气体状态方程 • 5、对应状态原理及普遍化压缩因子图
大纲 考试要求
(一) 气体的PVT关系 • 掌握理想气体状态方程和混合气体的性质
pcVc RTc
prVr Tr
Zc
prVr Tr
∴ Zf(Zc,pr,Tr)
Zc: Critical compression factor
(1) Z的意义:压缩因子。Z与1的差值 代表气体对理想气体的偏差 程度,理想气体的Z=1。
pVZnRT pVmZRT
(2) 如何求Z:Z不是特性参数,随气体状态而改变 Z = f(T, p)
Z pVm 代入对比参数 ( pcpr)(VcVr)
RT
R(TcTr )
启示:f (pr, Vr, Tr)=0。即不同气体如果它们具有相同的pr 和Tr,则Vr必相同。称它们处在相同对比状态。
2. 对比状态原理: 处在相同对比状态的各种气体(乃至 液体),具有相近的物性(如摩尔热容、 膨胀系数、压缩系数、黏度等)。
三、用压缩因子图计算实际气体 (Calculation of real gases with compression factor figure)
2. 分压定律: 对理想气体混合物
pBpBx nVR xB T(nB V )xR TnB V RT
∴ 在理想气体混合物中,任意组 分气体的分压等于同温下该气体 在容器中单独存在时的压力
§1-2 实际气体 (Real gas)
一、实际气体状态方程 (Equation of state for real gas)
z
xy xz zxxy
大纲(一) 气体的PVT关系
• 1、理想气体状态方程 • 2、理想气体混合物 • 3、气体的液化及临界参数 • 4、真实气体状态方程 • 5、对应状态原理及普遍化压缩因子图
大纲 考试要求
(一) 气体的PVT关系 • 掌握理想气体状态方程和混合气体的性质
pcVc RTc
prVr Tr
Zc
prVr Tr
∴ Zf(Zc,pr,Tr)
Zc: Critical compression factor
最新物理化学pptPPT课件
![最新物理化学pptPPT课件](https://img.taocdn.com/s3/m/42ecbd3781c758f5f71f6712.png)
物理化学ppt
高盘良, 《物理化学考研攻略》, 科学出版社, 2004.
2010
一、物理化学的内容
物理化学是化学科学中的一个学科,是化学 科学的理论基础。
温度变化 压力变化 体积变化 相态变化
热
电
化学反应
原子、分子间的分离与组合
化学
密 不 可 分
物理学
光
磁
物理化学是从物质的物理现象和化学现象 的联系入手来探求化学变化基本规律的一门学 科。
主要任务
(1) 化学变化的方向和限度问题。 化学热力学
(2) 化学反应的速率和机理问题。 化学动力学
(3) 物质结构和性能之间的关系。
结构化学及 量子化学
二、物理化学的研究方法
1. 实验方法 2. 经验半经验方法 3. 理论方法
归纳和演绎法 假设和模型法
主要理论支柱:
热力学、动力学、统计力学、量子化学
高精尖现代 谱学,衍射 分子束,计 算机技术
物理化学
强化了对系统、反应在分子 水平上的精细物理化学研究
数学、物理
强化了对特殊集合 理论与方法 态的物理化学研究
分子动态物理化学 分子设计与分子工程
表面、界面物理化学 非平衡态物理化学
分子反应动力学 分子激发态谱学
蛋白分子工程
表面分子工程
新型簇系统物理化学
有序组合体的物理化学 纳米材料的物理化学 催化、电极、超导等材料
结合各类 化学系统
生命科学 材料科学
国计民生
结合各类 化学系统
• 20世纪诺贝尔化学奖获得者中,约60%是从 事物理化学领域研究的科学家,在中国科学 院化学学部的院士中,近1/3是研究物理化学 或者是物理化学某一个领域的科学家 。
高盘良, 《物理化学考研攻略》, 科学出版社, 2004.
