The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally
Scanco关于骨小梁参数的名词解释

骨小梁数量(Trabecular Number,Tb.N),是指给定长度内骨组织与非骨组织 的交点数量,单位是1/mm。发生骨质疏松时,Tb.N的值减小。
TBPf
骨小梁模式因子(Trabecular Bone Pattern factor,TBPf),衡量骨小梁凸面和凹面的程度, 单位是1/mm。。 低TBPf值提示 骨小梁由杆状向板状变化,发生骨质疏松时TBPf值增加。
噪声在ct中噪声noise是一均匀物质扫描图像中各点之间ct值的随机波动也可看作是图像矩阵中像素值由于各种原因引起的误锥形束是指球管发出的x射线呈圆锥体状照射在扫描对象上与传统的扇形xfanbeam相比采用锥形x线束conebeam的ct具有明显优势1数据采集效率高空间分辨率高均一性线利用率高可以降低射线剂量3在三维ct应用范围更广
DICOM
医学数字成像和通信标准(Digital Imaging and Communications in Medicine,DICOM)是美国放射学会(American College of Radiology,ACR)和国家电子制造商协会 (National Electrical Manufactorers Association,NEMA)为主制定的用于数字化医学影像传 送、显示与存储的标准。在DICOM标准中详细定义了影像及其相关信息的组成格式和交换方法,利用这个标准,人们可以在影像设备上建立一 个接口来完成影像数据的输入/输出工作。DICOM标准以计算机网络的工业化标准为基础,它能帮助更有效地在医学影像设备之间传输交换数字影像,这些设 备不仅包括CT、MR、核医学和超声检查,而且还包括CR、胶片数字化系统、视频采集系统和HIS/RIS信息管理系统等。该标准1985年产生,目前版本为2003年发布的DICOM 3.0 2003版 本。
科学技术的四种不确定性及其风险规避路径

科学技术的四种不确定性及其风险规避路径关于《科学技术的四种不确定性及其风险规避路径》,是我们特意为大家整理的,希望对大家有所帮助。
摘要:科学技术在实现其社会功能的同时,也给人类社会发展带来了一系列现实问题。
科学技术的四种不确定性是其根源所在:科学技术理论层面的不确定性、科学技术功能的不确定性、科学技术研究的不确定性和源于人类主观意志的不确定性。
不同种类的不确定性需要采取不同的风险规避路径。
约纳斯基于现代技术的巨大力量创立了一种未来导向的“责任伦理”,在他的理论视阈下审视科技的四种不确定性及其风险规避路径,有利于我们准确理解和把握这一问题。
不确定性将永远伴随着科技的演化以及人类的发展,我们应该以理性的态度看待和处理科学技术的不确定性问题。
下载论文网?P键词:责任伦理;科学技术;不确定性;风险;技术自主论中图分类号:N031文献标识码:A文章编号:1673-5595(2018)02-0078-05现代科学技术已然成为一种新的力量[1]5,正在威胁着未来“人类必须存在”这一首要的绝对命令[1]57,用汉斯?约纳斯的话讲“人类无权毁灭自己”[1]49。
科学与技术本应成为人类获取自由解放的一种内在力量,但是,现代科技异化问题日益威胁着未来人类自身的生存。
该状况的主要根源在于科学技术的不确定性。
本文基于约纳斯“责任伦理”的相关思想,对科学技术的四种不确定性进行微观解析,进而提出规避风险的逻辑路径,从而对不确定性进行必要的理性审视。
无论从理论角度还是研究角度,科学与技术之间都具有内在一致性,用约纳斯的话讲,“科学中有技术……技术中有科学”[2]12。
本文拟从整体考察,不再单独分析。
一、科学技术的四种不确定性约纳斯面对现代技术带来的可怕后果,基于“忧惧启迪法”构建了一种未来导向的责任伦理。
[1]35-66忧惧启迪法的首要逻辑前提就是科学预测的不确定性[1]39-40,因此,从未来导向的视角看,科学技术的不确定性自然成为学术界应该准确把握的问题。
三位一体 英语书

三位一体英语书The Triune God: An Exploration of the English LanguageThe concept of the Triune God, or the Holy Trinity, is a fundamental tenet of Christianity that has captivated the minds and hearts of believers for centuries. As a Christian, I am deeply intrigued by this profound and mysterious doctrine, which speaks to the very nature of the divine. In this essay, I will delve into the intricacies of the Triune God and explore how the English language can be utilized to capture the essence of this theological concept.At the heart of the Triune God lies the understanding that the divine is composed of three distinct yet inseparable persons: the Father, the Son, and the Holy Spirit. This belief in the Trinity, or the three-in-one, is a central pillar of Christian faith, and it has been a subject of intense theological discourse and contemplation throughout the history of the Church.The English language, with its rich vocabulary and nuanced grammatical structures, offers a unique opportunity to explore the complexities of the Triune God. One of the key challenges in conveying this concept lies in the inherent limitations of humanlanguage to fully capture the essence of the divine. The Triune God, by its very nature, transcends the boundaries of human understanding and defies simple explanations.Nevertheless, the English language provides us with a powerful tool to delve into the depths of this theological mystery. The use of specific terms, such as "Trinity," "Godhead," and "Hypostasis," allows us to engage with the conceptual framework of the Triune God and to grapple with its intricacies. These words, rooted in the Greek and Latin traditions, have been carefully crafted and refined over centuries to convey the nuances of this profound doctrine.Moreover, the English language offers a rich tapestry of metaphors and analogies that can be employed to elucidate the complex relationships within the Triune God. For instance, the concept of the "three-in-one" can be likened to the structure of an equilateral triangle, where each side is distinct yet inseparable from the whole. Similarly, the metaphor of the sun, with its distinct components of the core, the rays, and the heat, can be used to illustrate the unity and diversity within the Godhead.The versatility of the English language also allows for the exploration of the unique roles and attributes of each person within the Trinity. The Father, often depicted as the eternal, all-powerful, and all-knowing creator, can be described using words such as "sovereign,""omnipotent," and "transcendent." The Son, the incarnate Word of God, can be portrayed through the language of "redemption," "sacrifice," and "incarnation." The Holy Spirit, the divine presence and the giver of life, can be expressed through terms like "comforter," "advocate," and "sanctifier."Furthermore, the English language provides a platform for delving into the intricate relationships and interactions within the Triune God. The concept of "perichoresis," which describes the mutual indwelling and eternal dance of the three persons, can be explored through the nuances of language. The idea of the "economic Trinity," which refers to the outward manifestation of the Triune God in the world, can be juxtaposed with the "immanent Trinity," the internal dynamics of the Godhead.As I engage with the Triune God through the lens of the English language, I am struck by the profound depth and complexity of this theological concept. The words we use, the metaphors we employ, and the grammatical structures we construct all play a crucial role in our understanding and articulation of this mystery.In conclusion, the Triune God, with its multifaceted nature, finds a powerful medium of expression in the English language. Through the careful use of terminology, the crafting of analogies, and the exploration of the relationships within the Godhead, we can strive tograsp the essence of this profound theological truth. As we continue to grapple with the mysteries of the divine, the English language serves as a valuable tool in our quest to comprehend the depths of the Triune God.。
新核心3第1、2、3、4、5、7课文翻译

Unit 1Main Reading拥有自己头脑的机器如果任其自由发展,有些机器可以学得更聪明,在一些最需要脑力的任务方面甚至会超越人类。
人类能否建造出可以演变得更好并可以超出人们想象而发明解决方案的机器吗?利用计算蛮力方法,计算机现在可以进行通行的国际象棋游戏。
1997年,IBM的一款名为深蓝的超级计算机击败了卡斯帕罗夫。
世界冠军认为这次经历如同与顶尖的人类挑战者对抗一样艰难。
阿蓝图灵,战时英国谜团破译密码工作背后的数学天才,于20世纪50年代设立了人工智能的标准,而深蓝的行为至少达到了其中的一个。
然而,深蓝的成功并没有给人工智能界留下深刻的印象,那是因为这台机器的创举仅仅在于运算速度快于其他任何以前的计算机。
巨大的处理能力可以使它预测到向前推进的棋步多达30个,而且它聪明的编程可以计算出数百万的可能的棋步中哪一步会加强它的位置。
但就本身而言,深蓝所能做的,而且出色完成的仅仅是数学。
它不能为象棋游戏制定自己的战略。
但是如果深蓝被赋予一种演变的能力,使用反复试验的经历学会完善自身,会怎么样呢?一种名为“演化硬件”的新技术正试图这么做。
和深蓝一样,演化硬件也是通过尝试几十亿个不同的可能,寻求解决方案。
区别在于,和深蓝不同,演化硬件不停地调整和完善它的搜索算法,而这也正是找到解决方案所需的逻辑步骤。
它每次都选择最好的,并加以尝试。
而且,它所作的一切不是根据编好的指令,而都是自动完成的,。
传统观念长期认为一个机器的能力是受限于创造者的想象力。
但是在过去的几年里,演化硬件的前驱已经成功地建造了一些可以自行调整并且表现更佳的设备。
有些情况下,后来出现的机器甚至超出了创造者的能力。
例如,在电路设计领域,对几十年来人类束手无策的一些问题,演化硬件却找出了创造性的解决方案。
演化硬件首先需要硬件可以重新配置。
如果一个设备不能调整形状或调整做事方法,它是不可能演变的。
拿一把瑞士军刀为例,如果要完成开启瓶子的任务,使用者要确认刀具中合适的工具,然后打开刀具,再把设备转变成一个可以敲开瓶盖的用具。
TPO-30 Reading 2 阅读译文

The Pace of Evolutionary Change进化改变的步伐A heated debate has enlivened recent studies of evolution. Darwin’s original thesis, and the viewpoint supported by evolutionary gradualists, is that species change continuously but slowly and in small increments. Such changes are all but invisible over the short time scale of modern observations, and, it is argued, they are usually obscured by innumerable gaps in the imperfect fossil record. Gradualism, with its stress on the slow pace of change, is a comforting position, repeated over and over again in generations of textbooks. By the early twentieth century, the question about the rate of evolution had been answered in favor of gradualism to most biologists’ satisfaction.最近的一个关于进化的研究引发了激烈的争论。
达尔文的原始论点和进化渐进主义者支持的观点是物种会持续地改变,但非常缓慢,增量也很小。
这种改变到处都是,但是短时间的近代观察是不能察觉的,并且,这个观点声称,它们通常被掩盖于不完美的化石记录的不可计数的缺口中。
新进化论英语

新进化论英语Evolutionary TheoryThe concept of evolution has captivated the scientific community and the general public for centuries. From the groundbreaking work of Charles Darwin to the modern advancements in genetic research, the theory of evolution has undergone a remarkable transformation, shedding light on the intricate processes that govern the natural world. This paper delves into the foundations of evolutionary theory, its key principles, and the evidence that supports its validity, ultimately highlighting its significance in our understanding of the world around us.At the core of evolutionary theory lies the principle of natural selection proposed by Charles Darwin. This mechanism suggests that individuals within a species possess variations in their traits, and those with the most advantageous characteristics are more likely to survive and reproduce, passing on their advantageous traits to their offspring. Over successive generations, this process leads to the gradual adaptation and transformation of species, enabling them to better suit their respective environments.One of the primary lines of evidence supporting the theory of evolution is the fossil record. The discovery of a vast array of fossilized remains, ranging from simple single-celled organisms to complex multicellular life forms, has provided a tangible timeline of the Earth's biological history. The systematic arrangement of these fossils, with the oldest and most primitive forms at the bottom and the more advanced species towards the top, corroborates the notion of gradual change over time. Furthermore, the presence of transitional fossils, such as the famous Tiktaalik, a fish-like creature with limb-like appendages, demonstrates the gradual evolution of organisms and the interconnectedness of various species.Another compelling evidence for evolutionary theory comes from the field of comparative anatomy. Researchers have observed striking similarities in the anatomical structures of diverse organisms, ranging from the pentadactyl (five-fingered) limb structure shared by mammals, birds, and reptiles to the vestigial structures, such as the remnants of pelvic bones in whales, which point to their ancestral land-dwelling origins. These shared characteristics, often referred to as homologous structures, provide strong evidence for the common evolutionary origin of these species.The advent of modern molecular biology has further bolstered the theory of evolution. The discovery of DNA and the understanding of genetic inheritance have shed light on the mechanisms ofevolutionary change at the most fundamental level. Comparative analysis of the genetic sequences of different species has revealed striking similarities, indicating their shared evolutionary lineage. Moreover, the phenomenon of genetic mutations, which can introduce beneficial or deleterious changes, has been observed to drive the process of natural selection and adaptation.In addition to the fossil record, comparative anatomy, and molecular biology, the theory of evolution is supported by numerous other lines of evidence, including biogeography, developmental biology, and the observed instances of evolution in action, such as the development of antibiotic resistance in bacteria.Despite the overwhelming scientific consensus on the validity of evolutionary theory, it has not been without its critics. Some individuals, motivated by religious or ideological beliefs, have challenged the theory, proposing alternative explanations for the origin and diversity of life. However, the scientific community has consistently reaffirmed the robustness of evolutionary theory, and the vast majority of the evidence continues to support its fundamental principles.In conclusion, the theory of evolution has emerged as one of the most comprehensive and well-supported scientific theories in the modern era. From the groundbreaking work of Charles Darwin to thelatest advancements in molecular biology, the evidence for evolution has continued to accumulate, providing a deep understanding of the mechanisms that govern the natural world. As our scientific knowledge continues to expand, the theory of evolution remains a crucial framework for understanding the origins, adaptations, and diversification of life on Earth.。
William_jennings_bryan全文

The second time(1900) :approved anti-imperialism(反帝国主义) McKinley won the electoral college with a count of 292 votes compared to Bryan's 155.
