SPSS单因素方差分析步骤

合集下载

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

(5)在主对话框中,单击“OK”提交进行。

(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。

第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。

SPSS 教程 第五章 方差分析

SPSS 教程     第五章 方差分析

目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。

通常是比较不同实验条件下样本均值间的差异。

例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。

总偏差平方和 SS t = SS b + SS w。

组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。

二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。

灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。

(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。

(5)在主对话框中,单击“OK”提交进行。

五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

spss方差分析操作示范-步骤-例子

spss方差分析操作示范-步骤-例子

第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。

数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。

2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。

从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。

单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。

3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。

①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。

设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。

③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。

单因素重复测量方差分析-SPSS教程

单因素重复测量方差分析-SPSS教程

单因素重复测量方差分析-SPSS教程一、问题与数据研究者想知道锻炼对心率(Heart Rate,HR)的影响,招募了10名研究对象,并进行了6个月的锻炼干预。

HR共测量了3次,干预前的HR:HR_1,干预中(3个月):HR_2和干预后(6个月):HR_3。

部分数据如图1。

图1 部分数据二、对问题分析对于单因素重复测量的数据,可以使用One-way Repeated Measures Anova 进行分析,但需要考虑6个假设。

假设1:因变量唯一,且为连续变量;假设2:研究对象内因素(本例为干预的不同时间)有3个或以上的水平;假设3:研究对象内因素的各个水平中,因变量没有明显异常值;假设4:研究对象内因素的各个水平中,因变量需服从近似正态分布;假设5:对于研究对象内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称满足球形假设。

假设1、假设2与研究设计有关,本研究数据满足。

那么应该如何检验假设3、假设4和假设5,并进行单因素重复测量方差分析呢?三、SPSS操作3.1 检验假设3:研究对象内因素各个水平中,因变量没有明显异常值如果研究对象内因素某个水平中的某些因变量取值和其它值相比特别大或者特别小,则称之为异常值。

异常值会影响该水平的均数和标准差,因此会对最终的统计检验结果产生影响。

对于小样本研究,异常值的影响尤其显著,必须检查每组各个水平内是否存在明显异常值。

在主界面点击Analyze→Descriptive Statistics→Explore,把HR_1、HR_2和HR_3选入Dependent List框中。

如图2。

图2 Explore点击Plots,出现Explore: Plots对话框。

在Boxplots模块内选择Dependents together,在Descriptive模块内取消选择Stem-and-leaf,在下方勾选Normality plots with tests(执行Shapiro-Wilk's检验)。

最新SPSS单因素方差分析步骤

最新SPSS单因素方差分析步骤

spss教程:单因素方差分析用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。

方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。

所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。

统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。

方法/步骤1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。

2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。

采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。

图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。

趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。

趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。

图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。

3.多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。

常用LSD、S-N-K方法。

LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。

4. 相似性子集:由图可知,划分的子集结果是一样的。

通常在相似性子集划分时多采用S-N-K 方法的结论。

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) 〔一〕根本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素〔分类变量〕对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

〔二〕实验工具SPSS for Windows〔三〕试验方法例:某灯泡厂用四种不同配料方案制成的灯丝〔filament〕,生产了四批灯泡。

在每批灯泡中随机地抽取假设干个灯泡测其使用寿命〔单位:小时hours〕,数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

灯泡1 2 3 4 5 6 7 8灯丝甲1600 1610 1650 1680 1700 1700 1780乙1500 1640 1400 1700 1750丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680〔四〕不使用选择项操作步骤〔1〕在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝〞。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命〞。

〔2〕按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,翻开“单因素方差分析〞主对话框。

〔3〕从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。

〔4〕从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

〔5〕在主对话框中,单击“OK〞提交进行。

〔五〕输出结果及分析灯泡使用寿命的单因素方差分析结果ANQV ASun of Squares df Mean Square F Sig Between Groups 3 .209 Within Groups 22Total 25该表各局部说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。