2010
一、物理化学的内容
物理化学是化学科学中的一个学科,是化学 科学的理论基础。
温度变化 压力变化 体积变化 相态变化
热
电
化学反应
原子、分子间的分离与组合
化学
密 不 可 分
物理学
光
磁
物理化学是从物质的物理现象和化学现象 的联系入手来探求化学变化基本规律的一门学 科。
主要任务
(1) 化学变化的方向和限度问题。 化学热力学
(2) 化学反应的速率和机理问题。 化学动力学
(3) 物质结构和性能之间的关系。
结构化学及 量子化学
二、物理化学的研究方法
1. 实验方法 2. 经验半经验方法 3. 理论方法
归纳和演绎法 假设和模型法
主要理论支柱:
热力学、动力学、统计力学、量子化学
高精尖现代 谱学,衍射 分子束,计 算机技术
物理化学
强化了对系统、反应在分子 水平上的精细物理化学研究
数学、物理
强化了对特殊集合 理论与方法 态的物理化学研究
分子动态物理化学 分子设计与分子工程
表面、界面物理化学 非平衡态物理化学
分子反应动力学 分子激发态谱学
蛋白分子工程
表面分子工程
新型簇系统物理化学
有序组合体的物理化学 纳米材料的物理化学 催化、电极、超导等材料
结合各类 化学系统
生命科学 材料科学
国计民生
结合各类 化学系统
• 20世纪诺贝尔化学奖获得者中,约60%是从 事物理化学领域研究的科学家,在中国科学 院化学学部的院士中,近1/3是研究物理化学 或者是物理化学某一个领域的科学家 。
物理化学幻灯片PPT课件
![物理化学幻灯片PPT课件](https://img.taocdn.com/s3/m/a98d6996a58da0116c1749ea.png)
大体而言,物理化学为化学诸分支中,最讲求数值精确和 理论解释的学科。
.
2
物理化学的形成
物质的化学运动形式和物理运动形式是相互联系的。早期的物理学家和化学家并没有 十分明确的分工。化学家波义耳在物理学上曾做出十分重要的贡献;而物理学家牛顿 在化学上虽然没有取得什么成就,但却全盘接受了波义耳的化学思想,他用在炼金术 和化学上的时间比用在物理学上的时间还多。既是物理学家又是化学家的罗蒙诺索夫 就曾使用过“物理化学”这一术语,还提出了这门学科的性质和研究范围。
1887年,阿累尼乌斯提出电解质稀溶液的电离理论
.
24
关于电化学
一个伽凡尼电池, 两个电极用盐桥连 接以传递离子。外 电路中产生电流。
.
25
科学家的故事
1800年,伏打用锌片与铜片夹以盐水浸湿的纸 片叠成电堆产生了电流,这个装置后来称为伏打电堆 ,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放 多这样的小杯子中联起来,组成电池。他指出这种电 池“具有取之不尽,用之不完的电”,“不预先充电 也能给出电击”。
物理化学
PHYSICAL CHEMISTRY
胡泽伟 杨 靓
.1Leabharlann 物理化学是什么?物理化学是一门从物理学角度分析物质体系化学行为的原 理、规律和方法的学科,是近代化学的原理根基。
物理化学家关注于分子如何形成结构、动态变化、分子光 谱原理、平衡态等根本问题,涉及的物理学有静力学、动 力学、量子力学、统计力学等。
初步发现
1748年法国人诺勒发现渗透现象 1827年法国人杜特罗夏定量测定了渗透压
1877年德国浦菲弗发现 PV = KT(K 为常数)
进一步发展
1886年范霍夫建立起稀溶液理论
揭示出拉乌尔公式中常数的热力学意义
.
2
物理化学的形成
物质的化学运动形式和物理运动形式是相互联系的。早期的物理学家和化学家并没有 十分明确的分工。化学家波义耳在物理学上曾做出十分重要的贡献;而物理学家牛顿 在化学上虽然没有取得什么成就,但却全盘接受了波义耳的化学思想,他用在炼金术 和化学上的时间比用在物理学上的时间还多。既是物理学家又是化学家的罗蒙诺索夫 就曾使用过“物理化学”这一术语,还提出了这门学科的性质和研究范围。
1887年,阿累尼乌斯提出电解质稀溶液的电离理论
.
24
关于电化学
一个伽凡尼电池, 两个电极用盐桥连 接以传递离子。外 电路中产生电流。
.
