2018中考复习——二次函数和相似三角形

合集下载

二次函数与相似三角形综合

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题• 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径:①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B.1 2y = --x~ +x(1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 )(2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。

解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO.若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO设0P交抛物线的对称轴于A•点,显然AX2-1)1y = --x二直线OP的解析式为2一一x =一一x・ +由2 4 得x 1 = 0, x 2 =6-JP(6,~3)过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜.二PB=OB,HBOP* 二BPO、ZOPB0与匚BAO不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点R使得ZBOP与ZAOB相似.例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c.(1)求A、B、C三点的坐标.(2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G,使以A、M. G三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标;解:(1)令尸°,得»-1=0 解得“±1令x=o,得〉‘=一1二A(70)B(I,°)c(°,j)(2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45ZAPZCB, E Z PAB=45过点P作PE丄x轴于E,则△ APE为等腰直角三角形令OE=" > 贝iJPE=Q + l + 0::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=31 1 1 「1———x2xl + —x2x3 = 4二四边形ACBP的而积S = 2 A B・OC+ 2 A B・PE=2 2(3).假设存在二Z PAB= Z BAC =45 匚PA 丄ACZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中,AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1)□点M在y轴左侧时,贝0VT图2AG MG(I)当A AMG S A pc A时,有PA = CA一加一1 _ m2 -1匸AG= 一〃7一1, MG=" jR卩3血迈2解得(舍去)・3 (舍去)AG MG(匚)当AMAG s A PC A 时有C4 =PA一〃2-1 _ nr -1即V2 3近解得:m = -\(舍去)rt1i =-二M(-2,3)二点M在歹轴右侧时,则加>iAG MG(匚)当△AMG s A PC A 时有PA = CA=AG=〃?+I, MG=〃『jm + \ _ m2一1 4二3© 迈解得叫=一1 (舍去)~ 3(±?)ZM 3 9AG MG(匚)当A M AGS ApCA 时有CA = PAm +1 _ nr -1即41 3>/2解得:-(舍去)叫"二M(4,⑸二存在点M,使以A、M、G三点为顶点的三角形与APCA相似M点的坐标为(-2‘3),(亍6), (4,⑸练习:如图,已知抛物线yF+bx+c与x轴交于A. B两点,与y轴交于点C, D为0C的中点,直线交抛物线于点E (2, 6),且ZU恥与3C的而积之比为3 :2.(1)求直线和抛物线的解析式:(2)抛物线的对称轴与尤轴相交于点F,点Q为直线上一点,且3Q与厶3尸相似,求出点Q 点的坐标.【随堂练】: ________ 班级: ________1.已知抛物线)=-,+伽-2)兀-3加的顶点在_>,轴上,那么加的值等于_______________ .1 32•如图,已知二次函数y=--x2+-x + 4的图象与y轴交于点A,与x轴交于B、C两点,4 2其对称轴与x轴交于点D,连接AC.(1)_______________ 点A的坐标为__________ ,点C的坐标为 :(2)线段AC上是否存在点E,使得AEDC与△AOC相似?若存在,求岀所有符合条件的点E 的坐标;若不存在,请说明理由:3.抛物线加+ °的图象如图所示,已知该抛物线与X轴交于A、3两点,顶点为C(1,4),(1)根据图象所给信息,求出抛物线的解析式;(2)求直线与y轴交点D的坐标:(3)点P是直线上的一点,且与ADOB相似.求点P的坐标.。

专题05 二次函数与相似三角形问题-2018中考数学二次函数压轴试题分类精析

专题05 二次函数与相似三角形问题-2018中考数学二次函数压轴试题分类精析

一、解决此类题目的基本步骤与思路1.抓住相似的两个目标三角形,找出已知条件(例如已知边、已知角度、已知点坐标等)2.找现成的等量关系,例如相等的角度从而确定下来对应关系3. 运用分类讨论思想,几种不同相似的可能性逐一讨论4. 充分运用相似的性质,相似比或者面积比等进行列式计算5.大胆设点坐标去做,充分利用点在函数图像上从而代入函数表达式.注意事项:1.相似三角形的字母对应要注意2.分类讨论思想不要多讨论也不要漏掉,充分抓住已知条件分析3.运用相似比进行计算时,边之比千万不能比错了。

4.求出有多个解时一定要去检验是否符合要求二、二次函数中相似三角形问题(一)例题演示如图,在平面直角坐标系xOy中,直线y= x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c 的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B。