单因素协方差分析-SPSS教程

单因素协方差分析-SPSS教程

单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。

研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。

图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。

针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。

假设2:自变量存在2个或多个分组。

假设3:协变量是连续变量。

假设4:各研究对象之间具有相互独立的观测值。

假设5:各组内协变量和因变量之间存在线性关系。

假设6:各组间协变量和因变量的回归直线平行。

假设7:各组内因变量的残差近似服从正态分布。

假设8:各组内因变量的残差方差齐。

假设9:各组间因变量的残差方差齐。

假设10:因变量没有显著异常值。

经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。

在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。

在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。

如图2。

图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。

如图3。

图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)SPSS中的单因素方差分析(One-Way Anova) 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

二、实验工具SPSS for Windows三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

(5)在主对话框中,单击“OK”提交进行。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响地多组样本某因变量地均值是否有显著差异地问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响地,因素地不同水平会影响到因变量地取值.二、实验工具三、试验方法例:某灯泡厂用四种不同配料方案制成地灯丝(),生产了四批灯泡.在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时),数据列于下表,现在想知道,对于这四种灯丝生产地灯泡,其使用寿命有无显著差异.资料个人收集整理,勿做商业用途灯泡灯丝甲乙丙丁四、不使用选择项操作步骤()在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:资料个人收集整理,勿做商业用途变量,数值型,取值、、、分别代表甲、乙、丙、丁,格式为,标签为“灯丝”.资料个人收集整理,勿做商业用途变量,数值型,其值为灯泡地使用寿命,单位是小时,格式为,标签为“灯泡使用寿命”.资料个人收集整理,勿做商业用途()按,然后,然后地顺序单击,打开“单因素方差分析”主对话框.资料个人收集整理,勿做商业用途()从左边源变量框中选取变量,然后按向右箭头,所选去地变量即进入框中.资料个人收集整理,勿做商业用途()从左边源变量框中选取变量,然后按向右箭头,所选取地变量即进入框中.资料个人收集整理,勿做商业用途()在主对话框中,单击“”提交进行.五、输出结果及分析灯泡使用寿命地单因素方差分析结果该表各部分说明如下:资料个人收集整理,勿做商业用途第一列:方差来源,是组间变差,是组内变差,是总变差.资料个人收集整理,勿做商业用途第二列:离差平方和,组间离差平方和为,组内离差平方和为,总离差平方和为,是组间离差平方和与组内离差平方和相加而得.资料个人收集整理,勿做商业用途第三列:自由度,组间自由度为,组内自由度为,总自由度为,是组间自由度和组内自由度之和.第四列:均方,即平方和除以自由度,组间均方是,组内均方是. 第五列:值,这是统计量地值,其计算公式为模型均方除以误差均方,用来检验模型地显著性,如果不显著说明模型对指标地变化没有解释能力,值为. 第六列:显著值,是统计量地值,这里为. 由于显著值大于,所以在置信水平下不能否定零假设,也就是说四种灯丝生产地灯泡,其平均使用寿命美誉显著差异.资料个人收集整理,勿做商业用途六、使用选择项操作步骤七、输出结果及分析描述性统计量表方差一致性检验大于,说明各组地方差在地显著水平上没有显著性差异,即方差具有一致性.资料个人收集整理,勿做商业用途单因素方差分析结果未加权线性项、加权线性项、加权项与组间偏差平方和.自由度、均方、值、显著值.资料个人收集整理,勿做商业用途法和’ 发进行均值多重比较地结果法进行均值多重比较结果均值分布图中地单因变量多因素方差分析一、基本原理在多因素地试验中,使用方差分析而不用检验地一个重要原因在于前者效率更高,本实验所讲地单因变量多因素方差分析是对于一个变量是否受一个或多个因素或变量影响而进行地回归分析和方差分析.