25
科学家的故事
1800年,伏打用锌片与铜片夹以盐水浸湿的纸 片叠成电堆产生了电流,这个装置后来称为伏打电堆 ,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放 多这样的小杯子中联起来,组成电池。他指出这种电 池“具有取之不尽,用之不完的电”,“不预先充电 也能给出电击”。
物理化学
PHYSICAL CHEMISTRY
胡泽伟 杨 靓
.1Leabharlann 物理化学是什么?物理化学是一门从物理学角度分析物质体系化学行为的原 理、规律和方法的学科,是近代化学的原理根基。
物理化学家关注于分子如何形成结构、动态变化、分子光 谱原理、平衡态等根本问题,涉及的物理学有静力学、动 力学、量子力学、统计力学等。
初步发现
1748年法国人诺勒发现渗透现象 1827年法国人杜特罗夏定量测定了渗透压
1877年德国浦菲弗发现 PV = KT(K 为常数)
进一步发展
1886年范霍夫建立起稀溶液理论
揭示出拉乌尔公式中常数的热力学意义
物理化学课件
![物理化学课件](https://img.taocdn.com/s3/m/f37e0e71effdc8d376eeaeaad1f34693daef10ce.png)
意义
热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。
热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。
物理化学全套课件
![物理化学全套课件](https://img.taocdn.com/s3/m/aa567358a66e58fafab069dc5022aaea998f41a5.png)
强调实验过程中可能存在的安全隐患,并 提供相应的防范措施,确保实验安全。
实验数据处理与分析
数据记录与整理
及时、准确地记录实验数据, 并按照要求整理成表格或图表
,以便后续分析。
数据处理方法
选择合适的数据处理方法,如 平均值、中位数、众数等,对 数据进行处理,以便更好地反 映实验结果。
数据分析与解释
对处理后的数据进行深入分析 ,挖掘数据背后的规律和意义 ,并对实验结果进行解释和讨 论。
重要性
物理化学对于理解化学反应的本 质、推动化学工业的发展、促进 新材料的研发等方面具有重要意 义。
物理化学的发展历程
早期发展
物理化学作为一门学科,起源于19 世纪中叶,随着热力学、统计力学和 电化学等分支的建立和发展,逐渐形 成完整的学科体系。
现代进展
进入20世纪后,物理化学在理论和实 践方面都取得了重大进展,如量子化 学、分子动态学、生物物理化学等领 域的突破和创新。
实验方法习题及答案解析
总结词
提高实验设计和操作能力
详细描述
针对物理化学实验中的基本方法和操作,设计了一系列 习题。这些习题要求学生设计实验、选择合适的仪器和 试剂、记录和处理数据等。答案解析详细解释了每道题 目的解题思路和答案,帮助学生提高实验设计和操作能 力,培养科学素养。
THANKS
感谢观看
数据误差分析
分析数据误差的来源和影响, 提高实验结果的准确性和可靠
性。
实验误差与实验结果评价
误差来源分析
分析实验过程中可能产生的误差 来源,如测量误差、操作误差等 ,并评估其对实验结果的影响。
误差控制与减小
采取有效措施控制和减小误差,提 高实验结果的准确性和可靠性。
[课件]物理化学简介PPT
![[课件]物理化学简介PPT](https://img.taocdn.com/s3/m/9b3dcc00482fb4daa58d4b8f.png)
解:M甲烷 = 16.04×10-3 kg · mol-1
m pM ρ V RT 3 3 200 10 16.04 10 kg m3 8.315 (25 273.15) 1.294 kg m3
33
§1.1 理想气体状态方程
物理化学简 介
绪论
0.1 物理化学——一门无处不在的学科 0.2 学习物理化学的要求及方法 0.3 物理量的表示及运算
2
0.1 物理化学——一门无处不在的学科
何谓物理化学 (Physical Chemistry) ?
物理化学 是从物质的物理现象与化学现象的联系入 手,探求化学变化基本规律的一门学科。 “用物理的理论、物理的实验手段”, 探求化学变化基本规律的一门学科。 •目的 主要是为了解决生产实践和科学实验中向 化学提出的理论问题,揭示化学变化的本质,
12
0.2 学习物理化学的要求及方法
课程特点
“三多一复杂”
•学习要求
概念多 理论多 公式多 计算复杂
学习物理化学课程与其他课程的学习既有相同点 也有不同点。物理化学课程综合性强,各章节既有 联系又相对独立。因此,学习时切忌死记硬背。
13
0.2 学习物理化学的要求及方法
•学习要求
1. 多动脑
多给自己提问,多问几个为什么,如:前人提出 问题和解决问题的思路和方法有什么可取之处,有什 么局限性,方法是否严谨?结论是否可靠?你能否找 出例外情况?
