2023年海南省三亚市中考数学一模试卷及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年海南省三亚市中考数学一模试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(3分)2022的相反数是()
A.B.﹣C.2022D.﹣2022
2.(3分)芝麻作为食品和药物,均被广泛使用,经测算一粒芝麻的质量约为0.00000201kg,用科学记数法表示一粒芝麻的质量应为()
A.2.01×10﹣3kg B.2.01×10﹣6kg
C.20.1×10﹣6kg D.2.01×10﹣7kg
3.(3分)如图的几何体,从上向下看,看到的是()
A.B.C.D.
4.(3分)将不等式x﹣3≥0的解集表示在数轴上,正确的是()
A.B.
C.D.
5.(3分)如图,AB∥CD,∠1=70°,则∠2=()
A.70°B.80°C.110°D.120°
6.(3分)某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()
A.众数是3B.中位数是0C.平均数是3D.极差是5 7.(3分)下列分式方程中,解为x=﹣1的是()
A.B.
C.D.
8.(3分)如图,在平面直角坐标系中,Rt△ABO的顶点B在x轴的正半轴上,∠ABO=90°,
点A的坐标为,将△ABO绕点O逆时针旋转,使点B的对应点B′落在边OA上,连接A、A′,则线段AA′的长度是()
A.1B.2C.D.2
9.(3分)若反比例函数y=的图象经过点A(﹣3,4),则下列各点中也在这个函数图象的是()
A.(﹣2,3)B.(4,﹣3)C.(﹣6,﹣2)D.(8,)10.(3分)如图,一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BD,∠B=∠EDF=90°,∠A=30°,∠CED=15°,则∠F的度数是()
A.15°B.25°C.45°D.60°
11.(3分)如图,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC 上一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF ∥AC交EG的延长线于点F.若AG=3,则阴影部分的面积为()
A.12B.12.5C.13D.13.5
12.(3分)如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE 交于点O,若△DOE的面积为1,则△ABC的面积为()
A.6B.9C.12D.13.5
二、填空题(本大题共4小题,每小题3分,共12分)
13.(3分)因式分解:x3﹣2x2=.
14.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是.
15.(3分)如图,锐角△ABC中,∠A=30°,BC=6,△ABC的面积是6,D,E,F分别是三边上的动点,则△DEF周长的最小值是.
16.(3分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,1),(3,0),(2,﹣1).点M从坐标原点O出发,第一次跳跃到点M1,使得点M1与点O关于点A成中心对称;第二次跳跃到点M2,使得点M2与点M1关于点B成中心对称;第三次跳跃到点M3,使得点M3与点M2关于点C成中心对称;第四次跳跃到点M4,使得点M4与点M3关于点A成中心对称;…,依此方式跳跃,点M2022的坐标是.
三、(本大题共6小题,17题12分,18、19、20题各10分,21、22题15分,本大题满分72分)
17.(12分)计算下列各题:
(1)sin245°﹣+(﹣2006)0+6tan30°
(2)sin230°﹣cos45°•tan60°+﹣tan45°.
18.(10分)现有一段长为88米的河道清淤任务,由甲、乙两个工程队先后接力完成.甲队每天清理10米,乙队每天清理8米,两队共用时10天,则甲、乙工程队各清理了几天?
19.(10分)疫情期间,学校开通了教育互联网在线学习平台.为了解学生使用电子设备种类的情况,小淇设计了调查问卷,对该校七(1)班和七(2)班全体同学进行了问卷调查,发现使用了三种设备:A(平板)、B(电脑)、C(手机),根据调查结果绘制成如下两幅不完整的统计图.请根据图中信息解答下列问题.
(1)此次被调查的学生总人数为;
(2)求扇形统计图中代表类型C的扇形的圆心角,并补全折线图;
(3)若该校七年级学生共有1000人,试根据此次调查结果,估计该校七年级学生中类型C学生约有多少人.
20.(10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
21.(15分)【问题呈现】阿基米德折弦定理:阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.如
图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.
证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.
∵M是的中点,
∴MA=MC,
又∵∠A=∠C,BA=GC,
∴△MAB≌△MCG,
∴MB=MG,
又∵MD⊥BC,
∴BD=DG,
∴AB+BD=CG+DG即CD=DB+BA.
【理解运用】如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;
【变式探究】如图3,若点M是的中点,【问题呈现】中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.
【实践应用】如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,则AD=.
22.(15分)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.
