法拉第电磁感应定律易错题培优题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法拉第电磁感应定律易错题培优题及答案解析
一、高中物理解题方法:法拉第电磁感应定律
1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。
线圈的半径为r1。
在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。
导线的电阻不计,求0至t1时间内
(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)
2
02
3
n B r
Rt
π
电流由b向a通过R1(2)
2
021
3
n B r t
Rt
π
【解析】【详解】
(1)由法拉第电磁感应定律得感应电动势为
2
202
2
n B r
B
E n n r
t t t
π
π
∆Φ∆
===
∆∆
由闭合电路的欧姆定律,得通过R1的电流大小为
2
02
33
n B r
E
I
R Rt
π
==
由楞次定律知该电流由b向a通过R1。
(2)由
q
I
t
=得在0至t1时间内通过R1的电量为:
2
021
1
3
n B r t
q It
Rt
π
==
2.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求
(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;
(2) 0~t1时间内通过电阻R1的电荷量q.
【答案】(1)
2
02
n B r
E
t
π
=(2)
2
012
3
n B t r
q
Rt
π
=
【解析】 【详解】
(1)由法拉第电磁感应定律E n t φ
∆=∆有2020
n B r B E n S t t π∆==∆ ①
(2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流E
I R =
总
③ 0~t 1时间内通过电阻R1的电荷量1q It = ④
由①②③④式得2
01203n B t r q Rt π=
3.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
匀强磁场与导轨平面垂直。
阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。
t =0时,将开关S 由1掷到2。
用q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。
请定性画出以上各物理量随时间变化的图象(q-t 、i-t 、v-t 、a-t 图象)。
【答案】图见解析. 【解析】 【详解】
开关S 由1掷到2,电容器放电后会在电路中产生电流。
导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动。
导体棒切割磁感线,速度增大,感应电动势E=Blv ,即增大,则实际电流减小,安培力F=BIL ,即减小,加速度a =F /m ,即减小。
因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。
由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t 图像如图:
由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电。
当充电和放电达到一种平衡时,导体棒做匀速运动。
则v-t 图像如图:
;
当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0),故q-t图像如图:
这时电容器的电压等于棒的电动势数值,棒中无电流。
I-t图像如图:
4.53.如图所示,竖直平面内有一半径为r、内阻为R1,粗细均匀的光滑半圆形金属环,在M、N处于相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻
R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2.
(1)求导体棒ab从A下落r/2时的加速度大小.
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2.
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.
【答案】(1) (2)
【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得
式中由各式可得到
(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即
式中
解得
导体棒从MN到CD做加速度为g的匀加速直线运动,
有得
此时导体棒重力的功率为
根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即
所以,
(3)设导体棒ab进入磁场II后经过时间t的速度大小为,
此时安培力大小为
由于导体棒ab做匀加速直线运动,
有根据牛顿第二定律,有
即:
由以上各式解得
考点:电磁感应,牛顿第二定律,匀加速直线运动。
【名师点睛】本题考查了关于电磁感应的复杂问题,对于这类问题一定要做好电流、安培力、运动情况、功能关系这四个方面的问题分析;也就是说认真分析物理过程,搞清各个力之间的关系,根据牛顿定律列方程;分析各种能量之间的转化关系,根据能量守恒定律列出方程;力的观点和能量的观点是解答此类问题的两大方向.
视频
5.如图所示,两光滑平行金属导轨abcd d c b a ''''、,aa '之间接一阻值为R 的定值电阻,
dd '之间处于断开状态,abb a ''部分为处于水平面内,且ab bb b a a a L ==='''=',bcdb c d '''部分为处于倾角为θ的斜面内,bc cd dd d c c b b b L ''''''======.abb a ''
区域存在一竖直向下的磁场1B ,其大小随时间的变化规律为1B kt =(k 为大于零的常数);cdd c ''区域存在一垂直于斜面向上的大小恒为2B 的磁场.一阻值为r 、质量为m 的导体棒MN 垂直于导轨从bb '处由静止释放.不计导轨的电阻,重力加速度为g .求:
(1)导体棒MN 到达cc '前瞬间,电阻R 上消耗的电功率; (2)导体棒MN 从bb '到达cc '的过程中,通过电阻R 的电荷量;
(3)若导体棒MN 到达cc '立即减速,到达dd '时合力恰好为零,求导体棒MN 从cc '到
dd '运动的时间.
