高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.2(一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.2 正弦函数、余弦函数的性质(一) 课时目标 1.了解周期函数、周期、最小正周期的定义.
2.会求f (x )=A sin(ωx +φ)及y =A cos(ωx +φ)的周期.
3.掌握y =sin x ,y =cos x 的周期性及奇偶性.
1.函数的周期性
(1)对于函数f (x ),如果存在一个______________,使得当x 取定义域内的____________时,都有____________,那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.
(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__________________.
2.正弦函数、余弦函数的周期性
由sin(x +2k π)=________,cos(x +2k π)=________知y =sin x 与y =cos x 都是______函数,____________________都是它们的周期,且它们的最小正周期都是________.
3.正弦函数、余弦函数的奇偶性
(1)正弦函数y =sin x 与余弦函数y =cos x 的定义域都是______,定义域关于________对称.
(2)由sin(-x )=________知正弦函数y =sin x 是R 上的______函数,它的图象关于______对称.
(3)由cos(-x )=________知余弦函数y =cos x 是R 上的______函数,它的图象关于______对称.
一、选择题
1.函数f (x )=3sin(x 2-π4
),x ∈R 的最小正周期为( ) A.π2
B .π
C .2π
D .4π 2.函数f (x )=sin(ωx +π6)的最小正周期为π5
,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20
3.设函数f (x )=sin ⎝
⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数
B .最小正周期为π的偶函数
C .最小正周期为π2
的奇函数 D .最小正周期为π2
的偶函数 4.下列函数中,不是周期函数的是( )
A .y =|cos x |
B .y =cos|x |
C .y =|sin x |
D .y =sin|x |
5.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭
⎫-5π3的值为( ) A .-12 B.12 C .-32 D.32
6.函数y =cos(sin x )的最小正周期是( )
A.π2
B .π
C .2π
D .4π 题 号 1 2 3 4 5 6
答 案
7.函数f (x )=sin(2πx +π4
)的最小正周期是________. 8.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3
,则ω=______. 9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是______________.
10.关于x 的函数f (x )=sin(x +φ)有以下命题:
①对任意的φ,f (x )都是非奇非偶函数;
②不存在φ,使f (x )既是奇函数,又是偶函数;
③存在φ,使f (x )是奇函数;
④对任意的φ,f (x )都不是偶函数.
其中的假命题的序号是________.
三、解答题
11.判断下列函数的奇偶性.
(1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x );
(2)f (x )=1+sin x +1-sin x ;
(3)f (x )=e sin x +e -sin x
e sin x -e
-sin x .
12.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52
π,3π]时f (x )的解析式.
能力提升
13.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,则ω的最小值是________.
14.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.
1.求函数的最小正周期的常用方法:
(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .
(2)图象法,即作出y =f (x )的图象,观察图象可求出T .如y =|sin x |.
(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周
期T =2πω
. 2.判断函数的奇偶性应遵从“定义域优先”原则,即先求定义域,看它是否关于原点对称.
1.4.2 正弦函数、余弦函数的性质(一)
答案
知识梳理
1.(1)非零常数T 每一个值 f (x +T )=f (x ) (2)最小正周期
2.sin x cos x 周期 2k π (k ∈Z 且k ≠0) 2π
3.(1)R 原点 (2)-sin x 奇 原点 (3)cos x 偶 y 轴
作业设计
1.D 2.B
3.B [∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭
⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .
又f (-x )=-cos(-2x )=-cos 2x =f (x ),
∴f (x )的最小正周期为π的偶函数.]
4.D [画出y =sin|x |的图象,易知.]
5.D [f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3=-sin ⎝⎛⎭⎫-π3=sin π3=32
.] 6.B [cos[sin(x +π)]=cos(-sin x )=cos(sin x ).
∴T =π.]
7.1
8.±3
解析 2π|ω|=2π3
,∴|ω|=3,∴ω=±3. 9.f (x )=sin|x |
解析 当x <0时,-x >0,
f (-x )=sin(-x )=-sin x ,
∵f (-x )=f (x ),∴x <0时,f (x )=-sin x .
∴f (x )=sin|x |,x ∈R .
10.①④
解析 易知②③成立,令φ=π2
,f (x )=cos x 是偶函数,①④都不成立. 11.解 (1)x ∈R ,f (x )=cos ⎝⎛⎭
⎫π2+2x cos(π+x )=-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ).
∴y =f (x )是奇函数.
(2)对任意x ∈R ,-1≤sin x ≤1,
∴1+sin x ≥0,1-sin x ≥0.
∴f (x )=1+sin x +1-sin x 定义域为R .
∵f (-x )=1+sin (-x )+1-sin (-x )=1+sin x +1-sin x =f (x ),
∴y =f (x )是偶函数.
(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,
∴x ∈R 且x ≠k π,k ∈Z .
∴定义域关于原点对称.
又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x )=e -sin x +e sin x
e -sin x -e
sin x =-f (x ), ∴该函数是奇函数.
12.解 x ∈[52π,3π]时,3π-x ∈[0,π2
], ∵x ∈[0,π2
]时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .
又∵f (x )是以π为周期的偶函数,
∴f (3π-x )=f (-x )=f (x ),
∴f (x )的解析式为f (x )=1-sin x ,x ∈[52
π,3π]. 13.1992
π 解析 要使y 在闭区间[0,1]上至少出现50个最小值,
则y 在[0,1]上至少含49 34
个周期, 即⎩⎨⎧
(49 34)T ≤1T =2πω,解得ω≥1992π. 14.解 ∵sin x +1+sin 2x ≥sin x +1≥0,
若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0.
∵f (-x )=ln(-sin x +1+sin 2x )
=ln(1+sin 2x -sin x )
=ln(1+sin 2x +sin x )-1
=-ln(sin x +1+sin 2 x )=-f (x ),
∴f (x )为奇函数.
小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