(1)求抛物线的解析式和直线BC的解析式;
(2)求四边形ABDC的面积;
=S△ABC时,求点P的(3)P是第一象限内抛物线上的动点,连接PB,PC,当S
△PBC
坐标;
(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
2023年海南省三亚市中考数学一模试卷
参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.【分析】直接根据相反数的概念解答即可.
【解答】解:2022的相反数等于﹣2022,
故选:D.
【点评】此题考查的是相反数,只有符号不同的两个数叫做互为相反数.
2.【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【解答】解:0.00000201kg=2.01×10﹣6kg.
故选:B.
【点评】本题考查用科学记数法表示较小的数,熟练掌握一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左边有1个正方形,右边有2个正方形,并且左边的正方形在上层.
故选:A.
【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
4.【分析】不等式移项求出解集,表示在数轴上即可.
【解答】解:不等式x﹣3≥0,
解得:x≥3,
表示在数轴上,如图所示:
故选:D.
【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.
5.【分析】根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补解答.【解答】解:∵∠1=70°,
∴∠3=∠1=70°,
∵AB∥CD,
∴∠2=180°﹣∠3=180°﹣70°=110°.
故选:C.
【点评】本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.
6.【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,
则这组数的众数为3,中位数为3,平均数为=3,极差为5,
故选:B.
【点评】本题考查了众数、中位数、平均数以及极差,解题的关键是牢记概念及公式.7.【分析】根据方程解的意义,使方程左右两边相等的式子值叫方程的解,分别代入判断即可.
【解答】解:当x=﹣1时,
A.中,左边=﹣2,右边=﹣1,A不符合题意;
B.中,x2﹣1=0,分母等于0,分式无意义,B不符合题意;
C.中,左边=﹣1+1=0=右边,C符合题意;
D.中,分母x+1=0,D不符合题意.
故选:C.
【点评】本题考查了分式方程的解,解决本题的关键是正确理解分式方程解的意义,做题时要考虑分母是否为0的情况.
8.【分析】证明△OAA′是等边三角形,可得结论.
【解答】解:∵A(1,),∠ABO=90°,
∴OB=1,AB=,
∴tan∠AOB==,
∴∠AOB=60°,
由旋转的性质可知,∠AOB=∠A′OA=60°,
∵OA=OA′,
∴△ABC是等边三角形,
∴AA′=OA=2OB=2,
故选:B.
【点评】本题考查坐标与图形变化﹣旋转,等边三角形的判定,解直角三角形等知识,解题关键是理解题意,灵活运用所学知识解决问题.
9.【分析】根据反比例函数y=的图象经过点A(﹣3,4),可以得到k的值,从而可以判断各个选项是否符合题意,本题得以解决.
【解答】解:∵反比例函数y=的图象经过点A(﹣3,4),
∴k=xy=(﹣3)×4=﹣12,
∵﹣2×3=﹣6≠﹣1,故选项A不符合题意,
∵4×(﹣3)=﹣12,故选项B符合题意,
∵﹣6×(﹣2)=12≠﹣12,故选项C不符合题意,
∵8×=12≠﹣12,故选项D不符合题意,
故选:B.
【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
10.【分析】利用平行线的性质及三角形的内角和求解.
【解答】解:
∵∠B=90°,∠A=30,
∴∠ACB=60°,
∵∠ACB=∠CED+∠EDB,
∴∠EDB=45°,
∵∠EDF=90°,
∴∠FDH=45°,
∵EF∥CD,
∴∠F=∠FDH=45°.
故选:C.
【点评】本题考查了平行线的性质,结合三角形的内角和定理是解题的关键.11.【分析】设DG=a,CG=b,则CD=a+b,根据勾股定理得出关于x和y的代数式的值,
然后用含有x和y的代数式表示出阴影部分的面积,进而求出阴影部分的面积即可.【解答】解:设DG=a,CG=b,则CD=a+b,
∵△ABC为等腰直角三角形,∠BAC=90°,
∴∠ABC=∠ACB=45°,AB=AC,
又∵D为BC的中点,
∴BD=AD=CD=a+b,BC=2BD=2(a+b),
∵EG⊥BC,EH⊥AD,
∴四边形DGEH为矩形,∠GEC=45°,
∴DH=EG=CG=b,
∵BF∥AC,
∴∠FBG=∠ACB=45°,
∵EF⊥BC,
∴∠F=45°,
∴GF=BG=BD+DG=a+b+a=2a+b,
由勾股定理得,AD2+DG2=AG2,
∴(a+b)2+a2=32,
整理得,2a2+2ab+b2=9,
由题意知,S
阴=S
△ABC
+S△BGF﹣S矩形DGEH
=BC•AD+BG•GF﹣DG•DH
=BD•AD+BG2﹣DG•DH
=(a+b)2+(2a+b)2﹣ab
=a2+2ab+b2+2a2+ab+b2﹣ab
=(2a2+2ab+b2)
=×9
=13.5,
故选:D.