The third time (1913):He lost the electoral college 321 to 162, his worst defeat yet.
Fundamentalism :a religious movement of conservative Protestants in the U.S.A. in the early 1920s;
Its purpose : to maintain the traditional Christian view of the Bible and to assert the literal interpretation of the Biblical narrative
Three times of Presidential election
In1896,at the age of 36, Bryan became (and still remains) the youngest presidential nominee of a major party in American history.
politician—democrat, the 41st United States Secretary of State
one of the best known orators
a Presbyterian(长老教会员)t(禁酒主义者)
三维转换翻译理论英语作文

三维转换翻译理论英语作文Three-dimensional transformation translation theory is a fascinating concept that explores the intricacies of language and communication. It delves into the various ways in which meaning can be conveyed and interpreted, highlighting the dynamic nature of language.In this theory, words are not merely static symbols, but rather dynamic entities that can be transformed and adapted to suit different contexts. Each word carries with it a multitude of meanings and connotations, depending on the situation in which it is used. This flexibility allows for a more nuanced and accurate portrayal of ideas and emotions.Furthermore, three-dimensional transformation translation theory emphasizes the importance of cultural and social factors in language interpretation. It recognizes that language is not a standalone entity, but rather a reflection of the society and culture in which itis used. As a result, translation is not a straightforward process of substituting words, but rather a complex interplay of cultural understanding and linguistic adaptation.One interesting aspect of this theory is the concept of "equivalence." It suggests that there is no one-to-one correspondence between words in different languages, as each language has its own unique structure and nuances. Instead, translation should focus on capturing the essence and intent of the original text, rather than adhering strictly to literal meanings.Moreover, three-dimensional transformation translation theory acknowledges the role of the translator as an active participant in the communication process. Translators are not mere conduits, but rather creative individuals who must navigate the complexities of language and culture to convey meaning effectively. They must possess a deep understanding of both the source and target languages, as well as the cultural contexts in which they operate.In conclusion, three-dimensional transformation translation theory offers a fresh perspective on the intricacies of language and communication. It highlights the dynamic nature of words, the influence of culture, and the active role of translators. By embracing this theory, we can gain a deeper understanding of language and enhance our ability to bridge the gaps between different cultures and societies.。
新视野大学英语第三版读写教程三课后习题十五选十及翻译答案

Unit 1Where there is a will, there is a way. This proverb means that if you are really determined to do something, however difficult it might be, you will 1)F.eventually find a way to do it well. The2) G.premier point is that you must have the will to achieve success. Ninety percent of the failures that occur are due to the fact that there is no strong will involved. Many people simply say that they want something, but they do not make any 3) H.endeavor to achieve it. So, instead of getting it, they use the poorest excuse to explain the situation away.On many occasions, people tend to 4) J.bypass every minute obstacle, making the objective impossible to attain. In reality, if they have the will to succeed, they can get rid of the 5) E.handicaps and achieve their goals.Only those with a(n) 6)N. committed and focused will and spirit can fight their way to final victory. Many a famous man has the same experience. They have 7)A.attained their prestige because they have had the will to 8)I.transcend apparently insuperable (无法克服的) obstacles. Many artists, statesmen, writers and inventors have manged to succeed because they possess a fierce will, which has helped them to accomplish major 9)K. feats.Therefore, we can see that the main thing which one needs is a strong will. Weak-willed people never climb to the top. They collapse at the 10) M.slightest use of force against them. Strong-willed people, on the other hand will stand up against all odds and will make it a point to succeed.如今,很多年轻人不再选择"稳定"的工作,他们更愿意自主创业,依靠自己的智慧和奋斗去实现自我价值。
模具英语

GLOSSARYAabrasive grinding 强力磨削 L3 abrasive[E'breisiv] a.磨料的, 研磨的 L2,3 absence ['AbsEns] n.. 不在,缺席 L17 accesssory[Ak'sesEri] n.附件 L10 accommodate[E'kCmEdeit] v. 适应 L5 accordingly[E'kC:diNli] adv.因此,从而,相应地 L7,13 accuracy['AkjurEsi] n精度,准确性 L1,3 actuate['Aktjueit] vt.开动(机器), 驱动 L8 adequate['Adikwit] a. 足够的 L13 adhesive[Ed'hi:siv] n. 粘合剂 L22 adjacent[E'dVeisnt] a. 邻近的 L13 adopt[E'dCpt] vt. 采用 L4 advance [Ed'vA:ns] n.进步 L7 advisable [Ed'vaizbl] adj. 可取的 L20 agitate['AdViteit] v. 摇动 L2 a large extent 很大程度 L4,13 algorithm ['Al^EriTEm] n. 算法 L6 align [E'lain] v 定位,调准 L17 alignment[E'lainmEnt] n. 校直 L11 all-too-frequent 频繁 L17 allowance[E'lEuens] n. 容差, 余量 L5 alternate['C:ltEnit]v.交替,轮流 L1 alternative[C:l'tE:nEtiv] n. 替换物 L3 alternatively[C:l'tE:nEtivli] ad. 做为选择, 也许 L5 aluminiun[7Alju'minjEm] n.铝 L2 ample['Ampl] adj. 充足的 L20 analysis [E'nAlEsis] n. 分析 L6 ancillary['AnsilEri] a.补助的, 副的 L4 angular ['A^julE] adj. 有角的 L20 annealing[E'li:liN] n.退火 L2 aperture ['ApEtFE] n.孔 L17 applied loads 作用力 L1 appropriate [E'prEuprieit] a. 适当的 L6,20 arc[a:k] n.弧, 弓形 L10 arise[E'raiz] vi. 出现, 发生 L21 arrange[E'reidV] v. 安排 L12 article['a:tikl] n.制品, 产品 L21 ascertain[7AsE'tein] vt. 确定, 查明 L1 assemble[E'sembl] vt.组装 L4 attitude ['Atitju:d] n 态度 L17 auxiliary [C:^'ziljEri]adj. 辅助的 L8 avoid[E'vCid] v.避免 L7 axis['Aksis] n.轴 L5axle['Aksl] n.轮轴, 车轴 L1Bbackup['bAk7Qp] n. 备份 L9 batch [bAtF] n 一批 L17 bearing['bZEriN] n.轴承,支座 L21 bed[bed] n. 床身 L5 behavior[bi'heivjE] n. 性能 L1 bench-work 钳工工作 L4 bend[bend] v.弯曲 L1 beneath[bi'ni:W] prep在···下 L4bin [bin] n. 仓,料架 L19 blank [blANk] n. 坯料 L20 blank [blANk] v. 冲裁,落料 L17 blanking tool 落料模 L17 blast [blQst] n.一阵(风) L18 blemish['blemiF] n. 缺点, 污点 L13 bolster['bEulstE] n. 模座,垫板 L4,5boost[bu:st] n. 推进 L9 boring['bC:riN] n.镗削, 镗孔 L4,5 bracket ['brAkit] n. 支架 L19 brass [brAs] n.黄铜 L2 break down 破坏 L1 breakage ['breikidV] n.破坏 L17 bridge piece L16 brine[brain] n. 盐水 L2 brittle['britl] adv.易碎的 L1 buffer [bQfE] n.缓冲器 L8 built-in 内装的 L9 bulging [bQldViN] n. 凸肚 L22 burr [bE:] n. 毛刺 L17 bush [buF] n. 衬套 L17 bush[buF]n. 衬套 L5by far (修饰比较级, 最高级)···得多, 最 L3 by means of 借助于 L5Ccabinet ['kAbinit] n.橱柜 L7 call upon 要求 L17 carbide['ka:baid] n.碳化物 L10 carburzing['ka:bjuretiN] n. 渗碳 L2 carriage['kAridV] n.拖板, 大拖板 L5 carry along 一起带走 L18 carry down over 从···上取下 L21carry out 完成 L17 case hardening 表面硬化 L2 case[keis] n. 壳, 套 L2 cast steel 铸钢 L17 casting['ka:stiN] n. 铸造,铸件 L3 category['kAtE^Euri] n. 种类 L6,15 caution ['kC:FEn] n. 警告,警示 L17 cavity and core plates 凹模和凸模板 L11 cavity['kAviti] n.型腔, 腔, 洞 L4,10 centre-drilling 中心孔 L5 ceramic[si'rAmik] n.陶瓷制品 L3 chain doted line 点划线 L11 channel['tFAnl] n.通道, 信道 L8 characteristic[kArEktE'ristik] n.特性 L1 check[tFek] v.核算 L21 chip[tFip] n.切屑, 铁屑 L3chuck [tFQk] n.卡盘 L5,8 chute [Fu:t] n. 斜道 L19 circa ['sEkE:] adv. 大约 L7 circlip['sE:klip] n.(开口)簧环 L22 circuit['sE:kit] n. 