并联电容器组不平衡保护初始值的估算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:通过对开口三角电压保护信号初始值大小的估算、分析,对并联电容器组不平衡保护的安全性进行探讨,提出了并联电容器组内部故障不平衡保护初始不平衡测量值估算式。

关键词:不平衡保护;初始值;安全性
1概述
文献[1]对保护的可靠性做出了明确的界定:“指保护装置该动作时应动作,不该动作时不误动作。

前者为信赖性,后者为安全性。


传统的不平衡保护(以下简称保护)主要用于无内熔丝高压并联电容器组内部元件故障,常和单台并联电容器保护用熔断器共同组成并联电容器组内部故障的主保护。

随着内熔丝技术的发展,大量的并联电容器装置,尤其是集合式并联电容器装置单元内部采用了内熔丝结构。

传统的保护整定原则已经不能适应,而且要求检测的故障范围及响应的信号越来越小,与保护信号初始值有可能重叠。

不受保护初始值影响的继电器整定值下限是多少?哪些一次串并联接线方式不能采用开口三角电压保护?是并联补偿工程技术人员应当关注的问题。

为了确定保护的安全性,必须首先对保护信号初始值大小进行估算、分析。

本文以开口三角电压保护为例进行分析,其余不平衡保护的分析类同。

2 保护分析的约定条件
本文所讨论的保护是基于如下假设:
a)中性点不接地高压并联电容器组;
b)中性点不直接接地系统;
c)电磁式继电保护;
d)内熔丝并联电容器;
3哪些干扰影响最大?
关于影响开口三角电压保护的因素,文献[3]认为“电压不平衡的影响是这种保护的缺点”,文献[2]认为“这种保护方式的优点是不受系统接地故障和系统电压不平衡的影响,也不受三次谐波的影响”。

究竟有多少因数影响着保护初始值,哪些因数的影响不可忽略从下面列出的保护初始值估算式可清晰地看出
(推导详见附录A)。

开口三角电压:
上述各式均可认为由两部分组成:前一部分为系统影响因数K S,它由三项因数组成:第一项为系统电压偏差的影响;第二项为系统谐波电压含量的影响;第三项为系统电压不平衡的影响;后一部分是电容器三相阻抗偏差及测量单元误差的影响因数。

4干扰信号有多大?
为了便于对保护最大初始值UΔbp进行估算,式(1)可以变形为:
式(5)中U1为基波电压;U H/U1为谐波电压总畸变率,GB/T-14549-1993规定10kV系统不超过4%;U A2/U A1为电压不平衡度,GB/T-15543-1995规定:电力系统公共连接点正常电压不平衡度允许值为=2% ,短时不得超过4%;假设测量单元精度δ=1,并有ΔU b=-ΔU a=-δ,ΔU ab=2δ;假设并联电容器相间电容偏差按2%控制,近似ΔZ ab*=2;按U1选取测量单元一次额定电压U n,则:
从上面的结果可看到正常谐波电压总畸变率和电压不平衡度对UΔbp的影响不
大(异常状态下仍可能产生较大影响),影响UΔbp的主要因素取决于并联电容器相间阻抗偏差和测量单元精度及测量单元精度间的差值。

为了使初始不平衡值控制在尽可能小的范围,既要要求并联电容器相间阻抗偏差尽可能小,也要要求提高测量单元精度(例如到0.5级)并保证三相测量单元的误差特性曲线相近。

理论上,满足了这些要求就可以使初始不平衡值趋于零。

其实,由于产品制造的分散性以及产品运行状态的不同,这些要求又很难同时满足。

5 筑起抵御干扰的“防火墙”
为了保证保护的安全性,即在“不该动作时不误动作”,通常要对开口电压
保护继电器整定值进行初始不平衡校验。

文献[3]曾指出:正常情况下,初始不平衡不应超过继电器整定值的10%。


据式(6)的结果,保护最小整定值应在4V以上取值,这对大多数的并联电容器组内部故障保护都是难以接受的。

按国内保护整定的一般作法,对于保护继电器整定值U dz.J,通常
U dz.J≥K K UΔbp (7)
其中KK是计及不可预见因数而引进的可靠系数,可按1.3~1.5考虑。

根据式(6)的结果,令K K=1.5则有:
U dz.J=6.28V
如果测量单元精度选择0.5级,并令KK=1.3则有:
U dz.J=4.07V
6 结束语
6.1 电容器组初始的三相阻抗不平衡、三相测量单元间的偏差以及系统电压不对称是影响不平衡保护初始值的主要因素。

系统谐波的影响相对较小。

6.2 提高测量单元精度(例如到0.5级)并保证三相测量单元的误差特性曲线相近是降低保护初始值、提高保护安全性的有效措施之一。

6.3开口三角电压保护继电器整定值低于4V,并联电容器装置有可能误动作。

参考文献
[1] GB50062-1992 电力装置的继电保护和自动装置设计规范[S]
[2] GB50227-1995 并联电容器装置设计规范[S]
[3] IEC TC33-149 并联电容器及并联电容器组保护导则 (征求意见稿)[S][4]林海雪. 电力系统的三相不平衡[M], 北京:中国电力出版社,1998
附录A:并联电容器组继电保护初始不平衡测量值估算式的推导
1 基本条件
考虑一般情况,系统不对称电压为U A、U B、U C。