(1)求抛物线解析式。

(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由。

【解析】:(1)先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标,设抛物线的解析式为y=a(x+4)(x-1),然后将点C的坐标代入即可求得a的值;(2)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;③当由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为(1,0)∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0)∴可设抛物线解析式为y=a(x+4)(x﹣1)又∵抛物线过点C(0,2)∴2=﹣4a ∴a=∴y=x2x+2 (2)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°∴∠CAO+∠OBC=90°∴∠ACB=90°∴△ABC∽△ACO∽△CBO如下图:①当M点与C点重合,即M(0,2)时△MAN∽△BAC②根据抛物线的对称性,当M(﹣3,2)时△MAN∽△ABC;③当点M在第四象限时设M(n,n2n+2)则N(n,0)∴MN=n2+ n﹣2 AN=n+4当时MN=AN 即n2+ n﹣2= (n+4)整理得:n2+2n﹣8=0 解得:n1=﹣4(舍)n2=2∴M(2,﹣3)当时 MN=2AN 即 n 2+ n ﹣2=2(n+4)整理得:n 2﹣n ﹣20=0 解得:n 1=﹣4(舍) n 2=5 ∴M (5,﹣18)综上所述:存在M 1(0,2),M 2(﹣3,2),M 3(2,﹣3),M 4(5,﹣18), 使得以点A 、M 、N 为顶点的三角形与△ABC 相似.【试题精炼】已知抛物线(3)(1)y a x x =+-(a≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y b =+与抛物线的另一个交点为D . (1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;【解析】(1)根据二次函数的交点式确定点A 、B 的坐标,求出直线的解析式,求出点D 的坐标,求出抛物线的解析式;当x=2时,y=﹣5,则点D 的坐标为(2,﹣5),∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x ﹣1)=﹣x 2﹣2x+3;(2)作PH ⊥x 轴于H ,设点P 的坐标为(m ,n ), 当△BPA ∽△ABC 时,∠BAC=∠PBA ,∴tan ∠BAC=tan ∠PBA ,即=,∴=,即n=﹣a (m ﹣1),∴,解得,m 1=﹣4,m 2=1(不合题意,舍去), 当m=﹣4时,n=5a ,∵△BPA ∽△ABC ,∴=,即AB 2=AC•PB ,∴42=•,解得,a 1=(不合题意,舍去),a 2=﹣,则n=5a=﹣,∴点P 的坐标为(﹣4,﹣);当△PBA ∽△ABC 时,∠CBA=∠PBA ,∴tan ∠CBA=tan ∠PBA ,即=,∴=,即n=﹣3a (m ﹣1),∴,解得,m 1=﹣6,m 2=1(不合题意,舍去), 当m=﹣6时,n=21a ,∵△PBA ∽△ABC ,∴=,即AB 2=BC•PB ,∴42=•,解得,a 1=(不合题意,舍去),a 2=﹣,则点P 的坐标为(﹣6,﹣),综上所述,符合条件的点P 的坐标为(﹣4,﹣)和(﹣6,﹣);.【中考链接】如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接P A、PC,P A=P C.(1)∠ABC的度数为▲ °;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△P AC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.解析(1)首先求出B点坐标,进而得出OB=OC=m,再利用等腰直角三角形的性质求出即可;(2)作PD⊥y轴,垂足为D,设l与x轴交于点E,利用勾股定理AE2+PE2=CD2+PD2,得出P点坐标;(3)根据题意得出△QBC是等腰直角三角形,可得满足条件的点Q的坐标为:(﹣m,0)或(0,m),进而分别分析求出符合题意的答案.(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x =,设点P坐标为:(,n),∵P A=PC,∴P A2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴P A2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴P A2+PC2=AC2,∴∠APC=90°,∴△P AC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△P AC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)或(0,m),①如图1,当Q点坐标为:(﹣m,0)时,若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直,则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵<,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小,②如图2,当Q点的坐标为:(0,m)时,若PQ与y轴垂直,则=m,解得:m=,PQ=,若PQ与y轴不垂直,则PQ2=PD2+DQ2=()2+(m﹣)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵<,∴当m=,即Q点的坐标为:(0,)时,PQ的长度最小,综上所述:当Q点坐标为:(﹣,0)或(0,)时,PQ的长度最小.【巩固练习】如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;【解析】本题主要考查图形运动。

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。

这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。

【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。

二次函数与相似三角形

二次函数与相似三角形
( 3)若点 M 在抛物线上且在 x 轴上方,过点 M 作 MG 垂直于 x 轴, 垂足为点 G,是否存在 M ,使得△ AMG 与△ AOC 相似。若存在,求出 M 点坐标;若不存在,说明理由。
分析: ( 1) 第一步是基础知识,可由学生自己解决,只对个别不会的学生加以
辅导,可以由 B 号学生帮助解决 ( 2) 第二步要判断两个直角三角形相似, 可以证明夹着直角的四条边成
0)、B(0,3)两点,其顶点为 D. (1) 求该抛物线的解析式; (2) △ AOB 与△ BDE 是否相似?如果相似, 请予以证明; 如果不相似, 请 说明理由 .
分析: (1) 加强准确度练习 (2)此题与例题十分相似,尽量让学生自己解决,只对个别不会的
学生加以辅导,可以由 A 号学生帮助解决
六、小结
类似本节这类综合应用题,我们应注意什么问题?要怎样解决问题?
( 1.认真读题,写出所有可得的基本信息; 2.再次确认细节问题,比如点
的位置,字母的取值范围等; 3.划分成几个小的基本问题逐步解决 ;4.仔细
观察结论,想一想有无其它方法或更为简单的方法,为以后解题总结经
验。)
已知抛物线 y=ax2+bx+c 的顶点坐标为 (4,-1),与 y 轴交于点 C(0,3),O 是原
点.
(1)求这条抛物线的解析式;
作业布置
(2)设此抛物线与 x 轴的交点为 A ,B( A 在 B 的左边),问在 y 轴上是否
存在点 P,使以 O,B,P 为顶点的三角形与△ AOC 相似?若存在,请求出点 P
的坐标:若不存在,请说明理由 .
一般形式
例1
与坐标轴交点
顶点坐标 板书设计
相似判定方法

初三二次函数与相似三角形

初三二次函数与相似三角形

【例1】 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.例题精讲二次函数与相似三角形【例2】如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.【例3】如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过C点的直线为y轴建立平面直角坐标系,此时,A点坐标为(-1,0),B点坐标为(4,0).(1)试求点C的坐标;(2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;(3)点D(1,m)在抛物线上,过点A的直线y=-x-1交(2)中的抛物线于点E,那么在x 轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P 点坐标;若不存在,说明理由.【例4】如图,在平面直角坐标系xO y中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k.所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)求h、k的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM与△ABC相似.若存在,求出点M的坐标;若不存在,说明理由.【例5】如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴...围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1图2【例6】如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;【例7】如图,二次函数的图象经过点D(0,且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使P A+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【例8】如图所示,抛物线2()y x m=--的顶点为A,其中0m>.(1)已知直线l:y=,将直线l沿x轴向(填“左”或“右”)平移个单位(用含m的代数式)后过点A;(2)设直线l平移后与y轴的交点为B,若动点Q在抛物线对称轴上,问在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB相似,且相似比为2?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.【例9】如图,已知点A()y mx mx n=++上.B,都在抛物线2210-,和点()24(1)求m n、;''为(2)向右平移上述抛物线,记平移后点A的对应点为A',点B的对应点为B',若四边形AABB 菱形,求平移后抛物线的表达式;'、、(3)记平移后抛物线的对称轴与直线AB'的交点为C,试在x轴上找一个点D,使得以点B C D 为顶点的三角形与ABC△相似.。