回路, 环路 L13 circular supoport block L5 circulate['sE:kjuleid] v.(使)循环 L13 clamp [klAmp] vt 夹紧 L17 clamp[klAmp] n.压板 L12clay[klei] n. 泥土 L2,7 clearance ['kliErEns] n. 间隙 L17 clip [klip] vt. 切断,夹住 L19 cold hobbing 冷挤压 L4cold slug well 冷料井 L12 collapse[kE'lAps] vi.崩塌, 瓦解 L22 collapsible[kE'lApsEbl] adj.可分解的 L22 combination [kCmbi'neiFEn] n. 组合 L18 commence[kE'mens] v. 开始, 着手 L16 commence[kE'mens]v. 开始 L21 commercial [kE'mE:FEl] adj. 商业的 L7 competitive[kEm'petitiv] a. 竞争的 L9 complementary[7kCmpli'mentEri] a. 互补的 L5 complexity [kem'pleksiti] n.复杂性 L8 complicated['kCmplEkeitid] adj.复杂的 L2 complication [kCmpli'keiFEn] n. 复杂化 L5,20 compression [kEm'preFEn] n.压缩 L1 comprise[kEm'prais] vt.包含 L16 compromise['kCmprEmaiz] n. 妥协, 折衷 L13 concern with 关于 L6 concise[kEn'sais] a. 简明的, 简练的 L9 confront[kEn'frQnt] vt. 使面临 L14 connector[kE'nektE] n. 连接口, 接头 L14 consequent['kCnsikwEnt] a. 随之发生的, 必然的 L3console ['kCnsoul] n.控制台 L8 consume [kEn'sjum] vt. 消耗, 占用 L7 consummate [kEn'sQmeit] vt. 使完善 L6 container[kEn'teinE] n. 容器 L11 contingent[ken'tindVEnt] a.可能发生的 L9 contour['kEntuE] n.轮廓 L5,21 conventional[kEn'venFEnl] a. 常规的 L4 converge[kEn'vE:dV] v.集中于一点 L21 conversant[kCn'vE:sEnt] a. 熟悉的 L15 conversion[kEn'vE:FEn] n 换算, 转换 L7 conveyer[ken'veiE] n. 运送装置 L12 coolant['ku:lEnt] n. 冷却液 L13 coordinate [kEu'C:dnit] vt. (使)协调 L8 copy machine 仿形(加工)机床 L4core[kC:] n. 型芯, 核心 L2,4 corresponding [ka:ri'spCdiN] n.相应的 L7 counteract [kauntE'rAkt] vt. 反作用,抵抗 L20 couple with 伴随 L20CPU (central processing unit) 中央处理器 L9crack[krAk ] v.(使)破裂,裂纹 L1,17 critical['kritikl] adj.临界的 L2 cross-hatching 剖面线 L16cross-section drawn 剖面图 L11cross-slide 横向滑板 L5CRT (cathoder-ray tube) 阴极射线管 L9crush[krQF]vt.压碎 L1 cryogenic[7kraiE'dVenik ]a.低温学的 L1 crystal['kristl] adj.结晶状的 L1 cubic['kju:bik] a. 立方的, 立方体的 L3cup [kQp] vt (使)成杯状, 引伸 L18 curable ['kjurEbl] adj. 可矫正的 L20 curvature['kE:vEtFE] n.弧线 L21 curve [kE:v] vt. 使弯曲 L20 cutter bit 刀头, 刀片 L3 cyanide['saiEnaid] n.氰化物 L2Ddash [dAF] n. 破折号 L6 daylight ['deilait] n. 板距 L12 decline[di'klain] v.下落,下降,减少, L3,9 deform[di'fC:m] v. (使)变形 L1,3 demonstrate['demEstreit ] v证明 L21 depict[di'pikt ] vt 描述 L18 deposite [di'pCzit] vt. 放置 L20 depression[di'preFEn] n. 凹穴 L12 descend [di'sent] v. 下降 L20 desirable[di'zairEbl] a. 合适的 L2 detail ['diteil] n.细节,详情 L17 deterioration[ditiEri:E'reiFEn] n. 退化, 恶化 L12 determine[di'tE:min] v.决定 L16 diagrammmatic[7daiEgrE'mAtik].a.图解的,图表的 L10dictate['dikteit] v. 支配 L12die[dai] n.模具, 冲模, 凹模 L2 dielectric[daii'lektrik] n. 电介质 L10 die-set 模架 L19digital ['didVitl ] n.数字式数字, a.数字的 L3,6 dimensional[dddi'menFEnl] a. 尺寸的, 空间的 L3 discharge[dis'tFa:dV] n.v. 放电, 卸下, 排出 L3 discharge[dis'tFa:dV] v.卸下 L8 discrete [dis'cri:t] adj. 离散的,分立的 L7 dislodge[dis'lCdV] v. 拉出, 取出 L12 dissolution[disE'lu:FEn] n.结束 L9 distinct [dis'tiNkt] a.不同的,显著的 L6distort [dis'dC:t] vt. 扭曲 L20 distort[dis'tC:t] vt. (使)变形, 扭曲 L1 distributed system 分布式系统 L9 dowel ['dauEl] n. 销子 L19 dramaticlly [drE'mAtikli] adv. 显著地 L7 drastic ['drAstik] a.激烈的 L17 draughting[dra:ftiN] n. 绘图 L16 draughtsman['drAftsmEn] n. 起草人 L16 drawing['drC:iN] n. 制图 L11 drill press 钻床 L8drum [drQm] n.鼓轮 L8 dual ['dju:El] adv. 双的,双重的 L18 ductility [dQk'tiliti ] n.延展性 L1,21 dynamic [dai'nAmik ] adj 动力的 L6Eedge [edV] n .边缘 L20e.g.(exempli gratia) [拉] 例如 L12 ejector [i'dVektE] n.排出器, L18 ejector plate 顶出板 L16 ejector rob 顶杆 L5 elasticity[ilA'stisiti] n.弹性 L1 electric dicharge machining 电火花加工L3 electrical discharge machining电火花加工 L10 electrochemical machining 电化学加工L3 electrode[i'lektrEud] n. 电极 L10 electro-deposition 电铸 L4 elementary [elE'mentEri] adj.基本的 L2 eliminate[i'limineit] vt. 消除, 除去 L10 elongate[i'lCN^et] vt. (使)伸长, 延长 L1 emerge [i'mE:dV] vi. 形成, 显现 L20 emphasise['emfEsaiz] vt. 强调 L4 endeavour[en'devE] n. 尽力 L17 engagement[in'^eidVment] n. 约束, 接合 L22 enhance[in'hAns] vt. 提高, 增强 L9 ensure [in'FuE] vt. 确保,保证 L17 envisage[in'vizidV] vt.设想 L15 erase[i'reis] vt. 抹去, 擦掉 L16 evaluation[i'vAlju7eiFEn] n. 评价, 估价L1 eventually[i'vEntFuEli ] adv.终于 L21 evolution[evE'lu:FEn] n.进展 L16 excecution[eksi'kju:FEn] n. 执行, 完成 L9 execute ['ekskju:t] v. 执行 L8 exerte [i^'zE:t] vt. 施加 L20 experience[iks'piriEns] n. 经验 L16 explosive[iks'plEusiv]adj.爆炸(性)的 L22 extend[eks'tend] v. 伸展 L2 external[eks'tE:nl] a. 外部的 L5,11 extract[eks'trAkt] v. 拔出 L14 extreme[iks'tri:m] n. 极端 L13 extremely[iks'tri:mli] adv. 非常地 L12 extremity[iks'tmiti] n. 极端 L13 extrusion[eks'tru:VEn] n. 挤压, 挤出 L3 FF (Fahrenheit)['fArEnhait]n.华氏温度 L2 fabricate ['fAbrikeit] vt.制作,制造 L7 facilitate [fE'siliteit] vt. 帮助 L6 facility[fE'siliti] n. 设备 L4 facing[feisiN] n. 端面车削 L5 fall within 属于, 适合于 L15 fan[fAn] n.风扇 L7 far from 毫不, 一点不, 远非 L9 fatigue[fE'ti^] n.疲劳 L1 feasible ['fi:zEbl] a 可行的 L18 feature ['fi:tFE] n.特色, 特征 L7,17 feed[fi:d] n.. 进给 L5 feedback ['fi:dbAk] n. 反馈 L8 female['fi:meil] a. 阴的, 凹形的 L11 ferrule['ferEl] n. 套管 L14file system 文件系统 L9fitter['fitE] n.装配工, 钳工 L4 fix[fiks] vt. 使固定, 安装, vi. 固定 L11 fixed half and moving half 定模和动模 L11flat-panel technology 平面(显示)技术 L9 flexibility[fleksi'biliti] n. 适应性, 柔性 L9 flexible['fleksEbl] a. 柔韧的 L13 flow mark 流动斑点 L13 follow-on tool 连续模 L18 foregoing ['fC:'^EuiN]adj. 在前的,前面的L8 foretell[fC:'tell] vt. 预测, 预示, 预言 L9 forge[fC:dV] n. v. 锻造 L3 forming[fC:miN] n. 成型 L3 four screen quadrants 四屏幕象限 L9 fracture['frAktFE] n.破裂 L21 free from 免于 L21Ggap[^Ap] n. 裂口, 间隙 L10 gearbox['^iEbCks] n.齿轮箱 L5 general arrangement L16 govern['^QvEn] v.统治, 支配, 管理 L13 grain [^rein] n. 纹理 L20 graphic ['^rAfik] adj. 图解的 L6 grasp [^rAsp] vt. 抓住 L8grid[^rid] n. 格子, 网格 L16 grind[^raind] v. 磨, 磨削, 研磨 L3 grinding ['^raindiN] n. 磨光,磨削 L3,20 grinding machine 磨床 L5 gripper[^ripE] n. 抓爪, 夹具 L9 groove[^ru:v] n. 凹槽 L12 guide bush 导套 L5 guide pillar 导柱 L5guide pillars and bushes 导柱和导套 L11 Hhandset['hAndset] n. 电话听筒 L4 hardness['ha:dnis] n.硬度 L1,2 hardware ['ha:dwZE] n. 硬件 L6 headstock['hedstCk] n.床头箱, 主轴箱 L5 hexagonal[hek'sA^Enl] a. 六角形的, 六角的 L11 hindrance['hindrEns] n.障碍, 障碍物 L11hob[hCb] n. 滚刀, 冲头 L4 hollow-ware 空心件 L21 horizontal[hCri'zCntl] a. 水平的 L16 hose[hEuz] n. 软管, 水管 L13 hyperbolic [haipE'bClik] adj.双曲线的 L7 Ii.e. (id est) [拉] 也就是 L12 identical[ai'dentikl] a同样的 L16 identify [ai'dentifai] v. 确定, 识别 L7idle ['aidl] adj.空闲的 L8 immediately[i'mi:djEtli] adv. 正好, 恰好 L12 impact['impAkt] n.冲击 L1 impart [im'pa:t] v.给予 L11,17 implement ['implimEnt] vt 实现 L6 impossibility[impCsE'biliti] n.不可能 L21 impression[im'preFEn] n. 型腔 L11 in contact with 接触 L1in terms of 依据 L1 inasmuch (as)[inEz'mQtF] conj.因为, 由于L3inch-to-metric conversions 英公制转换 L7 inclinable [in'klainEbl] adj. 可倾斜的 L20 inclusion [in'kluFEn] n. 内含物 L19 inconspicuous[inkEn'spikjuEs] a. 不显眼的 L14 incorporate [in'kC:pEreit] v 合并,混合L17 indentation[7inden'teiFEn ] n.压痕 L1 indenter[in'dentE] n. 压头 L1 independently[indi'peinEntli] a. 独自地, 独立地 L16 inevitably[in'evitEbli] ad. 不可避免地 L14 inexpensive[inik'spensiv]adj. 便宜的 L2 inherently [in'hiErEntli] adv.固有的 L7 injection mould 注塑模 L11 injection[in'dVekFEn] n. 注射 L11in-line-of-draw 直接脱模 L14 insert[in'sE:t] n. 嵌件 L16 inserted die 嵌入式凹模 L19 inspection[in'spekFEn] n.检查,监督 L9 installation[instE'leiFEn] n. 安装 L10 integration [inti'^reiFEn] n.集成 L6 intelligent[in'telidVEnt]a. 智能的 L9 intentinonally [in'tenFEnEli] adv 加强地,集中地 L17 interface ['intEfeis] n.. 界面 L6 internal[in'tE:nl] a. 内部的 L1,5 interpolation [intEpE'leiFEn] n.插值法 L7 investment casting 熔模铸造 L4 irregular [i'regjulE] adj. 不规则的,无规律 L17 irrespective of 不论, 不管 L11 irrespective[iri'spektiv] a. 