对于中性点不接地的不平衡电容器组(假设不串电抗器),电容器组每相阻抗为Z a、Z b、Z c,并且Z b=Z c,每相电容为C a、C b、C c,并且C b=C c,各相不对称电压为:
将A(2)代入A(1)式可得电容器组相电压序分量表示为:
2开口三角电压
设测量单元的偏差百分数分别为ΔU a、ΔU b、ΔU c;测量单元的变比可以表示为n a=U n/(100+ΔU a),n b =n c=U n/(100+ΔU b )。

开口三角电压测量值为:
3中性线电流不平衡
设M0为(电容偏差较大)一臂并联支路(或台数),M为两臂总并联支路(或台数);单元额定电流为In;电流互感器变比为n l=I ln/(5+ΔI0),其中I ln为电流互感器一次额定电流、ΔI0为电流互感器的偏差百分数,中性线电流不平衡测量值为:
4相电压差动
5相桥差电流
电容器的差压保护就是电压差动保护,原理就象电路分析中串联电阻的分压原理。

是通过检测同相电容器两串联段之间的电压,并作比较。

当设备正常时,两段的容抗相等,各自电压相等,因此两者的压差为零。

当某段出理故障时,由于容抗的变化而使各自分压不再相等而产生压差,当压差超过允许值时,保护动作。

从原理上可知因两段是串联在电路上的,因此当电容器是正常的情况下,电网电压对保护影响是有限的(暂态过压除外)。

更何况10KV系统为非有效接地系统,
单相接地时只影响相对地的电压,相及相间电压并没有改变,因此对保护是没有影响的。

再想说明的是10kV系统的电容器很少用差压保护,此保护多用于35kV系统。

开口三角形保护标准名称为零序电压保护,习惯亦称不平衡电压保护(实际不平稳衡电压保护是另一种方式,只是现在已没再用)。

它的原理是分别检测电容器的端电压,再在二次端接成开口三角形得出零序电压,从而发现三相是否平衡而得出设备是否有故障。

因放电线圈(实际就是电压互感器)一次端的两个端口是直接接在电容器两端的,因此它检测的电压只由设备的两端电压决定(这与线路上的电压互感器的开口三角检测不一样),而单相接地时并不影响到相及相间电压,因此对电容器的保护并没影响
每组电容器要三个电压互感器。

因为高压电容器组是要用三个放电线圈的,那刚好就相当于三个电压互感器,因此并没有增加成本。

另外高压电容器的分组是不多的,象一台大型220kV的主变,我所知的最多的就分6组10020kVar。

一次侧PT因放电线圈的主要功能为放电,因此理论上一次回路的直流电阻为小
些,线径要大点,因此体积可能大点(实际上差不多)。

直接与电容接牢这个说法所言极是,这是放电线圈与一般PT在接线方式上的最大差别,即不能加熔断器保护。

-------------------------------------------------------------------------------------------------------------
不平衡电压保护
电容器发生故障后,将引起电容器组三相电容不平衡。

电容器组的各种主保护方式都是从这个基本点出发来确定的。

根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。

这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。

这些保护方式各有优缺点,我们可以根据需要选择。

单星形接线的电容器组目前国内广泛采用开口三角电压保护。

对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。

-------------------------------------------------------------------------------------------------------------------------
电容器保护
1 保护熔丝
现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。

此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。

2 过电流保护 (电流取自线路TA)
过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。

电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。

为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。

3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型)
电容器发生故障后,将引起电容器组三相电容不平衡。

电容器组的各种主保护方式都是从这个基本点出发来确定的。

根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。

这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。

这些保护方式各有优缺点,我们可以根据需要选择。

单星形接线的电容器组目前国内广泛采用开口三角电压保护。

对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。

4 不平衡电流保护
这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。

常见的不平衡电流保护的方式有以下两种:
4.1 双星形中性点间不平衡电流保护
保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。

如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

这种保护方式比较简单,系统电压不平衡,一相接地故障、高次谐波电流及合闸涌流,都不会引起保护误动,所以在国内外得到广泛应用。

4.2 桥式差动电流保护
电容器组每相分为两个支路,每相的串联段数为双数,其中部桥接一台电流互感器。

正常运行时,桥路中电流为零,任意一台电容器因故障被切除后,桥接电路中将有电流流过,保护采集到该电流后即动作掉闸。

5 过电压保护(电压取自放电TV)和低电压保护(母线TV)
电容器在过高的电压下运行时,其内部游离增大,可能发生局部放电,使介质损耗增大,局部过热,并可能发展到绝缘被击穿。

因此应保持电容器组在不超过最高容许的电压下运行。

安装过电压保护就是为了这个目的。

过电压保护的整定值一般取电容器额定电压的1.1~1.2倍。

低电压保护主要是防止空载变压器与电容器同时合闸时工频过电压和振荡过电压对电容器的危害。

这种情况可能出现变电站事故跳闸、变电站停电、各配电线切除。

电容器如果还接在母线上,将使电压升高。

变压器和电容器构成的振荡回路也可能产生振荡过电压,危及设备绝缘。

因此安装低电压保护,当母线电压降到额定值的60%左右时即动作将电容器切除。

相关文档
最新文档