在中学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

如何培养中学生的自主学习能力?
01学习内容的自主性
1、以一个成绩比自己好的同学作为目标,努力超过他。

2、有一个关于以后的人生设想。

3、每学期开学时,都根据自己的学习情况设立一个学期目标。

4、如果没有达到自己的目标,会分析原因,再加把劲。

5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。

6、会针对自己的弱项设定学习目标。

7、常常看一些有意义的课外书或自己找(课外题)习题做。

8、自习课上,不必老师要求,自己知道该学什么。

9、总是能很快选择好对自己有用的学习资料。

10、自己不感兴趣的学科也好好学。

11、课堂上很在意老师提出的重点、难点问题。

12、会花很多时间专攻自己的学习弱项。

02时间管理
13、常常为自己制定学习计划。

14、为准备考试,会制定一个详细的计划。

15、会给假期作业制定一个完成计划,而不会临近开学才做。

16、常自己寻找没有干扰的地方学习。

17、课堂上会把精力集中到老师讲的重点内容上面。

18、做作业时,先选重要的和难一点的来完成。

19、作业总是在自己规定的时间内完成。

20、作业少时,会多自学一些课本上的知识。

03 学习策略
21、预习时,先从头到尾大致浏览一遍抓住要点。

22、根据课后习题来预习,以求抓住重点。

23、预习时,发现前面知识没有掌握的,回过头去补上来。

24、常常归纳学习内容的要点并想办法记住。

25、阅读时,常做标注,并多问几个为什么。

26、读完一篇文章,会想一想它主要讲了哪几个问题。

27、常寻找同一道题的几种解法。

28、采用一些巧妙的记忆方法,帮助自己记住学习内容。

29、阅读时遇到不懂的问题,常常标记下来以便问老师。

30、常对学过的知识进行分类、比较。

31、常回忆当天学过的东西。

32、有时和同学一起“一问一答”式地复习。

33、原来的学习方法不管用时,马上改变方法。

34、注意学习别人的解题方法。

35、一门课的成绩下降了,考虑自己的学习方法是否合适。

36、留意别人好的学习方法,学来用用。

37、抓住一天学习的重点内容做题或思考。

38、不断试用学习方法,然后找出最适合自己的。

04学习过程的自主性
39、解题遇到困难时,仍能保持心平气和。

40、在学习时很少烦躁不安。

41、做作业时,恰好有自己喜欢的电视节目,仍会坚持做作业。

42、学习时有朋友约我外出,会想办法拒绝。

43、写作文或解题时,会时刻注意不跑题。

44、解决问题时,要检验每一步的合理性。

45、时时调整学习进度,以保证自己在既定时间内完成任务。

05学习结果的评价与强化
46、做完作业后,自己认真检查一遍。

47、常让同学提问自己学过的知识。

48、经常反省自己一段时间的学习进步与否。

49、常常对一天的学习内容进行回顾。

50、考试或作业出现错误时,仔细分析错误原因。

51、每当取得好成绩时,总要找一找进步的原因。

52、如果没有按时完成作业,心里就过意不去。

53、如果因贪玩而导致成绩下降,就心里责怪自己。

54、考试成绩不好的时候,鼓励自己加倍努力。

06学习环境的控制
55、总给自己树立一个学习的榜样。

56、常和别人一起讨论问题。

57、遇到问题自己先想一想,想不出来就问老师或同学。

58、自己到书店选择适合自己的参考书。

59、常到图书馆借阅与学习有关的书籍。

60、经常查阅书籍或上网查找有关课外学习的资料。

相关文档
最新文档