初中数学中考复习——二次函数相似三角形

初中数学中考复习——二次函数相似三角形

AD AB
1 3
,AE=2cm,
1.如图,△ABC中,AB>AC,D、E两点 分别在边AC,AB上,且DE与BC 不平行. 请填上一个你认为合适的条件,使
△ADE∽△ABC:∠1=∠B 或∠2=∠C .
2.如图,下列条件不能判断△ADB∽△ABC 的是( D )
A.∠ABD=∠ACB B.AB2=AD﹒AC C.∠ADB=∠ABC D. AD DB
ABE =CBE
Q BC CD ,CDE CBE ABE 又Q AEB CED ,VAEB : VCED
(2)解 :Q BC 4, CD 4
QVቤተ መጻሕፍቲ ባይዱEB : VCED
CE CD 即CE 4
AE AB
12
CE 2
5.如图,D是△ABC 的AB边上一点,连结
DC,且 AC2 AB • ,AD△ADC与△ACB
(一)平行线分线段成比例定理
1.两条直线被一组平行线所截,所得的 对应线段 成比例 .
2.平行于三角形一边的直线截其他两边
(或两边的延长线),所得的对应线段 _成__比__例__.
如图,AB∥CD∥EF,AF与BE相交于
点G,且AG=2,GD=1,DF=5,求
BC CE
的值=_3_:_5_____.
Rt△DCE的面积为S3,则S1 = S2+S3(用
“>”、“=”、“<”填空);
(2)写出图中的三对相似三角形,并选择其中一
对进行证明.
解:(2)图中的三对相似三角形 △BCD∽△CFB △BCD∽△DEC △DEC∽△CFB
证明:∵四边形ABCD、BFED是矩形 ∴∠F=∠BCD,BD∥EF
∴∠DBC=∠BCF ∴△BCD∽△CFB

中考复习函数专题28 二次函数中的三角形问题(学生版)

中考复习函数专题28 二次函数中的三角形问题(学生版)

专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

要点补充:一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A .B .C .D .2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .7123.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是A .16B .15C .14D .134.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7B.8C.14D.165.如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图△);固定△ADC,把△ABC沿AD方向平移(如图△),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A.1B.1.5C.2D.0.8或1.26.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7.如图,正三角形ABC和正三角形ECD的边BC,CD在同一条直线上,将ABC向右平移,直到点B 与点D 重合为止,设点B 平移的距离为x ,=2BC ,4CD =.两个三角形重合部分的面积为Y ,现有一个正方形FGHI 的面积为S ,已知sin 60Y S=︒,则S 关于x 的函数图像大致为( )A .B .C .D .8.以下说法正确的是( )A .三角形的外心到三角形三边的距离相等B .顺次连接对角线相等的四边形各边中点所得的四边形是菱形C .分式方程11222x x x -=---的解为x =2 D .将抛物线y =2x 2-2向右平移1个单位后得到的抛物线是y =2x 2-39.二次函数2(1)22y m x mx m =+-+-的图象与x 轴有两个交点()1,0x 和()2,0x ,下列说法:△该函数图象过点(1,1)-;△当0m =时,二次函数与坐标轴的交点所围成的三角形面积是△若该函数的图象开口向下,则m 的取值范围为21m -<<-;△当0m >,且21x --时,y 的最大值为(92)m +.正确的是( )A .△△△B .△△△C .△△△D .△△△△ 10.以下四个命题:△如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;△在实数-7.54-π,)2中,有4个有理数,2个无理数;△的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43; △二次函数221y ax ax =-+,自变量的两个值x 1,x 2对应的函数值分别为y 1,y 2,若|x 1-1|>|x 2-1|,则a (y 1-y 2)>0.其中正确的命题的个数为( )A .1个B .2个C .3个D .4个二、填空题11.定义[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论:△当m ≠0时,点(1,0)一定在函数的图象上;△当m >0时,函数图象截x 轴所得的线段长度大于32;△当m <0时,函数在14x >时,y 随x 的增大而减小;△当m >0,若抛物线的顶点与抛物线与x 轴两交点组成的三角形为等腰直角三角形,则13m =,正确的结论是________.(填写序号)12.如图,在第一象限内作与x 轴的夹角为30°的射线OC ,在射线OC 上取点A ,过点A作AH △x 轴于点H ,在抛物线y =x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 有____个.13.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.14.如图,抛物线与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点()0,3C ,设抛物线的顶点为D .坐标轴上有一动点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似.则点P 的坐标______.。

重难点02 二次函数中相似三角形问题(原卷版)

重难点02 二次函数中相似三角形问题(原卷版)

重难点02 二次函数中相似三角形问题二次函数背景下的相似三角形考点分析:1.先求函数的解析式,然后在函数的图像上探求符合几何条件的点;2.简单一点的题目,就是用待定系数法直接求函数的解析式;3.复杂一点的题目,先根据图形给定的数量关系,运用数形结合的思想,求得点的坐标,继而用待定系数法求函数解析式;4.还有一种常见题型,解析式中由待定字母,这个字母可以根据题意列出方程组求解;5.当相似时:一般说来,这类题目都由图像上的点转化到三角形中的边长的问题,再由边的数量关系转化到三角形的相似问题;6.考查利用几何定理和性质或者代数方法建立方程求解的方法。