【点评】本题主要考查直角三角形的知识,熟练掌握勾股定理,等腰直角三角形的性质等知识是解题的关键.
12.【分析】利用O点为△ABC的重心得到OB=2OE,利用三角形面积公式得到S△BOD=2S△DOE=2,再利用AD=BD得到S△ABE=2S△BDE=6,然后利用AE=CE得到S△ABC=2S =12.
△ABE
【解答】解:∵点D和E分别是边AB和AC的中点,
∴O点为△ABC的重心,
∴OB=2OE,
=2S△DOE=2×1=2,
∴S
△BOD
=3,
∴S
△BDE
∵AD=BD,
=2S△BDE=6,
∴S
△ABE
∵AE=CE,
=2S△ABE=2×6=12.
∴S
△ABC
故选C.
【点评】本题考查了三角形的重心的性质的运用,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.
二、填空题(本大题共4小题,每小题3分,共12分)
13.【分析】直接提取公因式x2,进而分解因式得出答案.
【解答】解:x3﹣2x2=x2(x﹣2).
故答案为:x2(x﹣2).
【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.
【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,
则每个内角的度数==140°.
故答案为:140°.
【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.
15.【分析】作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN交AB 于F,交AC于D,由对称性可知:DE=DM,FE=FN,AE=AM=AN,推出△DEF的
周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等边三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE 的最小值即可解决问题.
【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于F,交AC于D,
由对称性可知:DE=DN,EF=MF,AE=AM=AN,
∴△DEF的周长DE+EF+FD=DM+DF+FN,
∴当点E固定时,此时△DEF的周长最小,
∵∠BAC=30°,∠BAE=∠BAM,∠CAE=∠CAN,
∴∠MAN=60°,
∴△MNA是等边三角形,
∴MN=AE,
∴当AE的值最小时,MN的值最小,
根据垂线段最短可知:当AE⊥BC时,AE的值最小,
∵BC=6,△ABC的面积是6,
∴BC•AE=6,
∴此时AE=2,
∴MN的最小值为2,
∴△DEF的周长的最小值为2,
故答案为:2.
【点评】本题考查了轴对称问题,掌握三角形的面积,等边三角形的判定和性质,根据垂线段最短可知:当AE⊥BC时,AE的值最小是解此题的关键.
16.【分析】画出图形,探究规律,利用规律解决问题即可.
【解答】解:如图,由题意,M1(2,2),M2(4,﹣2),M3(0,0),
发现3次应该循环,
∵2022÷3=674,
∴M2022的坐标与M3的坐标相同,即M2022(0,0).
故答案为:(0,0).
【点评】本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.
三、(本大题共6小题,17题12分,18、19、20题各10分,21、22题15分,本大题满分72分)
17.【分析】(1)分别进行特殊角的三角函数值、二次根式的化简、零指数幂等运算,然后合并;
(2)将特殊角的三角函数值代入求解.
【解答】解:(1)原式=﹣3++6×
=1﹣;
(2)原式=﹣×+1﹣1
=﹣.
【点评】本题考查了二次根式的混合运算,涉及了特殊角的三角函数值、二次根式的化简、零指数幂等知识,掌握运算法则是解答本题的关键.
18.【分析】设甲工程队清理了x天,乙工程队清理了y天,利用工作总量=工作效率×工作时间,结合甲队接力共用时10天完成88米的河道清淤任务,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:设甲工程队清理了x天,乙工程队清理了y天,
依题意得:,
解得:.
答:甲工程队清理了4天,乙工程队清理了6天.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
19.【分析】(1)先由折线统计图得到偶尔使用的学生有58人,再由扇形统计图得到了解很少的学生所占的百分比,然后用58除以这个百分比即可得到接受问卷调查的学生人数;
(2)先用总数分别减去其它三组的人数得到C的学生数,再补全折线统计图;用c部分所占的百分比乘以360°即可得到c部分所对应扇形的圆心角的大小;
(3)利用样本中c程度的百分比表示该校这两项所占的百分比,然后用1000乘以这个百分比即可得到c程度的总人数的估计值.