不顾的, 不考虑的 L11 issue ['isju] vt. 发布,发出 L6Jjoint line 结合线 L14Kkerosene['kerEsi:n] n.煤油 L10 keyboard ['ki:bC:d ] n. 健盘 L6 knock [nRk] v 敲,敲打 L17Llance [la:ns] v. 切缝 L19 lathe[leiT] n. 车床 L4 latitude ['lAtitju:d] n. 自由 L17 lay out 布置 L13 limitation[limi'teiFEn] n.限度,限制,局限(性) L3 local intelligence局部智能 L9 locate [lEu'keit] vt. 定位 L18 logic ['lCdVik] n. 逻辑 L7 longitudinal['lCndVE'tju:dinl] a. 纵向的 L5 longitudinally['lCndVE'tju:dinl] a. 纵向的 L13look upon 视作, 看待 L17 lubrication[lju:bri'keiFEn ] n.润滑 L21Mmachine shop 车间 L2 machine table 工作台 L8 machining[mE'Fi:niN] n. 加工 L3 made-to-measure 定做 L15 maintenance['meintinEns] n.维护,维修 L7 majority[mE'dVa:riti] n.多数 L21 make use of 利用 L2 male[meil] a. 阳的, 凸形的 L11 malfunction['mAl'fQNFEn] n. 故障 L9 mandrel['mAdtil] n.心轴 L22 manifestation[mAnifEs'teiFEn] n. 表现, 显示 L9 massiveness ['mAsivnis ] 厚实,大块 L19 measure['meVE] n. 大小, 度量 L1 microcomputer 微型计算机 L9 microns['maikrCn] n.微米 L10 microprocessor 微处理器 L9 mild steel 低碳钢 L17 milling machine 铣床 L4mineral['minErEl] n.矿物, 矿产 L2 minimise['minimaiz] v.把···减到最少, 最小化 L13minute['minit] a.微小的 L10mirror image 镜像 L16 mirror['mirE] n. 镜子 L16MIT (Massachusetts Institute of Technology) 麻省理工学院 L7moderate['mCdErit]adj. 适度的 L1,2 modification [mRdifi'keiFEn ] n. 修改, 修正 L6 modulus['mCdjulEs] n.系数 L1 mold[mEuld] n. 模, 铸模, v. 制模, 造型 L3monitor ['mCnitE ] v. 监控 L6 monograph['mCnE^ra:f] n. 专著 L4 more often than not 常常 L20 motivation[mEuti'veiFEn] n. 动机 L9mould split line 模具分型线 L12 moulding['mEudiN] n. 注塑件 L5,11move away from 抛弃 L17multi-imprssion mould 多型腔模 L12Nnarrow['nArEu] a. 狭窄的 L12NC (numerical control ) 数控 L7 nevertheless[7nevETE'les] conj.,adv.然而,不过 L11 nonferrous['nCn'ferEs] adj.不含铁的, 非铁的 L2 normally['nC:mli]adv.通常地 L22 novice['nCvis] n. 新手, 初学者 L16 nozzle['nCzl] n. 喷嘴, 注口 L12 numerical [nju'merikl] n. 数字的 L6Oobjectionable [Eb'dVekFEbl] adj. 有异议的,讨厌的 L17observe[Eb'zE:v] vt. 观察 L2 obviously ['CbviEsli] adv 明显地 L17off-line 脱机的 L6on-line 联机 L9 operational [CpE'reiFEnl] adj.操作的, 运作的 L8 opportunity[CpE'tju:niti] n. 时机, 机会 L13 opposing[E'pEuziN] a.对立的, 对面的L12 opposite['CpEzit] n. 反面 L1 a.对立的,对面的 L12optimization [Rptimai'zeiFEn] n.最优化 L6 orient ['C:riEnt] vt. 确定方向 L8 orthodox ['C:WEdCks] adj. 正统的,正规的 L19overall['EuvErC:l] a.全面的,全部的 L8,13 overbend v.过度弯曲 L20 overcome[EuvE'kQm] vt.克服, 战胜 L10 overlaping['EuvE'lApiN] n. 重叠 L4 overriding[EuvE'raidiN] a. 主要的, 占优势的 L11Ppack[pAk] v. 包装 L2 package ['pAkidV] vt.包装 L7 pallet ['pAlit] n.货盘 L8 panel ['pAnl] n.面板 L7 paraffin['pArEfin] n. 石蜡 L10 parallel[pArElel] a.平行的 L5 penetration[peni'treiFEn ] n.穿透 L1 peripheral [pE'rifErEl] adj 外围的 L6 periphery [pE'rifEri] n. 外围 L18 permit[pE'mit] v. 许可, 允许 L16 pessure casting 压力铸造 L4 pillar['pilE] n. 柱子, 导柱 L5,17 pin[pin] n. 销, 栓, 钉 L5,17pin-point gate 针点式浇口 L12 piston ['pistEn] n.活塞 L1plan view 主视图 L16 plasma['plAzmE] n. 等离子 L9 plastic['plAstik] n. 塑料 L3 platen['plAtEn] n. 压板 L12 plotter[plCtE] n. 绘图机 L9 plunge [plQndV] v翻孔 L18 plunge[plQndV] v.投入 L2 plunger ['plQndVE ] n. 柱塞 L19 pocket-size 袖珍 L9 portray[pC:'trei] v.描绘 L21 pot[pCt] n.壶 L21 pour[pC:] vt. 灌, 注 L22 practicable['prAktikEb] a. 行得通的 L14 preferable['prefErEbl] a.更好的, 更可取的 L3 preliminary [pri'liminEri] adj 初步的,预备的 L19 press setter 装模工 L17 press[pres] n.压,压床,冲床,压力机 L2,8 prevent [pri'vent] v. 妨碍 L20 primarily['praimErili] adv.主要地 L4 procedure[prE'si:dVE] n.步骤, 方法, 程序 L2,16 productivity.[prEudQk'tiviti] n. 生产力 L9 profile ['prEufail] n.轮廓 L10 progressively[prE'^resiv] ad.渐进地 L15 project[prE'dVekt] n.项目 L2 project[prE'dVekt] v. 凸出 L11 projection[prE'dVekFEn] n.突出部分 L21 proper['prCpE] a. 本身的 L10 property['prCpEti] n.特性 L1 prototype ['prEutEtaip] n. 原形 L7proximity[prCk'simiti] n.接近 L9 prudent['pru:dEnt] a. 谨慎的 L16 punch [pQntF] v. 冲孔 L3 punch shapper tool 刨模机 L17 punch-cum-blanking die 凹凸模 L18 punched tape 穿孔带 L3 purchase ['pE:tFEs] vt. 买,购买 L6 push back pin 回程杆 L5 pyrometer[pai'nCmitE] n. 高温计 L2Qquality['kwaliti] n. 质量 L1,3 quandrant['kwCdrEnt] n. 象限 L9 quantity ['kwCntiti] n. 量,数量 L17 quench[kwentF] vt. 淬火 L2Rradial['reidiEl] adv.放射状的 L22 ram [rAm] n 撞锤. L17 rapid['rApid]adj. 迅速的 L2 rapidly['rApidli]adv. 迅速地 L1 raster['rAstE] n. 光栅 L9raw [rC:] adj. 未加工的 L6 raw material 原材料 L3ream [ri:m] v 铰大 L17 reaming[ri:miN] n. 扩孔, 铰孔 L8 recall[ri'kC:l] vt. 记起, 想起 L13 recede [ri'si:d] v. 收回, 后退 L20 recess [ri'ses] n. 凹槽,凹座,凹进处 L4,18 redundancy[ri'dQndEnsi] n. 过多 L9 re-entrant 凹入的 L12 refer[ri'fE:] v. 指, 涉及, 谈及 L1,12 reference['refErEns] n.参照,参考 L21 refresh display 刷新显示 L9 register ring 定位环 L11 register['redVstE] v. 记录, 显示, 记数 L2 regrind[ri:'^aind](reground[ri:'gru:nd]) vt. 再磨研 L12relative['relEtiv] a. 相当的, 比较的 L12 relay ['ri:lei] n. 继电器 L7 release[ri'li:s] vt. 释放 L1 relegate['relE7geit] vt. 把··降低到 L9 reliability [rilaiE'biliti] n. 可靠性 L7 relief valves 安全阀 L22 relief[ri'li:f] n.解除 L22 relieve[ri'li:v ]vt.减轻, 解除 L2 remainder[ri'meindE] n. 剩余物, 其余部分 L4 removal[ri'mu:vl] n. 取出 L14 remove[ri'mu:v] v. 切除, 切削 L4 reposition [ripE'ziFEn] n.重新安排 L17 represent[7repri'zentE] v 代表,象征 L11 reputable['repjutEbl] a. 有名的, 受尊敬的 L15 reservoir['rezEvwa: ] n.容器, 储存器 L22 resident['rezidEnt] a. 驻存的 L9 resist[ri'zist] vt.抵抗 L1 resistance[ri'zistEns] n.阻力, 抵抗 L1 resolution[7rezE'lu:FEn] n. 分辨率 L9 respective[ri'spektiv] a.分别的,各自的 L11 respond[ris'pCnd] v.响应, 作出反应 L9 responsibility[rispCnsE'biliti] n.责任 L13 restrain[ris'trein]v.抑制 L21 restrict [ris'trikt] vt 限制,限定 L18 restriction[ris'trikFEn] n. 限制 L12 retain[ri'tein] vt.保持, 保留 L2,12 retaining plate 顶出固定板 L16 reveal [ri'vil] vt.显示,展现 L17 reversal [ri'vEsl] n. 反向 L1,20 right-angled 成直角的 L20 rigidity[ri'dViditi] n. 刚度 L1 rod[rCd] n. 杆, 棒 L1,5 rotate['rEuteit] vt.(使)旋转 L5 rough machining 粗加工 L5 rough[rQf] a. 粗略的 L5,21 routine [ru:'ti:n] n. 程序 L7 rubber['rQbE] n.橡胶 L3,22 runner and gate systems 流道和浇口系统 L11Ssand casting 砂型铸造 L3 satisfactorily[7sAtis'fAktrili] adv. 满意地 L1saw[aC:] n. 锯子 L4 scale[skeil]n. 硬壳 L2 score[skC:] v. 刻划 L14 scrap[skrAp] n.废料, 边角料, 切屑 L2,3 screwcutting 切螺纹 L4 seal[si:l] vt.密封 L22 secondary storage L9 section cutting plane 剖切面 L16 secure[si'kjuE] v.固定 L22 secure[si'kjuE] vt.紧固,夹紧,固定 L5,22 segment['se^mEnt] v. 分割 L10 sensitive['sensitiv]a.敏感的 L1,7 sequence ['si:kwEns] n. 次序 L6 sequential[si'kwenFEl] a.相继的 L16 seriously['siEriEsli] adv.严重地 L1 servomechanism ['sE:vE'mekEnizm] n.伺服机构 L7 Servomechanism Laboratoies 伺服机构实验室 L7 servomotor ['sE:vEmEutE] n.伺服马达 L8 setter ['setE] n 安装者 L17set-up 机构 L20 sever ['sevE] v 切断 L17 severity [si'veriti] n. 严重 L20 shaded[FAdid] adj.阴影的 L21shank [FANk] n. 柄. L17 shear[FiE]n.剪,切 L1shot[FCt] n. 注射 L12 shrink[FriNk] vi. 收缩 L11 side sectional view 侧视图 L16 signal ['si^nl] n.信号 L8 similarity[simi'lAriti] n.类似 L15 simplicity[sim'plisiti] n. 简单 L12 single-point cutting tool 单刃刀具 L5 situate['sitjueit] vt. 使位于, 使处于 L11 slide [slaid] vi. 滑动, 滑落 L20 slideway['slaidwei] n. 导轨 L5 slot[slCt] n. 槽 L4 slug[slQ^] n. 嵌条 L12 soak[sEuk] v. 浸, 泡, 均热 L2 software ['sCftwZE] n. 软件 L6 solid['sClid] n.立体, 固体 L9 solidify[sE'lidifai] vt.vi. (使)凝固, (使)固化 L13 solution[sE'lu:FEn] n.溶液 L2 sophisiticated [sE'fistikeitid] adj.尖端的,完善的 L8 sound[saund] a. 结实的, 坚固的) L1 spark erosion 火花蚀刻 L10 spindle['spindl] n. 主轴 L5,8 spline[splain] n.花键 L4 split[split] n. 侧向分型, 分型 L12,14 spool[spu:l] n. 线轴 L14 springback n.反弹 L20 spring-loaded 装弹簧的 L18 sprue bush 主流道衬套 L11 sprue puller 浇道拉杆 L12 square[skwZE] v. 使成方形 L4 stage [steidV] n. 阶段 L16,19 standardisation[7stAndEdai'zeiFEn] n. 标准化 L15 startling['sta:tliN] a. 