一、单选题1.(2022·浙江绍兴·九年级期末)如图,已知点()16,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数1y 和过P ,A 两点的二次函数2y 的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与AC 相交于点D ,当10OD AD ==时,这两个二次函数的最大值之和等于( )A .10B .8C .6D .4二、填空题 2.(2022·浙江宁波·九年级期末)已知过点()4,1B 的抛物线21522y x x c =-+与坐标轴交于点A ,C 如图所示,连结AC ,BC ,AB ,第一象限内有一动点M 在抛物线上运动,过点M 作AM MP ⊥交y 轴于点P ,当点P 在点A 上方,且AMP 与ABC 相似时,点M 的坐标为______.三、解答题3.(2022·浙江丽水·三模)定义:对于抛物线()2240y ax bx c b ac =++->,把它在x 轴下方的部分图形作关于x 轴的轴对称图形,所得的图形称为2y ax bx c =++的“W 型曲线”.如图为242y mx x =-+的“W 型曲线”,能力拓展技巧方法与x 轴的交点为A ,B ,与y 轴的交点为C ,与对称轴的交点为P ,有CP x ∥轴.(1)求m 的值.(2)若直线y x n =+与242y mx x =-+的“W 型曲线”有且只有三个公共点,求n 的值.(3)在242y mx x =-+的“W 型曲线”是否存在点Q ,使得1tan 2POQ ∠=,若存在,求点Q 的横坐标;若不存在,说明理由.4.(2022·浙江湖州·中考真题)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.5.(2022·浙江金华·二模)如图1,已知等腰ABC ∆中,10,12,AB AC BC AD BC ===⊥,垂足为点D ,动点P 从点A 出发,以1.5个单位每秒速度,沿AB 方向运动,同时,点Q 从点B 出发,以1个单位每秒速度,沿BC 方向运动,当点P 到达点B 时,点Q 即停止运动,设运动时间为t 秒,过点P 作PR AD ⊥,垂足为R ,连结,QR PQ ,作PQR ∆关于QR 的对称MQR ∆.(1)如图2,当PQ AB ⊥时,求PQ 的长度.(2)求PBQ ∆与PQR ∆面积差的最大值.(3)当点M 落在ABC ∆的边上时,求t 的值.6.(2022·浙江宁波·九年级期末)如图1,已知二次函数()2416133y x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 是抛物线的顶点.(1)求点A ,点C 的坐标;(2)如图2,连结AC ,DC ,过点C 作CE AB ∥交抛物线于点E .求证:∠DCE =∠CAO ;(3)如图3,在(2)的条件下,连结BC ,在射线EC 上有点P ,使以点D ,E ,P 为顶点的三角形与△ABC 相似,求EP 的长.7.(2022·浙江湖州·九年级期中)抛物线23y ax bx =++过点A (-1,0),点B (3,0),顶点为C .(1)求抛物线的表达式及点C 的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作PEF CAB∠=∠,边EF交x轴于点F,当AF的长度最大时,求点E的坐标.8.(2021·浙江金华·一模)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P 作PM⊥AB于点M.(1)求抛物线的函数表达式;(2)当△PMN的周长是△AOB周长的35时,求m的值;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为30°,连接E′A、E′B,在平面直角坐标系内找一点Q,使△AOE′∽△BOQ,并求出点Q的坐标.9.(2021·浙江温州·九年级期末)如图,y=ax2-2ax+a-4与x轴负半轴交于A,交y轴于B,过抛物线顶点C 轴,垂足为D,四边形AOCD是平行四边形.作CD y(1)求抛物线的对称轴以及二次函数的解析式;(2)作BE x∥轴交抛物线于另一点E,交OC于F,求EF的长;(3)该二次函数图象上有一点G(m,n)若点G到y轴的距离小于2,则n的取值范围为___.10.(2022·浙江·嘉兴一中一模)如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=720S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.11.(2022·浙江金华·一模)如图,把两个全等的Rt AOB 和Rt COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点()2,4A ,过A 、C 两点的直线分别交x 轴、y 轴于点E 、F ,抛物线2y ax bx c =++经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点G 为抛物线上位于线段OC 所在直线上方部分的一动点,求G 到直线OC 的最大距离和此时点G 的坐标;(3)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 的边AM 与边BP 相等?若存在,求出此时点P 的坐标;若不存在,请说明理由.12.(2022·浙江绍兴·九年级期末)在平面直角坐标系xOy 中,如果抛物线()20y ax bx c a =++≠上存在一对点P 和P ',且它们关于坐标原点O 对称,那么我们把点P 和P '叫做这条抛物线的成对点.(1)已知点()2,P m -与P '是抛物线224y x x =--的成对点,求P '的坐标.(2)如图,已知点A 与C 为抛物线22y x x c =--+的成对点,且A 为该抛物线的顶点.①求c 的值.②若这条抛物线的对称轴与x 轴交于点B ,连结AC ,BC ,点D 是射线AB 上一点.如果∠ADC =∠ACB ,求点D 的坐标.13.(2021·浙江·天台县赤城中学一模)如图,抛物线y =ax 2+bx +c 交x 轴于点A ,B ,其中点A (﹣1,0),交y轴于点C(0,2),对称轴交x轴于点M(32,0).(1)求抛物线的解析式;(2)作点C关于点M的对称点D,顺次连接A,C,B,D,判断四边形ACBD的形状,并说明理由;(3)在该抛物线的对称轴上是否存在点P,使△BMP与△BAD相似?若存在,求出所有满足条件的P点的坐标;若不存在,请说明理由.14.(2022·浙江金华·九年级期末)已知抛物线:y=ax2﹣6ax﹣16a(a>0)与x轴交点为A,B(A在B的左侧),与y轴交于点C,点G是AC的中点.(1)求点A,B的坐标及抛物线的对称轴.(2)直线y=﹣32x与抛物线交于点M、N,且MO=NO,求抛物线解析式.(3)已知点P是(2)中抛物线上第四象限内的动点,过点P作x轴的垂线交BC于点E,交x轴于点F.若以点C ,P ,E 为顶点的三角形与△AOG 相似,求点P 的坐标.15.(2022·浙江宁波·九年级期末)如图,抛物线213222y x x =--与x 轴交于点A ,B ,与y 轴交于点C .点P 是线段BC 上的动点(点P 不与点B ,C 重合),连结AP 并延长AP 交抛物线于另一点Q ,连结CQ ,BQ ,设点Q 的横坐标为x x .(1)①写出A ,B ,C 的坐标:A ( ),B ( ),C ( );②求证:ABC 是直角三角形;(2)记BCQ △的面积为S ,求S 关于x 的函数表达式;(3)在点P 的运动过程中,PQ AP是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.16.(2021·浙江金华·九年级期末)已知抛物线()()12y x x m m=+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC 为直角三角形时,求ABC 的面积(2)如图,当AP BC ∥时,过点P 作PQ x ⊥轴于点Q ,求BQ 的长.(3)当以点A ,B ,P 为顶点的三角形和ABC 相似时(不包括两个三角形全等),求m 的值.。