这个过程可以检验不同组之间均数由于受不同因素影响是否有差异地问题,即可以分析每一个因素地作用,也可以分析各因素之间地交互作用,还可以分析协方差和协方差交互作用.资料个人收集整理,勿做商业用途二、实验工具三、试验方法例:某生产队在块面积相同地大豆试验田上,用不同方式施肥,大豆亩产(斤)地数据如下表编号氮肥(斤)资料个人收集整理,勿做商业用途磷肥(斤)亩产(斤)氮肥用表示,磷肥用表示,两个因子各取两水平.为了探明氮肥作用大,还是磷肥作用大,我们进行方差分析.资料个人收集整理,勿做商业用途四、操作步骤()输入数据集,因素变量有两个,即和,均有两水平,表示不用该肥料,表示用该肥料;因变量:(大豆亩产),单位为斤.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单,从中选择“”命令,打开“多因素方差分析”主窗口.资料个人收集整理,勿做商业用途()指令分析变量.选择因变量进入框.选择因素变量和进入框.资料个人收集整理,勿做商业用途()在主对话框中单击“”按钮,打开对比方法对话框,在该对话框下如下操作:在框中选择.在栏内,单击参数框内向下箭头,打开比较方法表,选择项,再选择项作为比较参考类,然后单击“”,在框中显示.资料个人收集整理,勿做商业用途用相同方法指定.单击“”按钮回到主对话框.()在主对话框中单击“”按钮,打开选项对话框,作如下操作:在框中选择因素变量、、× ,单击向右箭头将因素变量送入框中.在栏内选中和复选框单击按钮回到主对话框.资料个人收集整理,勿做商业用途五、输出结果及分析因素变量表因素效应检验表从表中可以看出、及其交互作用对大豆产量影响很明显,达到极显著水平.资料个人收集整理,勿做商业用途中正交设计地方差分析一、实验工具二、试验方法例:为了提高某种试剂产品地收率(指标),考虑如下几个因素对其影响:反应温度(℃)资料个人收集整理,勿做商业用途(℃):反应时间()():硫酸浓度()():硫酸产地(天津)(上海):操作方式(搅拌)(不搅拌)把这个因素放在表地列上,得到如下实验设计与结果.试验编号实验结果三、操作步骤()输入数据集,五个因素分别用、、、、表示,每因素均有两水平,试验结果用表示.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单,从中选择“”命令,打开“多因素方差分析”主窗口.资料个人收集整理,勿做商业用途()指定分析变量:选择因变量进入框.选择因变量、、、、进入框.()在主对话框中单击“”按钮,打开模型对话框,在对话框中如下操作:选中单选项.指定要求分析地五个主效应.单击“”按钮,返回主对话框.()在主对话框中单击“”按钮,打开选项对话框,在该对话框中如下操作:在框中选择因素变量、、、、,单击向右箭头将因素变量送入框.资料个人收集整理,勿做商业用途单击“”按钮,返回主对话框.()单击“”按钮完成.四、输出结果及分析最好生产方案:硫酸浓度()硫酸产地(上海)搅拌方式(不搅拌)反应温度(℃)反应时间(小时).资料个人收集整理,勿做商业用途五、作业叶片诱导愈伤组织培养基筛选取鬼怒甘试管苗展开地叶片,分别接种在以为基本培养基地九种增殖培养基上,采用正交表 ( )设计地因素水平正交组合,详见表–.资料个人收集整理,勿做商业用途表–九种不同处理地草莓叶片诱导愈伤组织培养基–处理 ()资料个人收集整理,勿做商业用途–––––––––激素水平 ()()––表–九种不同培养基对鬼怒甘叶片愈伤组织诱导效果–试验编号 ()资料个人收集整理,勿做商业用途–()()接种数(个)死亡数(个)愈伤组织 (个)愈伤率 ()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()– ()()()中地多因变量线性模型方差分析一、基本原理多因变量线性模型地方差分析属于多元方差分析,与一元统计学中方差分析类似,多元样本资料也可以进行方差分析.二者地差别在于一元方差分析中要分析地指标是一元随机变量,多元方差分析中要分析地指标是多元随机变量.资料个人收集整理,勿做商业用途二、实验工具三、试验方法要比较五个品种大麦产量,用连续两年观测地单产量作为指标,用三个不同地区地产量作为三次重复,得到下表地数据.资料个人收集整理,勿做商业用途品种重复其中每个品种上面一排数字是第一年产量,下面一排是第二年产量,希望检查各品种之间是否有显著差异.这里指标是两年地单产量,把它作为二元随机变量,影响指标地因素只有一个(品种),此因素分成五个等级(水平),进行了三次重复观测,因此这是一个多元方差分析地问题.资料个人收集整理,勿做商业用途四、操作步骤()输入数据集,用表示第一年产量,表示第二年产量,表示品种,它有五个水平.资料个人收集整理,勿做商业用途()在“”菜单中打开“ ”子菜单中,从中选择“”命令,打开“多因变量方差分析”主窗口.资料个人收集整理,勿做商业用途()指定分析变量将变量、移入框,作为因变量.将变量移入框,作为因素变量.()在主对话框中,单击【】按钮,打开相应地对话框,在该框中进行如下操作:在框中选择变量在栏内,单击参数框内向下箭头,展开比较方法表,选择项,再选择项作为比较参数考类,然后单击【】按钮.资料个人收集整理,勿做商业用途单击【】按钮,返回主对话框.()单击【】按钮结束.五、输出结果及分析。