【答案】(1)
()
242
k L R
R r + (2)2
2sin kL L
q R r
g θ=
+ (3)()()()23
23
2
sin m R r v v B L t kB L mg R r θ+=-+'+-(式中()32222sin 2sin ,B kL mg R r v gL v B L
θ
θ'++==
【解析】 【分析】 【详解】
(1)因磁场1B 随时间的变化规律为1B kt =,所以B
k t
∆=∆,abb a ''所组成回路产生的感应电动势22B
E L kL t t
ϕ∆∆=
==∆∆ 流过电阻R 的电流: E
I R r
=
+ 电阻R 消耗的功率: 2
R P I R = 联立以上各式求得: ()
242
R k L R
P R r =
+
(2)电阻R 的电荷量: q It =, 2
kL I I R r
==+
根据牛顿第二定律: sin mg ma θ=
导体棒从MN 从bb '到达cc '中,通过的位移:212
L at =
联立解得: 2
2sin kL L
q R r
g θ
=
+ (3)根据(2)问,求得导体棒到达cc '时的速度:2sin v gL θ=
到达dd '时合力为0,则: 222sin B Lv kL B L mg R r θ⎛⎫
-= ⎪+⎝'⎭
解得:()3222
2sin B kL mg R r v B L
θ
'++=
导体棒MN 从cc '到达dd '过程中,运用动量定理 :()2sin B I Lt mgt mv mv θ-'=--'-
从cc '到达dd '过程中,流过导体棒MN 的电荷量: q I t ''= 且 22
2B L kL q t R r R r
'=-
++ 联立以上式子,求得 ()()()23
232sin m R r v v B L
t kB L mg R r θ
+=
-+'+-(式中2sin v gL θ=,()3222
2
sin B kL mg R r v B L
θ
'++=
)
6.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增大.则:
(1)金属棒刚开始运动时的加速度为多少? (2)磁感应强度B 的大小为多少?
(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣
22
B L mR
s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?
【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s 【解析】 【详解】
解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用 金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F
a m
=
= (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a = 由匀变速直线运动的位移公式可得:22v ax = 由图乙所示图象可知,0.8m x =时,0.8N F =
由牛顿第二定律得:22B L v
F ma R
-=
解得:0.5T B =
(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd
E t t t
ϕ∆∆===∆∆∆ 感应电流的平均值:E
I R
=
通过电阻R 的电荷量:q I t =∆ 解得:1C BLd
q R R
ϕ∆=
== 设外力F 的作用时间为t ,力F 作用时金属棒的位移为:2
12
x at =
撤去外力后,金属棒的速度为:022
B s v v L Rm
=-
到PQ 恰好静止,0v =
则撤去外力后金属棒运动的距离为:22
mR
at B L s •=
则 22212B L at at d Rm +•= 解得:1s t =
7.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距030m .L =.导轨电阻忽略不计,其间连接有固定电阻0.40R =Ω.导轨上停放一质量0.10kg m =、电阻020Ω.r =的金属杆ab ,整个装置处于磁感应强度0.50T B =的匀强磁场中,磁场方向竖直向下.用一外力F 沿水平方向拉金属杆ab ,使之由静止开始做匀加速运动,电压传感器可将R 两端的电压U 即时采集并输入电脑,获得电压U 随时
间t 变化的关系如图乙所示.
(1)计算加速度的大小; (2)求第2s 末外力F 的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s 所做的功035J .W =,求金属杆上产生的焦耳热.
【答案】(1)21m/s (2)0.35W (3)25.010J -⨯ 【解析】 【详解】
(1)根据,,R R
E Blv v at U E R r
===+ 结合图乙所示数据,解得:a =1m/s 2.