中考数学:二次函数与三角形相似有关的问题

中考数学:二次函数与三角形相似有关的问题

中考数学:二次函数与三角形相似有关的问题
二次函数的题型一般是与多个知识点相结合对我们进行综合性的考察。

所以,掌握好与二次函数相关的知识点就显得尤为重要,之前我们已经了解了关于二次函数与线段、三角形面积、特殊三角形、特殊四边形等知识点相结合进行考察的试题,下面我们学习一道二次函数与三角形相似有关的试题。

本题中第二问考察了利用两点之间线段最短的性质;第三问中利用相似三角形性质,巧设未知数,构造数形结合,计算过程有点繁琐。

好的,如果喜欢本篇文章的朋友,请点击关注阿理初中数学,您的关注是我们持续创作的动力,让我们一起学好数学。

中考数学复习---《二次函数与三角形全等、相似(位似)有关的问题》PPT典型例 题讲解

中考数学复习---《二次函数与三角形全等、相似(位似)有关的问题》PPT典型例 题讲解

本课结束
中考数学复习---《二次函数与三角形全等、相似(位似) 有关的问题》PPT典型例 题讲解
1、如图 1,已知二次函数 y ax2 bx ca 0 的图像与 x 轴交于点 A1,0 、 B2,0 ,与
y 轴交于点 C,且 tanOAC 2 .
(1)求二次函数的解析式; (2)如图 2,过点 C 作 CD∥x 轴交二次函数图像于点 D,P 是二次函数图像上异于点 D 的一
示出△PBC 的面积,根据 S△PBC=S△BCD,列出方程,进一步求得结果,当 P 在第一象限,同
样的方法求得结果;
(3)作 PN⊥AB 于 N,交 BC 于 M,根据 P(t, t2 t 2 ),M(t, t 2 ),表示出 PM 的长,
根据 PN∥OC,得出△PQM∽△OQC,从而得出 PQ PM ,从而得出 PQ 的函数表达式,进一
2
∵抛物线的对称轴为 y= 1 ,CD∥x 轴,C(0,-2), 2
∴点 D(1,-2),
∴CD=1,
∴S△BCD= 1 CD·OC, 2
∴ 1 PE·OC= 1 CD·OC,
2
2
∴a2-2a=1,
解得 a1=1+ 2 (舍去),a2=1- 2 ;
当 x=1- 2 时,y= a2 a 2 =a-1=- 2 ,
当 a=1+ 2 时,y= a2 a 2 = 2 , ∴P(1+ 2 , 2 ),
综上所述,P 点坐标为(1+ 2,2 )或(1- 2, 2 );
(3) 如图,作 PN⊥AB 于 N,交 BC 于 M,
由题意可知,P(t, t2 t 2 ),M(t,t-2),
∴PM=(t-2)-( t2 t 2 )=- t2 2t ,

二次函数和相似三角形(中考复习)

二次函数和相似三角形(中考复习)

专题四 二次函数和相似三角形1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。

(1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

2、设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0), 与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线 于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与 △AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.xyF -2 -4-6 ACE PDB5 21 24 6 G 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于 直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴 于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似?若存在,求出点P 的 坐标;若不存在,请说明理由.4、如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线ykx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且AO BO ==AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = . (2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-满足以D N E ,,为顶点的三角形与AOB △相似?同时探索所求得的抛物线上是否还有符合条件的E 点(简要说明理由);并进一步探索对符合条件的每一个 E 点,直线NE 与直线AB 的交点G 是否总满足 PB PG <5、如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△的坐标;若不存在,说明理由.6、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH , 延长BC 至M ,使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由 (2)令CMNOCFGH S S m 四边形四边形=,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32, 抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P , 试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角 形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标? 若不存在,请说明理由。

初中数学:二次函数与相似三角形的综合

初中数学:二次函数与相似三角形的综合

初中数学:二次函数与相似三角形的综合
一、考点分析:
二次函数的综合题中在第二三小问比较常考到相似三角形的问题,这类题目出现在压轴题目中的概率比较高,难度系数也是偏大的,对于学生的计算和综合知识掌握要求比较高。