5
0.1 物理化学——一门无处不在的学科
① 宏 观
微 观
只有深入到微观,研究分子、原子层次的规律,才能 了解结构与性质的关系,掌握化学变化的本质。 宏观 介观 微观 (看得见的物体) (纳米材料) (原子、分子)
6
m pM ρ V RT 3 3 200 10 16.04 10 kg m3 8.315 (25 273.15) 1.294 kg m3
33
§1.1 理想气体状态方程
物理化学简 介
绪论
0.1 物理化学——一门无处不在的学科 0.2 学习物理化学的要求及方法 0.3 物理量的表示及运算
2
0.1 物理化学——一门无处不在的学科
何谓物理化学 (Physical Chemistry) ?
物理化学 是从物质的物理现象与化学现象的联系入 手,探求化学变化基本规律的一门学科。 “用物理的理论、物理的实验手段”, 探求化学变化基本规律的一门学科。 •目的 主要是为了解决生产实践和科学实验中向 化学提出的理论问题,揭示化学变化的本质,
12
0.2 学习物理化学的要求及方法
课程特点
“三多一复杂”
•学习要求
概念多 理论多 公式多 计算复杂
学习物理化学课程与其他课程的学习既有相同点 也有不同点。物理化学课程综合性强,各章节既有 联系又相对独立。因此,学习时切忌死记硬背。
13
0.2 学习物理化学的要求及方法
•学习要求
1. 多动脑
多给自己提问,多问几个为什么,如:前人提出 问题和解决问题的思路和方法有什么可取之处,有什 么局限性,方法是否严谨?结论是否可靠?你能否找 出例外情况?
5
0.1 物理化学——一门无处不在的学科
① 宏 观
微 观
只有深入到微观,研究分子、原子层次的规律,才能 了解结构与性质的关系,掌握化学变化的本质。 宏观 介观 微观 (看得见的物体) (纳米材料) (原子、分子)
6
(推荐)《物理化学》PPT课件
![(推荐)《物理化学》PPT课件](https://img.taocdn.com/s3/m/0c02ceec647d27284a73514b.png)
在p-x图上液相线在上,气相线在下;相 应在T-x图上气相线在上,液相线在下。梭形区 是气-液两相区。
18
正偏差在 p-x图上有最高点
在p-x图上有最高点者, 在T-x图上就有最低点,这 最低点称为最低恒沸点 ( low-boiling azeotropic point)。此时的混合物称为 最低恒沸混合物 (minimum boiling azeotropic)。它是 混合物而不是化合物
属于此类的体系有:H 2 O -C 2 H 5 O H , C H 3 O H -C 6 H 6, C2H5OH -C6H6等。在标准压力下,H2O-C2H5OH 19 的最低恒沸点温度为351.28K,含乙醇95.57 。
负偏差在 p-x图上有最低点
在p-x图上有最低点, 在T-x图上就有最高点, 这最高点称为最高恒沸 点(high-boiling azeotropic point)。处 在最高恒沸点时的混合 物称为最高恒沸混合物 (maximum boiling azeotrope )。
属于此类的体系有:H 2O-HN 3,H 2 O O-H等C。l在标 准压力下,H2O-HC的l 最高恒沸点温度为381.65 K, 含HCl 20.24,分析上常用来作为标准溶液。 20
杠杆规则 Lever Rule
在p-x图的两相区,物系点O代表了体系总的 组成和温度。
通过O点作平行于横坐标 的等压线,与液相和气相线分 别交于M点和N点。MN线称 为等压连结线(tie line)。
22
由图可以看出
xA-x1=OM x2 – xA= ON
所以 N气·OM = n液·ON
P159 例题5
23
x
蒸馏与精馏
Distillation and Fractional Distillation 简单蒸馏 简单蒸馏只能把双 液系中的A和B粗略分 开。
18
正偏差在 p-x图上有最高点
在p-x图上有最高点者, 在T-x图上就有最低点,这 最低点称为最低恒沸点 ( low-boiling azeotropic point)。此时的混合物称为 最低恒沸混合物 (minimum boiling azeotropic)。它是 混合物而不是化合物
属于此类的体系有:H 2 O -C 2 H 5 O H , C H 3 O H -C 6 H 6, C2H5OH -C6H6等。在标准压力下,H2O-C2H5OH 19 的最低恒沸点温度为351.28K,含乙醇95.57 。
负偏差在 p-x图上有最低点
在p-x图上有最低点, 在T-x图上就有最高点, 这最高点称为最高恒沸 点(high-boiling azeotropic point)。处 在最高恒沸点时的混合 物称为最高恒沸混合物 (maximum boiling azeotrope )。
属于此类的体系有:H 2O-HN 3,H 2 O O-H等C。l在标 准压力下,H2O-HC的l 最高恒沸点温度为381.65 K, 含HCl 20.24,分析上常用来作为标准溶液。 20
杠杆规则 Lever Rule
在p-x图的两相区,物系点O代表了体系总的 组成和温度。
通过O点作平行于横坐标 的等压线,与液相和气相线分 别交于M点和N点。MN线称 为等压连结线(tie line)。
22
由图可以看出
xA-x1=OM x2 – xA= ON
所以 N气·OM = n液·ON
P159 例题5
23
x
蒸馏与精馏
Distillation and Fractional Distillation 简单蒸馏 简单蒸馏只能把双 液系中的A和B粗略分 开。
大学物理化学总结PPT课件