(2)由图象可知在2s 末,电阻R 两端电压为0.2V 通过金属杆的电流R
U I R
=
金属杆受安培力F BIL =安
设2s 末外力大小为F 2,由牛顿第二定律,2安F F ma -= , 故2s 末时F 的瞬时功率22035W .P F v ==
(3)设回路产生的焦耳热为Q ,由能量守恒定律,2
2
12
W Q mv =+ 电阻R 与金属杆的电阻r 串联,产生焦耳热与电阻成正比 金属杆上产生的焦耳热r Qr
Q R r
=
+ 解得:2r 5010J .Q -=⨯ .
8.如图,两根光滑平行金属导轨置于水平面(纸面)内,导轨间距为L ,左端连有阻值为R 的电阻。
一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B 、方向竖直向下的匀强磁场区域。
已知金属杆以速度v 0向右进入磁场区域,做匀变速直线运动,到达磁场区域右边界(图中虚线位置)时速度恰好为零。
金属杆与导轨始终保持垂直且接触良好。
除左端所连电阻外,其他电阻忽略不计。
求金属杆运动到磁场区域正中间时所受安培力的大小及此时电流的功率.
【答案】220
22B L v F R
=,222
02B L v P R =
【解析】 【详解】
设金属杆运动的加速度大小为a ,运动的位移为x , 根据运动学公式,有2
02v ax =
设金属杆运动到磁场区域中间位置时的速度为v , 根据运动学公式,有2
2
022
x v v a -= 联立以上各式解得:022v v =
金属杆运动到磁场区域中间位置时,产生的感应电动势为E =BLv 通过金属杆的电流为E I R
=
金属杆受到的安培力为F =BIL
解得:220
22B L v F R
=
电流的功率为2P I R =
解得:222
2B L v P R
=
9.如图甲所示,倾角为足够长的倾斜导体轨道与光滑水平轨道平滑连接。
轨道宽
度
,电阻忽略不计。
在水平轨道平面内有水平向右的匀强磁场,倾斜轨道平面内
有垂直于倾斜轨道向下的匀强磁场,大小都为B ,现将质量
、电阻
的两个
相同导体棒ab 和cd ,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,同时由静止释放。
导体cd 下滑过程中加速度a 和速度v 的关系如图乙所示。
cd 棒从开始运动到最大速度的过程中流过cd 棒的电荷量(
,
,
),
则:,
(1)cd和倾斜轨道之间的动摩擦因数是多少;
(2)ab和水平轨道之间的最大压力是多少;
(3)cd棒从开始运动到速度最大的过程中ab棒上产生的焦耳热是多少.
【答案】(1) ;(2) (3)
【解析】
【详解】
解:(1) 刚释放时,加速度:
对棒受力分析,由牛顿第二定律得:
解得:
(2)由图像可知,时棒速度达到最大,此时电路中的电流最大,此时速度:
,安培力达到最大,对地面压力也达到最大
对受力分析:
对棒受力分析:
解得:,
(3)安培力大小:
解得:
由:
解得:
从开始到速度最大的过程中,根据动能定理得:
产生的总焦耳热:
棒上产生的焦耳热:
10.如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计).磁感应强度为B的匀强磁场方向垂直于纸面向外.金属棒ab的质量为m,与导轨接触良好,不计摩擦.从静止释放后ab保持水平而下滑.
试求:(1)金属棒ab 在下落过程中,棒中产生的感应电流的方向和ab 棒受到的安培力的方向.
(2)金属棒ab 下滑的最大速度v m .
【答案】(1)电流方向是b→a .安培力方向向上.
(2)22
m mgR v B L =
【解析】
试题分析:(1)金属棒向下切割磁场,根据右手定则,知电流方向是b→a .根据左手定则得,安培力方向向上.
(2)释放瞬间ab 只受重力,开始向下加速运动.随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小.当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度. 由22m B L v F mg R
==, 可得22
m mgR v B L = 考点:电磁感应中的力学问题.。