【解答】解:(1)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数=26+32=58(人),
所以此次被调查的学生总人数=58÷58%=100(人);
(2)由折线图知A人数=18+14=32人,故A的比例为32÷100=32%,
所以C类比例=1﹣58%﹣32%=10%,
所以类型C的扇形的圆心角=360°×10%=36°,
C类人数=10%×100﹣2=8(人),补全折线图如下:
(3)1000×10%=100(人),
答:估计该校七年级学生中类型C学生约有100人.
【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多
少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图和用样本估计总体.
20.【分析】(1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM =∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;
(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.【解答】(1)证明:∵将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,∴∠ANM=∠CNM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;
(2)解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴===3,
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC==2x,
∴HN=2x,
在Rt△MNH中,MN==2x,
∴==2.
【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.21.【分析】【理解运用】:由“问题呈现”结论可求解;
【变式探究】:在DB上截取BG=BA,连接MA、MB、MC、MG,由“SAS”可证△MAB ≌△MGB,可得MA=MG,由等腰三角形的性质可得DC=DG,可得结论;
【实践应用】:分两种情况讨论,由“问题呈现”结论可求解.
【解答】解:【理解运用】:由题意可得CD=DB+BA,即CD=6﹣CD+AB,
∴CD=6﹣CD+4,
∴CD=5,
∴BD=BC﹣CD=6﹣5=1,
故答案为:1;
【变式探究】DB=CD+BA.
证明:在DB上截取BG=BA,连接MA、MB、MC、MG,
∵M是弧AC的中点,
∴AM=MC,∠MBA=∠MBG,
又MB=MB,
∴△MAB≌△MGB(SAS),
∴MA=MG,
∴MC=MG,
又DM⊥BC,
∴DC=DG,
∴AB+DC=BG+DG,即DB=CD+BA;
【实践应用】
如图,当点D1在BC下方时,过点D1作D1G1⊥AC于点G1,
∵BC是圆的直径,
∴∠BAC=90°,
∵AB=6,圆的半径为5,
∴AC=8,
∵∠D1AC=45°,
∴CG1+AB=AG1,
∴AG1=(6+8)=7,
∴AD1=7.
当点D2在BC上方时,∠D2AC=45°,同理易得AD2=.
综上所述:AD的长为7或,
故答案为7或.
【点评】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰直角三角形的性质,理解题意是本题的关键.
22.【分析】(1)运用待定系数法即可求得答案;
(2)如图1,设抛物线的对称轴l与x轴交于点H.先求出抛物线顶点坐标,再利用分=S△AOC+S梯形OCDH+S△BDH即可求得答案;
割法S
四边形ABDC
(3)如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.
=S△ABC建立方程求解即可;
进而得出:F(t,﹣t+8),.利用S
△PBC
(4)设M(3,m),B(8,0),E(3,5),可得:BE==5,EM=|m﹣5|,BM==,由△BEM为等腰三角形,可得:BM=EM或BE=BM或BE=EM,分别建立方程求解即可.
【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),
∴,
解得,
∴抛物线的解析式为y=﹣x2+3x+8.
令y=0,得.
解得x1=﹣2,x2=8.
∴点B的坐标为(8,0).
设直线BC的解析式为y=kx+b.
把点B(8,0),C(0,8)分别代入y=kx+b,
得,
解得,
∴直线BC的解析式为y=﹣x+8.
(2)如图1,设抛物线的对称轴l与x轴交于点H.
∵抛物线的解析式为,
∴顶点D的坐标为.
=S△AOC+S梯形OCDH+S△BDH
∴S
四边形ABDC

==70.
(3)∵.
∴.
如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.
设点.
∵点F在直线BC上,
∴F(t,﹣t+8).
∴.
∴.
∴.
解得t1=2,t2=6.
∴点P的坐标为(2,12)或P(6,8).
(4)存在.
∵△BEM为等腰三角形,
∴BM=EM或BE=BM或BE=EM,
设M(3,m),
∵B(8,0),E(3,5),
∴BE==5,EM=|m﹣5|,BM==

当BM=EM时,
=|m﹣5|,
∴m2+25=(m﹣5)2,
解得:m=0,
∴M(3,0);
当BE=BM时,
5=,
∴m2+25=50,
解得:m=﹣5或m=5(舍去),
∴M(3,﹣5);
当BE=EM时,
5=|m﹣5|,
解得:m=5+5或m=5﹣5,
∴M(3,5+5)或(3,5﹣5),
综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,抛物线与x轴的交点,三角形的面积,等腰三角形的性质和判定等,解题的关键是利用点的坐标表示出相应线段的长度。

相关文档
最新文档