涧西区三中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涧西区三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除
2. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β
C .若m ⊥α,n ⊥α,则 m ∥n
D .若 m ∥α,m ∥β,则 α∥β
3. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
4. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9
C .S 8
D .S 7
5. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当
||AB 最小时,α的值为( )
A .4π
α=
B .3π
α=
C .34πα=
D .23
π
α=
6. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:
上任意一点,则PAB ∆的面积为( )
A

B.
C.
D. 7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣2
8. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A

B

C

D

9. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )
A .y=x+2
B .y=
C .y=3x
D .y=3x 3
10.已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56
11.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )
A .4
B .5
C .6
D .7
12.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )
A .-2或-1
B .1或2 C.1±或2 D .2±或-1
二、填空题
13.函数f (x )=的定义域是 .
14.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函
数y=ax 2
﹣2bx+1在(﹣∞,2]上为减函数的概率是 .
16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .
17.(文科)与直线10x -=垂直的直线的倾斜角为___________. 18.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
三、解答题
19.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;
(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]
20.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2
)=3
ab .
(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.
21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
22.已知f(x)=x2﹣(a+b)x+3a.
(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;
(2)若b=3,求不等式f(x)>0的解集.
23.已知函数f(x)=x3﹣x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.
24.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;
(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),
记h(a)=M(a)-m(a),求h(a)的最小值.
涧西区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
2.【答案】C
【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;
对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;
对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;
对于D,若m∥α,m∥β,则α与β可能相交;故D错误;
故选C.
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
3.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
4.【答案】C
【解析】解:∵S16<0,S17>0,
∴=8(a8+a9)<0,=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴S n中最小的是S8.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
5. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
6. 【答案】 C
【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.
圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆
的面积为
1
||2
AB d '⋅=,选C . 7. 【答案】D
【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D .
8. 【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数,
故这3个数构成一组勾股数的概率为.
故选:C
9. 【答案】 C
【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x
的图象上.
故选:C .
【点评】本题考查了程序框图的应用问题,是基础题目.
10.【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函
数.
∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),
∴a 6+a 23=2.
则{a n }的前28项之和S 28==14(a 6+a 23)=28.
故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,
属于中档题.
11.【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 12.【答案】D 【解析】
试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以
422
2
4==-q S S S , 2±=∴q ,故选D.
考点:等比数列的性质.
二、填空题
13.【答案】 {x|x >2且x ≠3} .
【解析】解:根据对数函数及分式有意义的条件可得
解可得,x >2且x ≠3
故答案为:{x|x>2且x≠3}
14.【答案】
【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sinθ==,
∴cosθ=,tanθ==,
∴tan2θ===,
故答案为:。

15.【答案】.
【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.
∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,
∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况
∴所求概率为=.
故答案为:.
16.【答案】114.
【解析】解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114
【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
17.【答案】3
π 【解析】
3
π. 考点:直线方程与倾斜角.
18.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3
≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03
<1”.
故答案为:∃x 0∈R ,都有x 03
<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
三、解答题
19.【答案】(1)13|{<<-x x 或}3>x ;(2). 【




题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)
(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m
∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 20.【答案】
【解析】解:(I )由∵cosA=,0<A <π,
∴sinA=
=, ∵5(a 2+b 2﹣c 2
)=3
ab ,
∴cosC==,
∵0<C <π,
∴sinC=
=,
∴cos2C=2cos 2
C ﹣1=,
∴cosB=﹣cos (A+C )=﹣cosAcosC+sinAsinC=﹣×+×=﹣
∵0<B <π,
∴B=.
(II )∵
=

∴a==c,
∵a﹣c=﹣1,
∴a=,c=1,
∴S=acsinB=××1×=.
【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.
21.【答案】
【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.
所以该班在这次数学测试中成绩合格的有29人.
(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,
设成绩为x、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,
若m,n∈[50,60)时,只有xy一种情况,
若m,n∈[90,100]时,有ab,bc,ac三种情况,
事件“|m﹣n|>10”所包含的基本事件个数有6种
∴.
【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.
22.【答案】
【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,
当不等式f(x)≤0的解集为[1,3]时,
方程x2﹣(a+b)x+3a=0的两根为1和3,
由根与系数的关系得

解得a=1,b=3;
(2)当b=3时,不等式f(x)>0可化为
x2﹣(a+3)x+3a>0,
即(x﹣a)(x﹣3)>0;
∴当a>3时,原不等式的解集为:{x|x<3或x>a};
当a<3时,原不等式的解集为:{x|x<a或x>3};
当a=3时,原不等式的解集为:{x|x≠3,x∈R}.
【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.
23.【答案】
【解析】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,
∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,
从而△=1﹣4c>0,
∴c<.
(Ⅱ)∵f(x)在x=2处取得极值,
∴f′(2)=4﹣2+c=0,
∴c=﹣2.
∴f(x)=x3﹣x2﹣2x+d,
∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),
∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=﹣1处取得最大值,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d﹣1)>0,
∴d<﹣7或d>1,
即d的取值范围是(﹣∞,﹣7)∪(1,+∞).
【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.
24.【答案】(1)a=1
2
(2)(-∞,-1-1
e
].(3)
8
27
【解析】
(2)
f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥2
2ln x
x . 令g (x )=
22ln x
x ,x >0,则g '(x )=()3212ln x x
-.
令g '(x )=0,解得x
当x ∈(0g '(x )>0,所以g (x )在(0
当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.
所以g (x )max =g (1e
, 所以-(a +1)≥1e ,即a ≤-1-1
e

所以a 的取值范围为(-∞,-1-1
e
].
(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,
所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.
②当5
3
<a<2时,
当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;
当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.
又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.
因为h'(a)=3a2-6a+3=3(a-1)2≥0.
所以h(a)在(5
3
,2)上单调递增,
所以当a∈(5
3,2)时,h(a)>h(5
3
)=8
27

③当a≥2时,
当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,
所以M(a)=f(1)=3a-1,m(a)=f(2)=4,
所以h(a)=M(a)-m(a)=3a-1-4=3a-5,
所以h(a)在[2,+∞)上的最小值为h(2)=1.
综上,h(a)的最小值为8
27

点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值
列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.。

相关文档
最新文档