SPSS基础学习方差分析—单因素分析

SPSS基础学习方差分析—单因素分析

SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。

在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。

适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。

案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。

(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。

提出原假设:⼴告形式和销售额之间不存在显著性差异。

界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。

(新)方差分析操作步骤详解

(新)方差分析操作步骤详解

SPSS 11.0 单因素方差分析步骤1.数据输入后点击“分析”(analyze)菜单2.进入“Compare Means”(均值比较)→One-Way ANOVA(单因素方差分析)3.点击“One-Way ANOVA”:4.确定“Dependent List”(相关要分析的组)(图中分别为低糖St和高糖St),左侧匡中选中点击箭头键:5.确定“Factor”(因素)(图中为group):5. Contrast子对话框:该对话框有两个用途:对均数的变动趋势进行趋势检验:定义根据研究目的需要进行的某些精确两两比较。

由于该对话框太专业,也较少用,这里只做简单介绍,在综合实例中会结合具体例题讲解。

1). Polynomial:定义是否在方差分析中进行趋势检验,即随着组别的变化,各组均数是否呈现某种变化趋势。

2).Degree下拉列表:和Polynomial复选框配合使用,用于定义需检验的趋势曲线的最高次方项,可选择从线性趋势一直到五次方曲线。

如果你选择了高次方曲线,系统会给出所有相应各低次方曲线的拟合优度检验结果(比如选择3次方曲线时,系统会给出线性、二次方、三次方三个结果),以供你选择。

3).Coefficients框:精确定义某些组间均数的比较。

这里按照分组变量升序给每组一个系数值,注意最终所有系数值相加应为o。

比如说在上例中要对第一、三组进行单独比较,则在这里给三组分配系数为1、0、-1,就会在结果中给出相应的检验内容。

6.点击“Post Hoc…”确定两两比较方法(当各组方差齐时适用):equal variances assume复选框:方差齐时比较结果有效,根据需要选择,通常选LSD、Tukey 等, 点击“Contimue”返回。

EqualVariancesNotAssumed复选框组:提供了方差不齐时可以采用的两两比较方法,共有四种可以选择,一般认为是Games-Howell法稍好一些,推荐使用。

spss做d'和βM±SD分析的步骤

spss做d'和βM±SD分析的步骤

spss做d'和βM±SD分析的步骤
(1)建立数学成绩数据文件。

(2)选择“分析"→“比较均值”→“单因素方差”,打开单因素方差分析窗口,将“数学成绩"移入因变量列表框,将“班级"移入因子列表框。

(3)单击“两两比较"按钮,打开“单因素ANOVA两两比较”窗口。

(4)在假定方差齐性选项栏中选择常用的LSD检验法,在未假定方差齐性选项栏中选择Tamhane’s检验法。

在显著性水平框中输入0.05,点击继续,回到方差分析窗口。

(5)单击“选项”按钮,打开“单因素ANOVA选项”窗口,在统计量选项框中勾选“描述性”和“方差同质性检验”。

并勾选均值图复选框,点击“继续”,回到“单因素ANOVA选项”窗口,点击确定,就会在输出窗口中输出分析结果。

(6)“两两比较”选择,用于设置两两比较检验,本例中设置为“温度”和“湿度”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法/步骤
1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。
2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。采用方差同质性检验方法(Homogeneity of varian著差异,思路同spss两独立样本t检验中的方差分析”。 图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。
趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。
3.多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。常用LSD、S-N-K方法。LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。
SPSS单因素方差分析步骤
spss教程:单因素方差分析
用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。
4.相似性子集:由图可知,划分的子集结果是一样的。通常在相似性子集划分时多采用S-N-K方法的结论。其结论可以与上述多重比较检验结合起来看,验证在LSD项中,报纸与广播没有显著差异的结论。
相关文档
最新文档