令人吃惊的 L10 steadily['stedEli ] adv. 稳定地 L21 step-by-step 逐步 L8 stickiness['stikinis] n.粘性 L22 stiffness['stifnis] n. 刚度 L1 stock[stCk] n.毛坯, 坯料 L3 storage tube display 储存管显示 L9 storage['stC:ridV] n. 储存器 L9 straightforward[streit'fC:wEd]a.直接的 L10 strain[strein] n.应变 L1 strength[streNW] n.强度 L1 stress[stres] n.压力,应力 L1 stress-strain应力--应变 L6 stretch[stretF] v.伸展 L1,21 strike [straik] vt. 冲击 L20 stringent['strindVEnt ] a.严厉的 L22 stripper[stripE] n. 推板 L15 stroke[strouk] n. 冲程, 行程 L12 structrural build-up 结构上形成的 L11sub-base 垫板 L19 subject['sQbdVikt] vt.使受到 L21 submerge[sEb'mE:dV] v.淹没 L22 subsequent ['sQbsikwent] adj. 后来的 L20 subsequently ['sQbsikwentli] adv. 后来, 随后 L5 substantial[sEb'stAnFEl] a. 实质的 L10 substitute ['sQbstitju:t] vt. 代替,.替换 L7 subtract[sEb'trAkt] v.减, 减去 L15 suitable['su:tEbl] a. 合适的, 适当的 L5suitably['su:tEbli] ad.合适地 L15sunk[sQNk](sink的过去分词) v. 下沉, 下陷 L11 superior[sE'piEriE] adj.上好的 L22 susceptible[sE'septEbl] adj.易受影响的 L7sweep away 扫过 L17 symmetrical[si'metrikl] a. 对称的 L14 synchronize ['siNkrEnaiz] v.同步,同时发生L8Ttactile['tAktail] a. 触觉的, 有触觉的 L9 tailstock['teilstCk] n.尾架 L5 tapered['teipEd] a. 锥形的 L12 tapping['tApiN] n. 攻丝 L8 technique[tek'ni:k] n. 技术 L16 tempering['tempErN] n.回火 L2 tendency['tendEnsi] n. 趋向, 倾向 L13 tensile['tensail] a.拉力的, 可拉伸的 L2 拉紧的, 张紧的 L1tension ['tenFEn] n.拉紧,张紧 L1 terminal ['tE:mEnl ] n. 终端机 L6 terminology[tE:mi'nClEdVi ] n. 术语, 用辞 L11 theoretically [Wi:E'retikli ] adv.理论地 L21 thereby['TZEbai] ad. 因此, 从而 L15 thermoplastic['WE:mEu'plAstik] a. 热塑性的, n. 热塑性塑料 L3thermoset['WE:mEset] n.热固性 L12 thoroughly['WQrEuli] adv.十分地, 彻底地 L2thread pitch 螺距 L5thread[Wred] n. 螺纹 L5 thrown up 推上 L17tilt [tilt] n. 倾斜, 翘起 L20 tolerance ['tClErEns] n..公差 L17tong[tCN] n. 火钳 L2tonnage['tQnidV] n.吨位, 总吨数 L3tool point 刀锋 L3tool room 工具车间 L10toolholder['tu:lhEuldE] n.刀夹,工具柄 L5 toolmaker ['tu:l'meikE] n 模具制造者 L17toolpost grinder 工具磨床 L4 toolpost['tu:l'pEust] n. 刀架 L4 torsional ['tC:FEnl] a扭转的 . L1 toughness['tCfnis] n. 韧性 L2 trace [treis] vt.追踪 L7 tracer-controlled milling machine 仿形铣床 L4 transverse[trAns'vE:s] a. 横向的 L5 tray [trei] n. 盘,盘子,蝶 L19 treatment['tri:tmEnt] n.处理 L2 tremendous[tri'mendEs] a. 惊人的, 巨大的 L9 trend [trend] n.趋势 L7 trigger stop 始用挡料销 L17 tungsten['tQNstEn] n.钨 L10 turning['tE:niN] n.车削 L4,5twist[twist ] v.扭曲,扭转 L1 two-plate mould 双板式注射模 L12Uultimately['Qltimitli] adv终于. L6 undercut moulding 侧向分型模 L14 undercut['QndEkQt] n. 侧向分型 L14 undercut['QndEkQt] n.底切 L12 underfeed['QndE'fi:d] a, 底部进料的 L15 undergo[QndE'^Eu] vt.经受 L1 underside['QndEsaid] n 下面,下侧 L11 undue[Qn'dju:] a.不适当的, 过度的 L4,10 uniform['ju:nifC:m] a.统一的, 一致的 L12 utilize ['ju:tilaiz] v 利用 L17 Utopian[ju'tEupiEn] adj.乌托邦的, 理想化的 L21Vvalve[vAlv] n.阀 L22 vaporize['veipEraiz] vt.vi. 汽化, (使)蒸发 L10 variation [vZEri'eiFEn] n. 变化 L20 various ['vZEriEs] a.不同的,各种的 L1,20 vector feedrate computation 向量进刀速率计算 L7vee [vi:] n. v字形 L20 velocity[vi'lCsiti] n.速度 L1 versatile['vEsEtail] a.多才多艺的,万用的 L5,8 vertical['vE:tikl] a. 垂直的 L16 via [vaiE] prep.经,通过 L8 vicinity[vE'siniti] n.附近 L13 viewpoint['vju:pCint] n. 观点 L4Wwander['wCndE] v. 偏离方向 L13 warp[wC:p] v. 翘曲 L2 washer ['wCFE] n. 垫圈 L18 wear [wZE] v.磨损 L7 well line 结合线 L13 whereupon [hwZErE'pCn] adv. 于是 L19 winding ['waindiN] n. 绕, 卷 L8 with respect to 相对于 L1,5 withstand[wiT'stAnd] vt.经受,经得起 L1 work[wE:k] n. 工件 L4 workstage 工序 L19 wrinkle['riNkl] n.皱纹vt.使皱 L21 Yyield[ji:ld] v. 生产 L9Zzoom[zu:] n. 图象电子放大 L9。
成型英语

Molding English GLOSSARYAabrasive grinding 强力磨削L3 abrasive[☜'breisiv] a.磨料的, 研磨的L2,3 absence ['✌bs☜ns] n.. 不在,缺席L17 accesssory[✌k'ses☜ri] n.附件L10 accommodate[☜'k m☜deit] v. 适应L5 accordingly[☜'k :di☠li] adv.因此,从而,相应地L7,13accuracy['✌kjur☜si] n精度,准确性L1,3 actuate['✌ktjueit] vt.开动(机器), 驱动L8 adequate['✌dikwit] a. 足够的L13 adhesive[☜d'hi:siv] n. 粘合剂L22 adjacent[☜'d✞eisnt] a. 邻近的L13 adopt[☜'d pt] vt. 采用L4 advance [☜d'v✌:ns] n.进步L7 advisable [☜d'vaizbl] adj. 可取的L20agitate['✌d✞iteit] v. 摇动L2a large extent 很大程度L4,13 algorithm ['✌l♈☜ri❆☜m] n. 算法L6 align [☜'lain] v 定位,调准L17 alignment[☜'lainm☜nt] n. 校直L11all-too-frequent 频繁L17 allowance[☜'l☜uens] n. 容差, 余量L5 alternate[' :lt☜nit]v.交替,轮流L1 alternative[ :l't☜:n☜tiv] n. 替换物L3 alternatively[ :l't☜:n☜tivli] ad. 做为选择, 也许L5 aluminiun[ ✌lju'minj☜m] n.铝L2 ample['✌mpl] adj. 充足的L20 analysis [☜'n✌l☜sis] n. 分析L6 ancillary['✌nsil☜ri] a.补助的, 副的L4 angular ['✌♈jul☜] adj. 有角的L20 annealing[☜'li:li☠] n.退火L2 aperture ['✌p☜t☞☜] n.孔L17 applied loads 作用力L1 appropriate [☜'pr☜uprieit] a. 适当的L6,20 arc[a:k] n.弧, 弓形L10arise[☜'raiz] vi. 出现, 发生L21 arrange[☜'reid✞] v. 安排L12 article['a:tikl] n.制品, 产品L21 ascertain[ ✌s☜'tein] vt. 确定, 查明L1 assemble[☜'sembl] vt.组装L4 attitude ['✌titju:d] n 态度L17 auxiliary [ :♈'zilj☜ri]adj. 辅助的L8 avoid[☜'v id] v.避免L7 axis['✌ksis] n.轴L5axle['✌ksl] n.轮轴, 车轴L1Bbackup['b✌k ✈p] n. 备份L9 batch [b✌t☞] n 一批L17 bearing['b☪☜ri☠] n.轴承,支座L21 bed[bed] n. 床身L5 behavior[bi'heivj☜] n. 性能L1bench-work 钳工工作L4 bend[bend] v.弯曲L1 beneath[bi'ni: ] prep在···下L4bin [bin] n. 仓,料架L19blank [bl✌☠k] n. 坯料L20blank [bl✌☠k] v. 冲裁,落料L17 blanking tool 落料模L17blast [bl✈st] n.一阵(风)L18 blemish['blemi☞] n. 缺点, 污点L13 bolster['b☜ulst☜] n. 模座,垫板L4,5 boost[bu:st] n. 推进L9 boring['b :ri☠] n.镗削, 镗孔L4,5 bracket ['br✌kit] n. 支架L19 brass [br✌s] n.黄铜L2 break down 破坏L1 breakage ['breikid✞] n.破坏L17 bridge piece L16brine[brain] n. 盐水L2 brittle['britl] adv.易碎的L1buffer [b✈f☜] n.缓冲器L8built-in 内装的L9 bulging [b✈ld✞i☠] n. 凸肚L22 burr [b☜:] n. 毛刺L17bush [bu☞] n. 衬套L17 bush[bu☞]n. 衬套L5121by far (修饰比较级, 最高级)···得多, 最L3by means of 借助于L5 Ccabinet ['k✌binit] n.橱柜L7 call upon 要求L17 carbide['ka:baid] n.碳化物L10 carburzing['ka:bjureti☠] n. 渗碳L2 carriage['k✌rid✞] n.拖板, 大拖板L5 carry along 一起带走L18 carry down over 从···上取下L21carry out 完成L17 case hardening 表面硬化L2 case[keis] n. 壳, 套L2 cast steel 铸钢L17 casting['ka:sti☠] n. 铸造,铸件L3 category['k✌t☜♈☜uri] n. 种类L6,15 caution ['k :☞☜n] n. 警告,警示L17 cavity and core plates 凹模和凸模板L11 cavity['k✌viti] n.型腔, 腔, 洞L4,10 centre-drilling 中心孔L5 ceramic[si'r✌mik] n.陶瓷制品L3 chain doted line 点划线L11 channel['t☞✌nl] n.通道, 信道L8 characteristic[k✌r☜kt☜'ristik] n.特性L1 check[t☞ek] v.核算L21 chip[t☞ip] n.切屑, 铁屑L3 chuck [t☞✈k] n.卡盘L5,8 chute [☞u:t] n. 斜道L19 circa ['s☜k☜:] adv. 大约L7 circlip['s☜:klip] n.(开口)簧环L22 circuit['s☜:kit] n. 回路, 环路L13 circular supoport block L5 circulate['s☜:kjuleid] v.(使)循环L13 clamp [kl✌mp] vt 夹紧L17 clamp[kl✌mp] n.压板L12 clay[klei] n. 泥土L2,7 clearance ['kli☜r☜ns] n. 间隙L17 clip [klip] vt. 切断,夹住L19 cold hobbing 冷挤压L4 cold slug well 冷料井L12 collapse[k☜'l✌ps] vi.崩塌, 瓦解L22 collapsible[k☜'l✌ps☜bl] adj.可分解的L22 combination [k mbi'nei☞☜n] n. 组合L18 commence[k☜'mens] v. 开始, 着手L16 commence[k☜'mens]v. 开始L21 commercial [k☜'m☜:☞☜l] adj. 商业的L7 competitive[k☜m'petitiv] a. 竞争的L9 complementary[ k mpli'ment☜ri] a. 互补的L5 complexity [kem'pleksiti] n.复杂性L8 complicated['k mpl☜keitid] adj.复杂的L2 complication [k mpli'kei☞☜n] n. 复杂化L5,20compression [k☜m'pre☞☜n] n.压缩L1 comprise[k☜m'prais] vt.包含L16 compromise['k mpr☜maiz] n. 妥协, 折衷L13concern with 关于L6 concise[k☜n'sais] a. 简明的, 简练的L9 confront[k☜n'fr✈nt] vt. 使面临L14 connector[k☜'nekt☜] n. 连接口, 接头L14 consequent['k nsikw☜nt] a. 随之发生的, 必然的L3console ['k nsoul] n.控制台L8 consume [k☜n'sjum] vt. 消耗, 占用L7 consummate [k☜n's✈meit] vt. 使完善L6 container[k☜n'tein☜] n. 容器L11 contingent[ken'tind✞☜nt] a.可能发生的L9 contour['k☜ntu☜] n.轮廓L5,21 conventional[k☜n'ven☞☜nl] a. 常规的L4 converge[k☜n'v☜:d✞] v.集中于一点L21 conversant[k n'v☜:s☜nt] a. 熟悉的L15 conversion[k☜n'v☜:☞☜n] n 换算, 转换L7 conveyer[ken'vei☜] n. 