我们要利用我们现学的相似的知识在平面直角坐标系中研究。

二、解决此类题目的基本步骤与思路
1.抓住相似的两个目标三角形,找出已知条件(例如已知边、已知角度、已知点坐标等).
2.找现成的等量关系,例如相等的角度从而确定下来对应关系.
3. 运用分类讨论思想,几种不同相似的可能性逐一讨论.
4. 充分运用相似的性质,相似比或者面积比等进行列式计算.
5.大胆设点坐标去做,充分利用点在函数图像上从而代入函数表达式..
三、注意事项:
1.相似三角形的字母对应要注意.
2.分类讨论思想不要多讨论也不要漏掉,充分抓住已知条件分析.
3.运用相似比进行计算时,边之比千万不能比错了.
4.求出有多个解时一定要去检验是否符合要求.
四、二次函数中相似三角形问题。

中考数学二次函数与相似三角形有关的问题知识解读

中考数学二次函数与相似三角形有关的问题知识解读

二次函数与相似三角形有关的问题知识解读【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。

【解题思路】关于函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(3)①当△AOC∽△DP A时,∵PD⊥x轴,∠DP A=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D 点坐标为(,1).【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【解答】解:(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,∴,解得,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),D(1,0),F(1,﹣2),∴CD=,CF=,DF=2,∵E(﹣2,5),A(3,0),∴AE=5,设Q(x,y),①当△CDF∽△QAE时,==,∴==,∴AQ=5,EQ=5,∴,解得或(舍去),∴Q(﹣7,5);②当△CDF∽△AQE时,==,∴==,∴AQ=5,QE=10,∴,解得(舍去)或,∴Q(﹣12,5);③当△CDF∽△EQA时,==,∴==,∴EQ=5,AQ=10,∴,解得或(舍去),∴Q(3,﹣10);④当△CDF∽△QEA时,==,∴==,∴EQ=5,AQ=5,∴,解得或(舍去),∴Q(3,﹣5);综上所述:Q点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5).【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(1,0),B(﹣3,0),∴,解得,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴OC=OB=3,即△OBC是等腰直角三角形,∵抛物线的解析式为:y=﹣x2﹣2x+3,∴抛物线对称轴为:x=﹣1,∵EN∥y轴,∴△BEN∽△BCO,∴,∴,∴EN=2,①若△PQE∽△OBC,如图所示,过点P作PH⊥ED垂足为H,∴∠PEH=45°,∴∠PHE=90°,∴∠HPE=∠PEH=45°,∴PH=HE,∴设点P坐标(x,﹣x﹣1+2),∴代入关系式得,﹣x﹣1+2=﹣x2﹣2x+3,整理得,x2+x﹣2=0,解得,x1=﹣2,x2=1(舍),∴点P坐标为(﹣2,3),②若△EPQ∽△OCB,如图所示,设P(x,2),代入关系式得,2=﹣x2﹣2x+3,整理得,x2+2x﹣1=0,解得,(舍),∴点P的坐标为(﹣1﹣,2),综上所述点P的坐标为(﹣1﹣,2)或(﹣2,3)。

二次函数与三角形相似问题

二次函数与三角形相似问题

二次函数与三角形相似问题二次函数是初中数学中的重要内容,而三角形相似问题是初中几何中的重点难点。

在解决一些复杂的几何问题时,我们常常需要将二次函数和三角形相似问题结合起来进行思考。

本文将从几个方面探讨二次函数与三角形相似问题的关系和应用。

一、二次函数的解析式与三角形的边长关系在解决与三角形相似的二次函数问题时,我们需要先确定三角形的边长关系。

例如,已知一个直角三角形的两条直角边分别为3和4,那么这个直角三角形的斜边长为5。

如果以这个直角三角形的斜边为底边构造一个新的直角三角形,那么它的另一条直角边就是原来直角三角形的斜边的一半,即2.5。

因此,我们可以得出以下结论:当一个直角三角形的一条直角边与另一个直角三角形的斜边相等时,这两个直角三角形是相似的。

二、二次函数的最大值与最小值与三角形的高线关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的最大值和最小值与三角形的高线的关系。

例如,已知一个抛物线的顶点坐标为(0,2),对称轴为y轴。

如果以这个抛物线的顶点为原点构造一个新的抛物线,那么它的顶点坐标就是原来的顶点坐标加上或减去某个常数c。

因此,我们可以得出以下结论:当一个抛物线的顶点与另一个抛物线的顶点之间的距离等于它们到某个固定点的距离之差时,这两个抛物线是相似的。

三、二次函数的对称性与三角形的对称性关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的对称性和三角形的对称性之间的关系。