![大学物理化学总结PPT课件](https://img.taocdn.com/s3/m/2ef567e9f111f18582d05a2f.png)
适用于n一定、理想气体、恒温过程或始末态温度相等的过程。
(3)
S nCp,m ln(T2 / T1)
适用于n一定、 Cp,m为常数、任意物质的恒压过程。
第23页/共57页
相变过程的熵变
β α
S
αβH
/T
恒T,p下的可逆相变化。
不可逆相变,要设计过程。
标准摩反应熵
r
S
m
B
S
m
(B)
B
rSm (T2 ) rSm (T1)
适用于恒外压过程。
第17页/共57页
(4)
W
Байду номын сангаас
V2 V1
p dV
nRT ln(V2
/V1)
nRT ln( p2
/
p1)
适用于理想气体恒温可逆过程。
(5)
W U nCV ,m (T2 T1)
适用于CV,m为常数的理想气体绝热过程。
第18页/共57页
6.几种热效应
相变热
纯物质的相变是在等温、等压下 进行的,所以相变热就是相变焓
rGm RT ln K
E RT ln K zF
E E RT ln
zF B
(aB )B
能斯特(Nernst)方程
第10页/共57页
六、化学动力学
微分式
dx
一级反应 r dt k1(a x)
积分式
ln
a
a
x
k1 t
半衰期
t1/2 = ln2/k1
二级反应
r
dx dt
k2
(a
x)2
(a b)
第21页/共57页
2. Carnot 循环 热机效率
物理化学(PPT资料优秀版
![物理化学(PPT资料优秀版](https://img.taocdn.com/s3/m/7a1cbffd55270722182ef701.png)
(4)课前自学,课后复习,勤于思考,培养自学和独立工作的能力。
分离——相平衡,相际扩散,界面现象
物料输送——pVT关系
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
物理化学研究:
平衡规律——当系统的一个平衡态由 于条件改变而变为另一个平衡态时,能量、 体积和各物质的数量变化的规律。
宏观变化,而不涉及变化的细节。
对固体构效关系的认识的深入,已能对固体表面“整容”,催化由技艺性走向科学化;
(4) 从单一学科到交叉学科
物理化学运用数学、物理学等基础科学的理论和实验方法,研究化学变化包括C相2变H化3C和l pVT变化中的平衡规律和速率规律,以及这些
规律与物质微观结构的关系。
(精馏塔)
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
平衡和速率是制备和性能研究中最基 本的问题。对于化工包括冶金、轻工来说, 有利的平衡和速率是实现化学物质和材料 的大规模生产的前提。前者决定理论的产 率,后者决定实际的产量。
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
进行定量监测。
(精馏塔)
C2H3Cl
(裂解炉)
氯乙烯生产工艺流程
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
Cl2
H2
FeCl3 衡体系。 三个层次——宏观,从微观到宏观,微观
C2H4
4
近代化学的发展趋(势电和解特槽点)
(反应器)
物理化学是研究化学体系最一般的宏观、微观 规律的学科,特别是给出定量化规律。一般方 法是根据实验事实建立物理模型,应用数学原 理进行严密的或近似的推演得到公式。
分离——相平衡,相际扩散,界面现象
物料输送——pVT关系
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
物理化学研究:
平衡规律——当系统的一个平衡态由 于条件改变而变为另一个平衡态时,能量、 体积和各物质的数量变化的规律。
宏观变化,而不涉及变化的细节。
对固体构效关系的认识的深入,已能对固体表面“整容”,催化由技艺性走向科学化;
(4) 从单一学科到交叉学科
物理化学运用数学、物理学等基础科学的理论和实验方法,研究化学变化包括C相2变H化3C和l pVT变化中的平衡规律和速率规律,以及这些
规律与物质微观结构的关系。
(精馏塔)
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
平衡和速率是制备和性能研究中最基 本的问题。对于化工包括冶金、轻工来说, 有利的平衡和速率是实现化学物质和材料 的大规模生产的前提。前者决定理论的产 率,后者决定实际的产量。
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
进行定量监测。
(精馏塔)
C2H3Cl
(裂解炉)
氯乙烯生产工艺流程
物理化学( PHYSICAL CHEMISTRY)
西南科技大学
Cl2
H2
FeCl3 衡体系。 三个层次——宏观,从微观到宏观,微观
C2H4
4
近代化学的发展趋(势电和解特槽点)
(反应器)
物理化学是研究化学体系最一般的宏观、微观 规律的学科,特别是给出定量化规律。一般方 法是根据实验事实建立物理模型,应用数学原 理进行严密的或近似的推演得到公式。
物理化学ppt课件
![物理化学ppt课件](https://img.taocdn.com/s3/m/fb503769492fb4daa58da0116c175f0e7cd11905.png)
热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。
物理化学总结(上册)ppt课件
![物理化学总结(上册)ppt课件](https://img.taocdn.com/s3/m/9f4cc18279563c1ec4da717a.png)
.