运送装置L12 coolant['ku:l☜nt] n. 冷却液L13 coordinate [k☜u' :dnit] vt. (使)协调L8 copy machine 仿形(加工)机床L4core[k :] n. 型芯, 核心L2,4 corresponding [ka:ri'sp di☠] n.相应的L7 counteract [kaunt☜'r✌kt] vt. 反作用,抵抗L20couple with 伴随L20CPU (central processing unit) 中央处理器L9crack[kr✌k ] v.(使)破裂,裂纹L1,17critical['kritikl] adj.临界的L2 cross-hatching 剖面线L16cross-section drawn 剖面图L11cross-slide 横向滑板L5CRT (cathoder-ray tube) 阴极射线管L9 crush[kr✈☞]vt.压碎L1 cryogenic[ krai☜'d✞enik ]a.低温学的L1 crystal['kristl] adj.结晶状的L1 cubic['kju:bik] a. 立方的, 立方体的L3cup [k✈p] vt (使)成杯状, 引伸L18 curable ['kjur☜bl] adj. 可矫正的L20 curvature['k☜:v☜t☞☜] n.弧线L21 curve [k☜:v] vt. 使弯曲L20 cutter bit 刀头, 刀片L3 cyanide['sai☜naid] n.氰化物L2Ddash [d✌☞] n. 破折号L6 daylight ['deilait] n. 板距L12 decline[di'klain] v.下落,下降,减少, L3,9 deform[di'f :m] v. (使)变形L1,3 demonstrate['dem☜streit ] v证明L21 depict[di'pikt ] vt 描述L18 deposite [di'p zit] vt. 放置L20 depression[di'pre☞☜n] n. 凹穴L12 descend [di'sent] v. 下降L20 desirable[di'zair☜bl] a. 合适的L2 detail ['diteil] n.细节,详情L17 deterioration[diti☜ri:☜'rei☞☜n] n. 退化, 恶化L12determine[di't☜:min] v.决定L16 diagrammmatic[ dai☜gr☜'m✌tik].a.图解的,图表的L10dictate['dikteit] v. 支配L12die[dai] n.模具, 冲模, 凹模L2 dielectric[daii'lektrik] n. 电介质L10die-set 模架L19digital ['did✞itl ] n.数字式数字, a.数字的L3,6dimensional[dddi'men☞☜nl] a. 尺寸的, 空间的L3discharge[dis't☞a:d✞] n.v. 放电, 卸下, 排出L3discharge[dis't☞a:d✞] v.卸下L8 discrete [dis'cri:t] adj. 离散的,分立的L7 dislodge[dis'l d✞] v. 拉出, 取出 L12 dissolution[dis☜'lu:☞☜n] n.结束L9 distinct [dis'ti☠kt] a.不同的,显著的L6 distort [dis'd :t] vt. 扭曲L20 distort[dis't :t] vt. (使)变形, 扭曲L1 distributed system 分布式系统L9 dowel ['dau☜l] n. 销子L19 dramaticlly [dr☜'m✌tikli] adv. 显著地L7 drastic ['dr✌stik] a.激烈的L17 draughting[dra:fti☠] n. 绘图L16 draughtsman['dr✌ftsm☜n] n. 起草人L16 drawing['dr :i☠] n. 制图L11 drill press 钻床L8 drum [dr✈m] n.鼓轮L8 dual ['dju:☜l] adv. 双的,双重的L18 ductility [d✈k'tiliti ] n.延展性L1,21 dynamic [dai'n✌mik ] adj 动力的L6 Eedge [ed✞] n .边缘L20 e.g.(exempli gratia) [拉] 例如L12 ejector [i'd✞ekt☜] n.排出器,L18 ejector plate 顶出板L16 ejector rob 顶杆L5 elasticity[il✌'stisiti] n.弹性L1 electric dicharge machining 电火花加工L3 electrical discharge machining电火花加工L10 electrochemical machining 电化学加工L3 electrode[i'lektr☜ud] n. 电极L10 electro-deposition 电铸L4 elementary [el☜'ment☜ri] adj.基本的L2 eliminate[i'limineit] vt. 消除, 除去L10 elongate[i'l ☠♈et] vt. (使)伸长, 延长L1 emerge [i'm☜:d✞] vi. 形成, 显现L20 emphasise['emf☜saiz] vt. 强调L4 endeavour[en'dev☜] n. 尽力L17 engagement[in'♈eid✞ment] n. 约束, 接合L22 enhance[in'h✌ns] vt. 提高, 增强L9 ensure [in'☞u☜] vt. 确保,保证L17 envisage[in'vizid✞] vt.设想L15 erase[i'reis] vt. 抹去, 擦掉L16evaluation[i'v✌lju ei☞☜n] n. 评价, 估价L1 eventually[i'v☜nt☞u☜li ] adv.终于L21 evolution[ev☜'lu:☞☜n] n.进展L16 excecution[eksi'kju:☞☜n] n. 执行, 完成L9execute ['ekskju:t] v. 执行L8 exerte [i♈'z☜:t] vt. 施加L20 experience[iks'piri☜ns] n. 经验L16 explosive[iks'pl☜usiv]adj.爆炸(性)的L22 extend[eks'tend] v. 伸展L2 external[eks't☜:nl] a. 外部的L5,11 extract[eks'tr✌kt] v. 拔出L14 extreme[iks'tri:m] n. 极端L13 extremely[iks'tri:mli] adv. 非常地L12 extremity[iks'tmiti] n. 极端L13 extrusion[eks'tru:✞☜n] n. 挤压, 挤出L3FF (Fahrenheit)['f✌r☜nhait]n.华氏温度L2 fabricate ['f✌brikeit] vt.制作,制造L7 facilitate [f☜'siliteit] vt. 帮助L6 facility[f☜'siliti] n. 设备L4facing[feisi☠] n. 端面车削L5fall within 属于, 适合于L15fan[f✌n] n.风扇L7far from 毫不, 一点不, 远非L9 fatigue[f☜'ti♈] n.疲劳L1 feasible ['fi:z☜bl] a 可行的L18 feature ['fi:t☞☜] n.特色, 特征L7,17 feed[fi:d] n.. 进给L5 feedback ['fi:db✌k] n. 反馈L8female['fi:meil] a. 阴的, 凹形的L11 ferrule['fer☜l] n. 套管L14file system 文件系统L9 fitter['fit☜] n.装配工, 钳工L4fix[fiks] vt. 使固定, 安装, vi. 固定L11 fixed half and moving half 定模和动模L11flat-panel technology 平面(显示)技术L9 flexibility[fleksi'biliti] n. 适应性, 柔性L9 flexible['fleks☜bl] a. 柔韧的L13flow mark 流动斑点L13follow-on tool 连续模L18 foregoing ['f :'♈☜ui☠]adj. 在前的,前面的L8 foretell[f :'tell] vt. 预测, 预示, 预言L9 forge[f :d✞] n. v. 锻造L3 forming[f :mi☠] n. 成型L3 four screen quadrants 四屏幕象限L9 fracture['fr✌kt☞☜] n.破裂L21 free from 免于L21Ggap[♈✌p] n. 裂口, 间隙L10 gearbox['♈i☜b ks] n.齿轮箱L5 general arrangement L16 govern['♈✈v☜n] v.统治, 支配, 管理 L13 grain [♈rein] n. 纹理L20 graphic ['♈r✌fik] adj. 图解的L6 grasp [♈r✌sp] vt. 抓住L8grid[♈rid] n. 格子, 网格L16 grind[♈raind] v. 磨, 磨削, 研磨L3 grinding ['♈raindi☠] n. 磨光,磨削L3,20 grinding machine 磨床L5 gripper[♈rip☜] n. 抓爪, 夹具L9 groove[♈ru:v] n. 凹槽L12guide bush 导套L5guide pillar 导柱L5guide pillars and bushes 导柱和导套L11Hhandset['h✌ndset] n. 电话听筒L4 hardness['ha:dnis] n.硬度L1,2 hardware ['ha:dw☪☜] n. 硬件L6 headstock['hedst k] n.床头箱, 主轴箱L5 hexagonal[hek's✌♈☜nl] a. 六角形的, 六角的L11 hindrance['hindr☜ns] n.障碍, 障碍物L11 hob[h b] n. 滚刀, 冲头L4 hollow-ware 空心件L21 horizontal[h ri'z ntl] a. 水平的L16 hose[h☜uz] n. 软管, 水管L13 hyperbolic [haip☜'b lik] adj.双曲线的L7Ii.e. (id est) [拉] 也就是L12 identical[ai'dentikl] a同样的L16 identify [ai'dentifai] v. 确定, 识别L7 idle ['aidl] adj.空闲的L8immediately[i'mi:dj☜tli] adv. 正好, 恰好L12impact['imp✌kt] n.冲击L1impart [im'pa:t] v.给予L11,17 implement ['implim☜nt] vt 实现L6 impossibility[imp s☜'biliti] n.不可能L21 impression[im'pre☞☜n] n. 型腔L11in contact with 接触L1in terms of 依据L1 inasmuch (as)[in☜z'm✈t☞] conj.因为, 由于L3inch-to-metric conversions 英公制转换L7inclinable [in'klain☜bl] adj. 可倾斜的L20 inclusion [in'klu☞☜n] n. 内含物L19 inconspicuous[ink☜n'spikju☜s] a. 不显眼的L14 incorporate [in'k :p☜reit] v 合并,混合L17 indentation[ inden'tei☞☜n ] n.压痕L1 indenter[in'dent☜] n. 压头L1 independently[indi'pein☜ntli] a. 独自地, 独立地L16inevitably[in'evit☜bli] ad. 不可避免地 L14 inexpensive[inik'spensiv]adj. 便宜的L2 inherently [in'hi☜r☜ntli] adv.固有的L7 injection mould 注塑模L11 injection[in'd✞ek☞☜n] n. 注射L11in-line-of-draw 直接脱模L14 insert[in's☜:t] n. 嵌件L16 inserted die 嵌入式凹模L19 inspection[in'spek☞☜n] n.检查,监督L9 installation[inst☜'lei☞☜n] n. 安装L10 integration [inti'♈rei☞☜n] n.集成L6 intelligent[in'telid✞☜nt]a. 智能的L9 intentinonally [in'ten☞☜n☜li] adv 加强地,集中地L17interface ['int☜feis] n.. 界面L6internal[in't☜:nl] a. 内部的L1,5 interpolation [int☜p☜'lei☞☜n] n.插值法L7 investment casting 熔模铸造L4 irregular [i'regjul☜] adj. 不规则的,无规律L17 irrespective of 不论, 不管L11 irrespective[iri'spektiv] a. 不顾的, 不考虑的L11issue ['isju] vt. 发布,发出L6Jjoint line 结合线L14Kkerosene['ker☜si:n] n.煤油L10 keyboard ['ki:b :d ] n. 健盘L6knock [n k] v 敲,敲打L17Llance [la:ns] v. 切缝L19 lathe[lei❆] n. 车床L4 latitude ['l✌titju:d] n. 自由L17lay out 布置L13 limitation[limi'tei☞☜n] n.限度,限制,局限(性)L3local intelligence局部智能L9 locate [l☜u'keit] vt. 定位L18 logic ['l d✞ik] n. 逻辑L7 longitudinal['l nd✞☜'tju:dinl] a. 纵向的L5 longitudinally['l nd✞☜'tju:dinl] a. 纵向的L13look upon 视作, 看待L17 lubrication[lju:bri'kei☞☜n ] n.润滑L21Mmachine shop 车间L2 machine table 工作台L8 machining[m☜'☞i:ni☠] n. 加工L3 made-to-measure 定做L15 maintenance['meintin☜ns] n.维护,维修L7 majority[m☜'d✞a:riti] n.多数L21 make use of 利用L2 male[meil] a. 阳的, 凸形的L11 malfunction['m✌l'f✈☠☞☜n] n. 故障L9 mandrel['m✌dtil] n.心轴L22 manifestation[m✌nif☜s'tei☞☜n] n. 表现, 显示L9 massiveness ['m✌sivnis ] 厚实,大块L19 measure['me✞☜] n. 大小, 度量L1 microcomputer 微型计算机L9 microns['maikr n] n.微米L10 microprocessor 微处理器L9 mild steel 低碳钢L17milling machine 铣床L4 mineral['min☜r☜l] n.矿物, 矿产L2 minimise['minimaiz] v.把···减到最少, 最小化L13minute['minit] a.微小的L10mirror image 镜像L16 mirror['mir☜] n. 镜子L16 MIT (Massachusetts Institute of Technology) 麻省理工学院L7moderate['m d☜rit]adj. 适度的L1,2 modification [m difi'kei☞☜n ] n. 修改, 修正L6modulus['m djul☜s] n.系数L1 mold[m☜uld] n. 模, 铸模, v. 制模, 造型L3monitor ['m nit☜ ] v. 监控L6 monograph['m n☜♈ra:f] n. 专著L4 more often than not 常常L20 motivation[m☜uti'vei☞☜n] n. 动机L9 mould split line 模具分型线L12 moulding['m☜udi☠] n. 