例如,已知一个抛物线的对称轴为x=1,如果以这个抛物线的对称轴为中心构造一个新的抛物线,那么它的对称轴就是原来的对称轴加上或减去某个常数d。

因此,我们可以得出以下结论:当一个抛物线的对称轴与另一个抛物线的对称轴之间的距离等于它们到某个固定点的距离之和时,这两个抛物线是相似的。

中考数学二次函数与相似三角形

中考数学二次函数与相似三角形

中考二次函数压轴题专题三二次函数与相似三角形突破口:寻找比例关系以及特殊角1 .综合与探究如图,平面直角坐标系中,抛物线与轴交于两点(在右侧),与轴交于点,点坐标为,连接,点是直线上方抛物线上一动点,且横坐标为.过点分别作直线的垂线段,垂足分别为和,连接.(1)求抛物线及直线的函数关系式;(2)求出四边形是平行四边形时的值;(3)请直接写出与相似时的值.2 .如图,在平面直角坐标系中,抛物线与轴交于A,B两点(点A 在点B的右侧),与轴交于点C,点A的坐标为,点B的坐标为点C的坐标为,(1)求抛物线的解析式;(2)M为第一象限内抛物线上的一个点,过点M作轴于点G,交于点H,当线段时,求点M的坐标;(3)在(2)的条件下,将线段绕点G顺时针旋转一个角,在旋转过程中,设线段与抛物线交于点N,在射线上是否存在点P,使得以P,N,G为顶点的三角形与相似?如果存在,请求出点P的坐标(直接写出结果);如果不存在,请说明理由.3 .已知二次函数(为常数,且)的顶点为,图象与轴交点为,,且点在点左侧.(1)求,两点的坐标.(2)当时,求的值.(3)在(2)的情况下,将轴下方的图象沿x轴向上翻折,与轴交于点,连接,记上方(含点,)的抛物线为.①设点为上一动点,当取最大值时,求点的坐标.②在上是否存在点,使以点,,为顶点的三角形与相似?若存在,请直接写出点坐标;若不存在,请说明理由.4 .如图,抛物线y=ax 2+bx+c(a≠0)的顶点坐标为(2,-1),并且与y轴交于点C(0,3),与x轴交于两点A,B.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存在,请说明理由.5 .如图①,在平面直角坐标系xOy中,批物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.(1)求抛物线的对称轴;(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.6 .如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D 两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.7 .如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.(1)求点、、的坐标;(2)求证:四边形是平行四边形;(3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).①求出一个满足以上条件的点的横坐标;②直接回答这样的点共有几个?8 .如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上,当与相似时,请直接写出所有满足条件的点的坐标.9 .如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.(1)直接写出抛物线的解析式和的度数;(2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;(3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)10 .如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M.,垂足为N.设.①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似.若存在,求出点P的坐标;若不存在,请说明理由.11 .如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与相似?若存在,求点M的坐标;若不存在,请说明理由.12 .在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;(3)如图2,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13 .如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.(1)求出二次函数和所在直线的表达式;(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;(3)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由.14 .如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求面积的最大值.(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.。

中考冲刺:二次函数与相似三角形

中考冲刺:二次函数与相似三角形

第三讲 二次函数与相似三角形【例1】已知一次函数3124y x =--的图象分别交x 轴、y 轴于A C 、两点. (1)求A C 、两点坐标;(2)在x 轴上找出点B ,使ACB AOC ∽,若抛物线过A B C 、、三点,求出此抛物线的解析式; (3)在(2)的条件下,动点P Q 、分别从A B 、两点同时出发,以相同速度沿AC BA 、向C A 、运动,连结PQ ,使AP m =,是否存在m 的值,使以A P Q 、、为顶点的三角形与ABC 相似,若存在,求出所有m 的值;若不存在,请说明理由.【例2】如图,二次函数的图象经过点70,39D⎛⎫⎪⎝⎭,且顶点C的横坐标为4,该图象在x轴上的截得的线段AB的长为6.(1)求此二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA PD+最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使QAB与ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【例3】已知抛物线21y x =-与x 轴交于A B 、(A 在B 左侧)两点,与y 轴交于点C . (1)求A B C 、、三点的坐标;(2)过点A 作AP CB ∥交抛物线于点P ,求四边形ACBP 的面积;(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG x ⊥轴于点G ,使以A M G 、、三点为顶点的三角形与PCA 相似.若存在,请求出M 点的坐标;若不存在,请说明理由.【例4】在平面直角坐标系xOy 中,已知抛物线()2429y x c =--+与x 轴交于A B 、两点(点A 在点B 的左侧),交y 轴的正半轴于点C ,其顶点为M ,MH x ⊥轴于点H ,MA 交y 轴于点N ,255MH OM =. (1)求此抛物线的函数表达式;(2)过H 的直线与y 轴相交于点P ,过O M 、两点作直线PH 的垂线,垂足分别为E F 、,当12HE HF =时,求点P 的坐标; (3)将(1)中的抛物线沿y 轴折叠,使点A 落在点D 处,连结MD ,Q 为(1)中抛物线上的一点,直线NQ 交x 轴于点G ,当Q 点在抛物线上运动时,是否存在点Q ,使ANG 与ADM 相似?若存在,求出所有符合条件的直线QG 的解析式;若不存在,请说明理由.。

二次函数与相似三角形

二次函数与相似三角形

(2)过点M作MF⊥OB于点F, 3 2 2 3 3 2 3 2 3 ∵ y= x - x= (x -2x)= (x -2x+1-1)= 3 3 3 3 3 3 (x-1) - , 3
2
3 ∴M点坐标为:(1,- ), 3 3 3 3 ∴tan∠FOM= = , 1 3 ∴∠FOM=30° , ∴∠AOM=30° +120° =150° ;
【解答】
(1)过点A作AE⊥y轴于点E,
∵AO=OB=2,∠AOB=120° ,∴∠AOE=30° , ∴AE=1,EO= 3 ,∴A点坐标为(-1, 3),B点坐标 为(2,0),将两点代入y=ax2+bx得: 3 a= 3 , a-b= 3, 解得: 4a+2b=0, b=-2 3, 3 3 2 2 3 ∴抛物线的表达式为:y= x - x; 3 3
二次函数的综合探究 (针对陕西中考24题)
西京公司子校
胡先锋
1.二次函数与相似三角形
二次函数与三角形相似的综合题,可以结合几何图形来解题, 充分利用图象上点的坐标和表示相关线段的长度几何意义, 实现从“数或式”到“形”的转化,在解题中充分运用函数 与方程、数形结合、分类讨论等思想方法.
【例】 如图,在平面直角坐标系xOy中,顶点为M的抛物线 y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB =2,∠AOB=120°.
(1)求这条抛物线的表达式; (2)连接OM,求∠AOM的大小; (3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐 标.
【思路点拨】 (1)根据AO=OB=2,∠AOB=120°,求出A 点坐标,以及B点坐标,进而利用待定系数法求二次函数解 析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函 数关系求出∠FOM=30°,进而得出答案;(3)分析得∠AOM =∠ABx=150°,分别根据当△ABC1∽△AOM以及当 △C2AB∽△AOM时,利用相似三角形对应边成比例列方程, 求出C点坐标即可.