•
基尔霍夫定律
• 已知某一温度条件下的反应焓变, 可利用基尔霍夫 定律求任意温度条件下的反应焓变.
• 基尔霍夫定律的微分式:
• ( rH/T)p= rCp • 基尔霍夫定律的不定积分式:
•
rHm(T)=∫rCp,mdT+I
• 基尔霍夫定律的定积分式:
•
rHm(T2)= rHm(T1)+ ∫T1T2rCp,,mdT
• 0: 标准状态(温度为T, 压力为1p0)下理想气体化学势.
.
• 实际气体及其逸度:
• = 0+RT ln(f/p0) • f=p
• f:气体的逸度(fugacity); • :逸度系数(fugacity coefficiant).
• 逸度的计算: • ∫RTdlnf=∫Vmdp • lnf=lnp*+1/RT[pVm-RT-∫p*ppdVm] • 范德华气体的逸度: • lnf=ln(RT/(Vm-b))+b/(Vm-b) -2a/RTVm
rHm(T1)=- H1=∫T1T2 Cp(产物)dT
一般可取反应的初始温度T1为298.15K, 有:
rHm(298.15K)=- H1=-∫298..15KT2 Cp(产物)dT 可解出T2•热力学第二定律
• 热力学第二定律是决定自然界一切过程方向与限 度的基本规律.
• Clauxius表述:
•
力平衡(p相同)
•
热平衡(T相同)
•
相平衡
•
化学平衡
• 状态函数: 只取决于体系平衡态的热力学量.
•
如: T,p,V,U,H,S,F,G,n
• 过程量: 与体系经历的过程有关的量.
•
•
基尔霍夫定律
• 已知某一温度条件下的反应焓变, 可利用基尔霍夫 定律求任意温度条件下的反应焓变.
• 基尔霍夫定律的微分式:
• ( rH/T)p= rCp • 基尔霍夫定律的不定积分式:
•
rHm(T)=∫rCp,mdT+I
• 基尔霍夫定律的定积分式:
•
rHm(T2)= rHm(T1)+ ∫T1T2rCp,,mdT
• 0: 标准状态(温度为T, 压力为1p0)下理想气体化学势.
.
• 实际气体及其逸度:
• = 0+RT ln(f/p0) • f=p
• f:气体的逸度(fugacity); • :逸度系数(fugacity coefficiant).
• 逸度的计算: • ∫RTdlnf=∫Vmdp • lnf=lnp*+1/RT[pVm-RT-∫p*ppdVm] • 范德华气体的逸度: • lnf=ln(RT/(Vm-b))+b/(Vm-b) -2a/RTVm
rHm(T1)=- H1=∫T1T2 Cp(产物)dT
一般可取反应的初始温度T1为298.15K, 有:
rHm(298.15K)=- H1=-∫298..15KT2 Cp(产物)dT 可解出T2•热力学第二定律
• 热力学第二定律是决定自然界一切过程方向与限 度的基本规律.
• Clauxius表述:
•
力平衡(p相同)
•
热平衡(T相同)
•
相平衡
•
化学平衡
• 状态函数: 只取决于体系平衡态的热力学量.
•
如: T,p,V,U,H,S,F,G,n
• 过程量: 与体系经历的过程有关的量.
•