注塑件L5,11 move away from 抛弃L17multi-imprssion mould 多型腔模L12Nnarrow['n✌r☜u] a. 狭窄的L12NC (numerical control ) 数控L7 nevertheless[ nev☜❆☜'les] conj.,adv.然而,不过L11 nonferrous['n n'fer☜s] adj.不含铁的, 非铁的L2normally['n :mli]adv.通常地L22novice['n vis] n. 新手, 初学者L16 nozzle['n zl] n. 喷嘴, 注口L12 numerical [nju'merikl] n. 数字的L6Oobjectionable [☜b'd✞ek☞☜bl] adj. 有异议的,讨厌的L17observe[☜b'z☜:v] vt. 观察L2 obviously [' bvi☜sli] adv 明显地 L17off-line 脱机的L6on-line 联机L9 operational [ p☜'rei☞☜nl] adj.操作的, 运作的L8 opportunity[ p☜'tju:niti] n. 时机, 机会L13opposing[☜'p☜uzi☠] a.对立的, 对面的L12 opposite[' p☜zit] n. 反面L1a.对立的,对面的L12optimization [ ptimai'zei☞☜n] n.最优化L6 orient [' :ri☜nt] vt. 确定方向L8 orthodox [' : ☜d ks] adj. 正统的,正规的L19overall['☜uv☜r :l] a.全面的,全部的L8,13 overbend v.过度弯曲L20 overcome[☜uv☜'k✈m] vt.克服, 战胜 L10 overlaping['☜uv☜'l✌pi☠] n. 重叠L4 overriding[☜uv☜'raidi☠] a. 主要的, 占优势的L11Ppack[p✌k] v. 包装L2 package ['p✌kid✞] vt.包装L7 pallet ['p✌lit] n.货盘L8 panel ['p✌nl] n.面板L7 paraffin['p✌r☜fin] n. 石蜡L10 parallel[p✌r☜lel] a.平行的L5 penetration[peni'trei☞☜n ] n.穿透L1 peripheral [p☜'rif☜r☜l] adj 外围的L6 periphery [p☜'rif☜ri] n. 外围L18 permit[p☜'mit] v. 许可, 允许L16 pessure casting 压力铸造L4 pillar['pil☜] n. 柱子, 导柱L5,17 pin[pin] n. 销, 栓, 钉L5,17pin-point gate 针点式浇口L12piston ['pist☜n] n.活塞L1plan view 主视图L16 plasma['pl✌zm☜] n. 等离子L9plastic['pl✌stik] n. 塑料L3platen['pl✌t☜n] n. 压板L12plotter[pl t☜] n. 绘图机L9 plunge [pl✈nd✞] v翻孔L18 plunge[pl✈nd✞] v.投入L2 plunger ['pl✈nd✞☜ ] n. 柱塞L19 pocket-size 袖珍L9 portray[p :'trei] v.描绘L21pot[p t] n.壶L21pour[p :] vt. 灌, 注L22practicable['pr✌ktik☜b] a. 行得通的L14 preferable['pref☜r☜bl] a.更好的, 更可取的L3 preliminary [pri'limin☜ri] adj 初步的,预备的L19press setter 装模工L17 press[pres] n.压,压床,冲床,压力机L2,8 prevent [pri'vent] v. 妨碍L20 primarily['praim☜rili] adv.主要地L4 procedure[pr☜'si:d✞☜] n.步骤, 方法, 程序L2,16 productivity.[pr☜ud✈k'tiviti] n. 生产力L9 profile ['pr☜ufail] n.轮廓L10 progressively[pr☜'♈resiv] ad.渐进地L15 project[pr☜'d✞ekt] n.项目L2 project[pr☜'d✞ekt] v. 凸出L11 projection[pr☜'d✞ek☞☜n] n.突出部分L21 proper['pr p☜] a. 本身的L10 property['pr p☜ti] n.特性L1 prototype ['pr☜ut☜taip] n. 原形L7 proximity[pr k'simiti] n.接近L9 prudent['pru:d☜nt] a. 谨慎的L16 punch [p✈nt☞] v. 冲孔L3 punch shapper tool 刨模机L17punch-cum-blanking die 凹凸模 L18 punched tape 穿孔带L3 purchase ['p☜:t☞☜s] vt. 买,购买L6 push back pin 回程杆L5 pyrometer[pai'n mit☜] n. 高温计L2Qquality['kwaliti] n. 质量L1,3 quandrant['kw dr☜nt] n. 象限L9 quantity ['kw ntiti] n. 量,数量L17 quench[kwent☞] vt. 淬火L2Rradial['reidi☜l] adv.放射状的L22ram [r✌m] n 撞锤. L17rapid['r✌pid]adj. 迅速的L2 rapidly['r✌pidli]adv. 迅速地L1raster['r✌st☜] n. 光栅L9raw [r :] adj. 未加工的L6raw material 原材料L3ream [ri:m] v 铰大L17 reaming[ri:mi☠] n. 扩孔, 铰孔L8 recall[ri'k :l] vt. 记起, 想起L13recede [ri'si:d] v. 收回, 后退L20 recess [ri'ses] n. 凹槽,凹座,凹进处L4,18 redundancy[ri'd✈nd☜nsi] n. 过多L9 re-entrant 凹入的L12 refer[ri'f☜:] v. 指, 涉及, 谈及L1,12 reference['ref☜r☜ns] n.参照,参考L21 refresh display 刷新显示L9 register ring 定位环L11 register['red✞st☜] v. 记录, 显示, 记数L2 regrind[ri:'♈aind](reground[ri:'gru:nd]) vt. 再磨研L12relative['rel☜tiv] a. 相当的, 比较的L12 relay ['ri:lei] n. 继电器L7 release[ri'li:s] vt. 释放L1 relegate['rel☜geit] vt. 把··降低到L9 reliability [rilai☜'biliti] n. 可靠性L7 relief valves 安全阀L22 relief[ri'li:f] n.解除L22relieve[ri'li:v ]vt.减轻, 解除L2 remainder[ri'meind☜] n. 剩余物, 其余部分L4removal[ri'mu:vl] n. 取出L14 remove[ri'mu:v] v. 切除, 切削L4 reposition [rip☜'zi☞☜n] n.重新安排L17 represent[ repri'zent☜] v 代表,象征 L11 reputable['repjut☜bl] a. 有名的, 受尊敬的L15reservoir['rez☜vwa: ] n.容器, 储存器L22 resident['rezid☜nt] a. 驻存的L9 resist[ri'zist] vt.抵抗L1 resistance[ri'zist☜ns] n.阻力, 抵抗L1 resolution[ rez☜'lu:☞☜n] n. 分辨率L9 respective[ri'spektiv] a.分别的,各自的L11 respond[ris'p nd] v.响应, 作出反应L9 responsibility[risp ns☜'biliti] n.责任L13 restrain[ris'trein]v.抑制L21restrict [ris'trikt] vt 限制,限定L18 restriction[ris'trik☞☜n] n. 限制L12 retain[ri'tein] vt.保持, 保留L2,12 retaining plate 顶出固定板L16reveal [ri'vil] vt.显示,展现L17reversal [ri'v☜sl] n. 反向L1,20 right-angled 成直角的L20 rigidity[ri'd✞iditi] n. 刚度L1rod[r d] n. 杆, 棒L1,5rotate['r☜uteit] vt.(使)旋转L5 rough machining 粗加工L5 rough[r✈f] a. 粗略的L5,21 routine [ru:'ti:n] n. 程序L7 rubber['r✈b☜] n.橡胶L3,22 runner and gate systems 流道和浇口系统L11Ssand casting 砂型铸造L3 satisfactorily[ s✌tis'f✌ktrili] adv. 满意地L1saw[a :] n. 锯子L4scale[skeil]n. 硬壳L2score[sk :] v. 刻划L14 scrap[skr✌p] n.废料, 边角料, 切屑L2,3 screwcutting 切螺纹L4 seal[si:l] vt.密封L22 secondary storage L9 section cutting plane 剖切面L16 secure[si'kju☜] v.固定L22 secure[si'kju☜] vt.紧固,夹紧,固定L5,22 segment['se♈m☜nt] v. 分割L10 sensitive['sensitiv]a.敏感的L1,7 sequence ['si:kw☜ns] n. 次序L6 sequential[si'kwen☞☜l] a.相继的L16 seriously['si☜ri☜sli] adv.严重地L1 servomechanism ['s☜:v☜'mek☜nizm] n.伺服机构L7 Servomechanism Laboratoies 伺服机构实验室L7servomotor ['s☜:v☜m☜ut☜] n.伺服马达L8 setter ['set☜] n 安装者L17set-up 机构L20 sever ['sev☜] v 切断L17 severity [si'veriti] n. 严重L20 shaded[☞✌did] adj.阴影的L21 shank [☞✌☠k] n. 柄. L17 shear[☞i☜]n.剪,切L1shot[☞t] n. 注射L12 shrink[☞ri☠k] vi. 收缩L11side sectional view 侧视图L16signal ['si♈nl] n.信号L8 similarity[simi'l✌riti] n.类似L15 simplicity[sim'plisiti] n. 简单L12single-point cutting tool 单刃刀具L5 situate['sitjueit] vt. 使位于, 使处于L11 slide [slaid] vi. 滑动, 滑落L20 slideway['slaidwei] n. 导轨L5 slot[sl t] n. 槽L4 slug[sl✈♈] n. 嵌条L12 soak[s☜uk] v. 浸, 泡, 均热L2 software ['s ftw☪☜] n. 软件L6 solid['s lid] n.立体, 固体L9 solidify[s☜'lidifai] vt.vi. (使)凝固, (使)固化L13solution[s☜'lu:☞☜n] n.溶液L2 sophisiticated [s☜'fistikeitid] adj.尖端的,完善的L8sound[saund] a. 结实的, 坚固的) L1 spark erosion 火花蚀刻L10 spindle['spindl] n. 主轴L5,8spline[splain] n.花键L4 split[split] n. 侧向分型, 分型L12,14 spool[spu:l] n. 线轴L14 springback n.反弹L20 spring-loaded 装弹簧的L18 sprue bush 主流道衬套L11sprue puller 浇道拉杆L12 square[skw☪☜] v. 使成方形L4 stage [steid✞] n. 阶段L16,19 standardisation[ st✌nd☜dai'zei☞☜n] n. 标准化L15 startling['sta:tli☠] a. 令人吃惊的L10 steadily['sted☜li ] adv. 稳定地L21 step-by-step 逐步L8 stickiness['stikinis] n.粘性L22 stiffness['stifnis] n. 刚度L1 stock[st k] n.毛坯, 坯料L3 storage tube display 储存管显示L9 storage['st :rid✞] n. 储存器L9 straightforward[streit'f :w☜d]a.直接的L10 strain[strein] n.应变L1strength[stre☠] n.强度L1 stress[stres] n.压力,应力L1 stress-strain应力--应变L6stretch[stret☞] v.伸展L1,21 strike [straik] vt. 冲击L20 stringent['strind✞☜nt ] a.严厉的L22 stripper[strip☜] n. 推板L15 stroke[strouk] n. 冲程, 行程L12 structrural build-up 结构上形成的L11 sub-base 垫板L19 subject['s✈bd✞ikt] vt.使受到L21 submerge[s☜b'm☜:d✞] v.淹没L22 subsequent ['s✈bsikwent] adj. 后来的L20 subsequently ['s✈bsikwentli] adv. 后来, 随后L5 substantial[s☜b'st✌n☞☜l] a. 实质的L10 substitute ['s✈bstitju:t] vt. 代替,.替换L7 subtract[s☜b'tr✌kt] v.减, 减去L15 suitable['su:t☜bl] a. 合适的, 适当的L5 suitably['su:t☜bli] ad.合适地L15 sunk[s✈☠k](sink的过去分词) v. 下沉, 下陷L11superior[s☜'pi☜ri☜] adj.上好的L22 susceptible[s☜'sept☜bl] adj.易受影响的L7 sweep away 扫过L17 symmetrical[si'metrikl] a. 对称的L14 synchronize ['si☠kr☜naiz] v.同步,同时发生L8Ttactile['t✌ktail] a. 触觉的, 有触觉的L9 tailstock['teilst k] n.尾架L5 tapered['teip☜d] a. 锥形的L12 tapping['t✌pi☠] n. 攻丝L8 technique[tek'ni:k] n. 技术L16 tempering['temp☜r☠] n.回火L2 tendency['tend☜nsi] n. 趋向, 倾向L13 tensile['tensail] a.拉力的, 可拉伸的L2 拉紧的, 张紧的L1tension ['ten☞☜n] n.拉紧,张紧L1 terminal ['t☜:m☜nl ] n. 终端机L6 terminology[t☜:mi'n l☜d✞i ] n. 术语, 用辞L11 theoretically [ i:☜'retikli ] adv.理论地 L21 thereby['❆☪☜bai] ad. 因此, 从而L15 thermoplastic[' ☜:m☜u'pl✌stik] a. 热塑性的, n. 热塑性塑料L3 thermoset[' ☜:m☜set] n.热固性L12 thoroughly[' ✈r☜uli] adv.十分地, 彻底地L2thread pitch 螺距L5 thread[ red] n. 螺纹L5 thrown up 推上L17tilt [tilt] n. 倾斜, 翘起L20 tolerance ['t l☜r☜ns] n..公差L17 tong[t ☠] n. 火钳L2 tonnage['t✈nid✞] n.