数学中考压轴题分类1——二次函数与相似三角形

数学中考压轴题分类1——二次函数与相似三角形

数学中考压轴题分类——二次函数与相似三角形1.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A 、B 、C 三点的抛物线解析式;(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE;(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F , 试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗?请说明理由.2、如图,已知抛物线过点A (0,6),B (2,0),C (7,52). 若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称.(1)求抛物线的解析式;(2)求证:∠CFE=∠AFE ;(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由.O A B ED F C x N M3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M(2,2),求实数m 的值.(2)在(1)的条件下,求△BCE 的面积.(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H的坐标.(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.4. 如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.x y PO C BA5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.6.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE =13,A (3,0),D (-1,0),E (0,3). (1)求抛物线的解析式及顶点B 的坐标;(2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.图甲 A E D C B y x O 图乙(备用图) A E D C B y xO9.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- 3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018数学中考复习——二次函数与相似三角形二次函数中因动点问题产生的相似三角形的解题方法一般有以下三种:1.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A 、B 、C 三点的抛物线解析式;(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE;(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F , 试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗请说明理由.2、如图,已知抛物线过点A (0,6),B (2,0),C (7,52). 若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称.(1)求抛物线的解析式; (2)求证:∠CFE=∠AFE ;(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由.O ABEDFCxNM3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE 的面积.(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标.(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为 顶点的三角形与△BCE 相似若存在,求m 的值;若不存在,请说 明理由.4. 如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由.5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三x yP O C B A点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由.6.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE =13,A (3,0),D (-1,0),E (0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由;(4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.7.我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm ,锅深3dm ,图甲 AED C By x O 图乙(备用图) A ED C By x O锅盖高1dm (锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C 1,把锅盖纵断面的抛物线记为C 2. (1)求C 1和C 2的解析式;(2)如图②,过点B 作直线BE :y=x ﹣1交C 1于点E (﹣2,﹣),连接OE 、BC ,在x 轴上求一点P ,使以点P 、B 、C 为顶点的△PBC 与△BOE 相似,求出P 点的坐标;(3)如果(2)中的直线BE 保持不变,抛物线C 1或C 2上是否存在一点Q ,使得△EBQ 的面积最大若存在,求出Q 的坐标和△EBQ 面积的最大值;若不存在,请说明理由.8.如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似 (3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.9.如图1,已知菱形ABCD 的边长为,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(- ,3),抛物线y=ax 2+b (a≠0)经过AB 、CD 两边的中点. (1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E ,交抛物线于点F ,连接DF 、AF .设菱形ABCD 平移的时间为t 秒(0<t < 3 )①是否存在这样的t ,使△ADF 与△DEF 相似若存在,求出t 的值;若不存在,请说明理由;②连接FC ,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x 轴与抛物线在x 轴上方的部分围成的图形中(包括边界)时,求t 的取值范围.(写出答案即可)10.已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。

(1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。

11.设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),A AB B OO x x y y 图① 图②xyF -2-4-6A CE PDB52124 6 G与y 轴交于点C.且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线 于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与 △AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.12. 已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于 直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴 于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似若存在,求出点P 的 坐标;若不存在,请说明理由.13.如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且2AO BO ==AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = . (2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-上有一点E , 满足以D N E ,,为顶点的三角形与AOB △相似若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E 点(简要说明理由);并进一步探索对符合条件的每一个 E 点,直线NE 与直线AB 的交点G 是否总满足102PB PG <14.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似若存在,求出N 点的坐标;若不存在,说明理由.15.如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH , 延长BC 至M ,使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO.Dy NOM P AC B 2-Hy xOAB(1)试比较EO 、EC 的大小,并说明理由 (2)令CMNOCFGH S S m 四边形四边形=,请问m 是否为定值若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32, 抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P , 试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角 形与△AEF 相似若存在,请求直线KP 与y 轴的交点T 的坐标 若不存在,请说明理由。

16.如图,二次函数2y ax bx c =++()的图象与x 轴交于A B 、两点,与轴相交于点.连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和时二次函数的函数值相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结,将BMN △沿翻折,点恰好落在边上的处,求t 的值及点的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以B N Q ,,为项点的三角形与ABC △相似如果存在,请求出点的坐标;如果不存在,请说明理由.17.已知:在平面直角坐标系中,抛物线32+-=x ax y ()交xA、B 两点,交轴于点C ,且对称轴为直线2x =-. (1)求该抛物线的解析式及顶点D 的坐标;(2)若点P (0,t )是轴上的一个动点,请进行如下探究: 探究一:如图1,设△PAD 的面积为S ,令W =t ·S ,当0<t <4时, W 是否有最大值如果有,求出W 的最大值和此时t 的值; 如果没有,说明理由;探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC 相似如果存在,求点P 的坐标;如果不存在,请说明理由.18.矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34y x =-与BC 边相交于D 点. (1)求点D 的坐标; (2)若抛物线294y ax x =-经过点A(3)设(2)中的抛物线的对称轴与直线OD 交于点M , 点P 为对称轴上一动点,以P O M 、、为顶点的三角形 与OCD △相似,求符合条件的点P 的坐标.。

相关文档
最新文档