镇宁布依族苗族自治县第一中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镇宁布依族苗族自治县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.与圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0都相切的直线有()
A.1条B.2条C.3条D.4条
2.若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()
A.1 B.2 C.3 D.4
3.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()
A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q
4.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段AB的长为()
A.4B.4C.2D.2
5.给出下列各函数值:①sin100°;②cos(﹣100°);③tan(﹣100°);④.其中符号为
负的是()
A.①B.②C.③D.④
6.已知函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则a的取值范围()
A.[1,+∞)B.[0.2} C.[1,2] D.(﹣∞,2]
7.二项式(x2﹣)6的展开式中不含x3项的系数之和为()
A.20 B.24 C.30 D.36
8.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()
A.3条B.2条C.1条D.0条
9.若等式(2x﹣1)2014=a0+a1x+a2x2+…+a2014x2014对于一切实数x都成立,则a0+1+a2+…+a2014=()
A.B.C.D.0
10.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()
A.(11,12)B.(12,13)C.(13,14)D.(13,12)
11.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()
A.B. C.或D.3
12.已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于()
A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣3
二、填空题
13x和所支出的维修费用y(万元)的统计资料如表:
根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元.
14.曲线y=x2+3x在点(-1,-2)处的切线与曲线y=ax+ln x相切,则a=________.
15.已知a=(cosx﹣sinx)dx,则二项式(x2﹣)6展开式中的常数项是.
16.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.
17.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.18.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是.
三、解答题
19.求同时满足下列两个条件的所有复数z:
①z+是实数,且1<z+≤6;
②z 的实部和虚部都是整数.
20.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2
)=3ab .
(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.
21.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
22.已知函数.
(1)求f(x)的周期.
(2)当时,求f(x)的最大值、最小值及对应的x值.
23.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若A⊆B,求实数m的取值范围;
(2)若A∩B=∅,求实数m的取值范围.
24.已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.
镇宁布依族苗族自治县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答
案)
一、选择题
1.【答案】C
【解析】
【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.
【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,
;;
∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.
∴两圆的圆心距=r2﹣r1;
∴两个圆外切,
∴它们只有1条内公切线,2条外公切线.
故选C.
2.【答案】A
【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,
∴f′(x)=﹣asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴a+b=1.
故选:A.
【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.
3.【答案】B
【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.
令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.
则¬p∧q为真命题.
故选B.
4.【答案】A
【解析】解:圆x2
+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.
由于弦心距d==2,∴弦长为2=4,
故选:A.
【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.
5.【答案】B
【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,
④∵sin>0,cosπ=﹣1,tan<0,
∴>0,
其中符号为负的是②,
故选:B.
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.6.【答案】C
【解析】解:f(x)=x2﹣2x+3=(x﹣1)2+2,对称轴为x=1.
所以当x=1时,函数的最小值为2.
当x=0时,f(0)=3.
由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.
∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.
故选C.
【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.
7.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
8.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,
设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
9.【答案】B
【解析】解法一:∵,
∴(C为常数),
取x=1得,
再取x=0得,即得,
∴,
故选B.
解法二:∵,
∴,
∴,
故选B.
【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.
10.【答案】A
【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,
当n=2时,满足进行循环的条件,故x=9,y=10,n=3,
当n=3时,满足进行循环的条件,故x=11,y=12,n=4,
当n=4时,不满足进行循环的条件,
故输出的数对为(11,12),
故选:A
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
11.【答案】C
【解析】解:∵a+b=3,b>0,
∴b=3﹣a>0,∴a<3,且a≠0.
①当0<a<3时,+==+=f(a),
f′(a)=+=,
当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=时,+取得最小值.
②当a<0时,+=﹣()=﹣(+)=f(a),
f′(a)=﹣=﹣,
当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=﹣时,+取得最小值.
综上可得:当a=或时,+取得最小值.
故选:C.
【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.
12.【答案】A
【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,
所以=≠,
解得a=﹣3,或a=1.
故选:A.
二、填空题
13.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
14.【答案】
【解析】由y=x2+3x得y′=2x+3,
∴当x=-1时,y′=1,
则曲线y=x2+3x在点(-1,-2)处的切线方程为y+2=x+1,
即y=x-1,设直线y=x-1与曲线y=ax+ln x相切于点(x0,y0),
(x>0),
由y=ax+ln x得y′=a+1
x
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
15.【答案】 240 .
【解析】解:
a=
(
cosx ﹣sinx )dx=
(
sinx+cosx
)
=﹣1﹣1=﹣2, 则二项式(x 2
﹣)6=(x 2
+)6
展开始的通项公式为T r+1
=
•2r •x 12﹣3r ,
令12﹣3r=0,求得r=4,可得二项式(x 2
﹣)6
展开式中的常数项是•24=240,
故答案为:240.
【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.
16.【答案】
.
【解析】解:∵△ABC
外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2, ∴
由正弦定理可得:
,解得:a=3,
∴利用余弦定理:a 2=b 2+c 2﹣2bccosA ,可得:9=4+c 2﹣2c ,即c 2
﹣2c ﹣5=0,
∴解得:
c=1+,或1
﹣(舍去).
故答案为:
.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
17.【答案】
.
【解析】解:∵抛物线C 方程为y 2
=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),
由
,消去x
得
.
设A (x 1,y 1),B (x 2,y 2), 可得y 1+y 2
=,y 1y 2=﹣4①. ∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,
消去y
得k2=3,解之得k=±.
2
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
18.【答案】﹣3<a<﹣1或1<a<3.
【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,
∴﹣3<a<﹣1或1<a<3.
故答案为:﹣3<a<﹣1或1<a<3.
【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.
三、解答题
19.【答案】
【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,
解方程得z=±i.
又∵z的实部和虚部都是整数,∴t=2或t=6,
故满足条件的复数共4个:z=1±3i 或z=3±i.
20.【答案】
【解析】解:(I)由∵cosA=,0<A<π,
∴sinA==,
∵5(a2+b2﹣c2)=3ab,
∴cosC==,
∵0<C<π,
∴sinC==,
∴cos2C=2cos2C﹣1=,
∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣
∵0<B <π,
∴B=.
(II )∵=,
∴a==c ,
∵a ﹣c=﹣1,
∴a=
,c=1,
∴S=acsinB=×
×1×
=.
【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.
21.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦
. 当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a
a
f a e -=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
22.【答案】
【解析】解:(1)∵函数.
∴函数f (x )=2sin (2x+).
∴f (x )的周期T==π
即T=π
(2)∵
∴,
∴﹣1≤sin(2x+)≤2
最大值2,2x=,此时,
最小值﹣1,2x=此时
【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.23.【答案】
【解析】解:(1)由A⊆B知:,
得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];
(2)由A∩B=∅,得:
①若2m≥1﹣m即m≥时,B=∅,符合题意;
②若2m<1﹣m即m<时,需或,
得0≤m<或∅,即0≤m<,
综上知m≥0.
即实数m的取值范围为[0,+∞).
【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.
24.【答案】
【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,
△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0
解得:m=.
(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),
则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,
由韦达定理可得:x1+x2=﹣,x1•x2=,
∴
|AB|===
=2;
∴m=±.
【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.。