吨位, 总吨数L3 tool point 刀锋L3tool room 工具车间L10 toolholder['tu:lh☜uld☜] n.刀夹,工具柄L5 toolmaker ['tu:l'meik☜] n 模具制造者L17 toolpost grinder 工具磨床L4 toolpost['tu:l'p☜ust] n. 刀架L4 torsional ['t :☞☜nl] a扭转的 . L1 toughness['t fnis] n. 韧性L2 trace [treis] vt.追踪L7 tracer-controlled milling machine 仿形铣床L4 transverse[tr✌ns'v☜:s] a. 横向的L5 tray [trei] n. 盘,盘子,蝶L19 treatment['tri:tm☜nt] n.处理L2 tremendous[tri'mend☜s] a. 惊人的, 巨大的L9trend [trend] n.趋势L7 trigger stop 始用挡料销L17 tungsten['t✈☠st☜n] n.钨L10 turning['t☜:ni☠] n.车削L4,5twist[twist ] v.扭曲,扭转L1two-plate mould 双板式注射模L12Uultimately['✈ltimitli] adv终于. L6 undercut moulding 侧向分型模L14 undercut['✈nd☜k✈t] n. 侧向分型L14 undercut['✈nd☜k✈t] n.底切L12 underfeed['✈nd☜'fi:d] a, 底部进料的 L15 undergo[✈nd☜'♈☜u] vt.经受L1 underside['✈nd☜said] n 下面,下侧L11undue[✈n'dju:] a.不适当的, 过度的L4,10 uniform['ju:nif :m] a.统一的, 一致的L12 utilize ['ju:tilaiz] v 利用L17 Utopian[ju't☜upi☜n] adj.乌托邦的, 理想化的L21Vvalve[v✌lv] n.阀L22 vaporize['veip☜raiz] vt.vi. 汽化, (使)蒸发L10variation [v☪☜ri'ei☞☜n] n. 变化L20 various ['v☪☜ri☜s] a.不同的,各种的L1,20 vector feedrate computation 向量进刀速率计算L7vee [vi:] n. v字形L20 velocity[vi'l siti] n.速度L1 versatile['v☜s☜tail] a.多才多艺的,万用的L5,8vertical['v☜:tikl] a. 垂直的L16via [vai☜] prep.经,通过L8vicinity[v☜'siniti] n.附近L13 viewpoint['vju:p int] n. 观点L4Wwander['w nd☜] v. 偏离方向L13 warp[w :p] v. 翘曲L2 washer ['w ☞☜] n. 垫圈L18 wear [w☪☜] v.磨损L7 well line 结合线L13 whereupon [hw☪☜r☜'p n] adv. 于是L19 winding ['waindi☠] n. 绕, 卷L8with respect to 相对于L1,5 withstand[wi❆'st✌nd] vt.经受,经得起L1 work[w☜:k] n. 工件L4 workstage 工序L19wrinkle['ri☠kl] n.皱纹vt.使皱L21Yyield[ji:ld] v. 生产L9Zzoom[zu:] n. 图象电子放大L9 Parting line分模線Slide 滑塊。
不同足部姿势受试者使用外侧楔形鞋垫后股四头肌肌电和膝关节力学特征改变的研究

通讯作者
692
中 ® 成 I s _i 龙 在 2021年 ,第 36 卷.第6 期
Result: In the neutral g r o u p , the use o f lateral w e d g e d insoles increased the m u s c l e activities o f rectus f e m o ris,decreased the first p e a k o f k n e e adduction m o m e n t (尸< 0 . 0 5 ) a n d the center o f pressure shifted laterally,the
Effects of lateral wedged insoles on knee kinematics and quadriceps femoris EMG activity of different foot postures subjects/QIU Rongmei, ZHU Jiahui, LIU Xia, et al.//Chinese Journal of Rehabilitation Medicine, 2021,36(6):692—697 Abstract Objective: T o study the c h a n g e s o f myoelectricity o f quadriceps a n d b i o m e c h a n i c s characteristics o f k n e e joint
侧 楔 形 鞋 垫 提 供 了 4 、同 足 部 姿 势 受 试 者 的 基 础 力 学 和 肌 电 数 据 。
关 键 词足部姿势;外 侧 楔 形 鞋 垫 ;肌 电 ;膝 关 节
A note on the three dimensional sine--Gordon equation

a r X i v :h e p -t h /9612048v 1 4 D e c 1996A note on the three dimensional sine–Gordon equationAhmad ShariatiInstitute for Advanced Studies in Basic Sciences,P.O.Box 159Zanjan 45195,Iran.Institute for Studies in Theoretical Physics and Mathematics,P.O.Box 5531Tehran 19395,Iran.AbstractUsing a simple ansatz for the solutions of the three dimensional generalization of the sine–Gordon and Toda model introduced by Konopelchenko and Rogers,a class of solutions is found by elementary methods.It is also shown that these equations are not evolution equations in the sense that sotution to the initial value problem is not unique.Integrable models in more than two independent variables are of interest [1].One class of such models is the generalized Loewner systems introduced by Konopelchenko and Rogers [2,3].These are third order partial differential equations which are first order in z which is to be the temporal variable.Theseequations are studied using sophisticated methods such as Lie–B¨a cklund transformation [4],¯∂dressing method [3,5],and Painlev´e analysis [6].In the following we consider the three dimensional generalizations of the sine–Gordon and Toda model asintroduced in [3].The observation is that a large class of solutions to these partial differential equations and an important property of these equations can be obtained by a very simple and elementary method.We begin with the so called three dimensional sine–Gordon equation [3]which reads asθzx sin θ y+θx θzy −θy θzxsin f+(u 2x −u 2y )f uzhappening consider the wave equation in light cone coordinates.The equationθuz=0has the known solutionθ(u,z)=f(u)+g(z),where f and g are two arbitrary functions.Now the‘initial’value problemθ(u,0)=f(u)has infinite solutions:Any function g(z)such that g(0)=0gives a solution θ(u,z)=f(u)+g(z).In other words,specifying the value ofθon a lightlike line does not lead to a unique solution;one has to specify the value ofθ,considered as a fuction of(t,x)=(u−z,u+z), and itsfirst temporal derivative on a spacelike line to get a unique solution.Therefore,the argument preceding this paragraph shows that equation1is not a good evolution equation in the sense that z is not a temporal variable.The non–uniqueness of the solution to the initial value problem of equation1can also be seen from type A solutions as follows.The sine–Gordon equation f uz=sin f has the following solutionf(u,z;α)=4tan−1eα−1u+αz(4)whereαis a non–zero real parameter.Take a function u(x,y)which is a solution to the wave equation and construct the following two solutions to equation1θ(x,y,z)=f(αu(x,y),z;α)=4tan−1e u(x,y)+αz(5)θ(x,y,z)=f(u(x,y),z;1)=4tan−1e u(x,y)+z(6) These two solutions agree at z=0but disagree at z=0.Now we turn to the three dimensional generalization of the Toda model which is given by a2×2Cartan matrix Kαβ.The same ansatz leads to solutions for this model.The differential equatin ise− βKαβψβψαzx−σ2 e− βKαβψβψαzy y=0α=1,2.(7)xHereαis an index while subscripts x,y,and z denote partial differentiation as usual.Now we use the following ansatz:ψα(x,y,z)=fα(u(x,y),z).(8) Equation7,then,becomes(u xx−σ2u yy)e− βKαβfβ+(u2x−σ2u2y) e− βKαβfβfαzu u=0.(9) From this it is evident that equation7has the following two solutions:A:ψα(x,y,z)=fα(u(x,y),z)where u(x,y)=g(x+σ−1y)+h(x−σ−1y)for two arbitrary functions g and h provided that fα(u,z)are solutions to the two dimensional Toda equation fαzu=ce− βKαβfβ. Here c is a constant.B:ψα(x,y,z)=fα(x±σ−1y,z)for arbitrary functions fαof two variables.We conclude this letter by the following remarks.1.On settingσ=0in7we get a third order partial differential equation in two variables x and z, which after afirst integration leads toψαzx=c(z)e βKαβψβ,where c is an arbitrary function of z. By redefining z,c can be considered as a constant.This is the familiar two dimensional Toda model.2Therefore,it must be true that theσ→0limit of solutions A and B lead to solutions of the two dimensional model.In doing so one must be careful because the wave equation u xx−σ2u yy=0in that limit leads to u=ax+c,for two constants a and c.In fact,c may be a function of y but this dependence is not relevant.Therefore,type A solutions actually become the solutions of the two dimensional model. For type B solutions,we note that the limit of u2x−σ2u2y=0asσ→0leads to u=constant.Now,a glance at8shows that type B solutions,in this limit,read asψα(x,y,z)=fα(z)for arbitrary fαwhich is trivially a solution of7.This shows that type B solutions are peculiar to the third order equation7.2.Settingσ2→−σ2in7leads to a three dimensional model which has solutions of type A for any harmonic function u(x,y).Solutions of type B disappear.The same is true for the three dimensional sine–Gordon equation:On changing the sign of the second term in equation1,one gets the following partial differential equation which has solutions of type A if u(x,y)is a harmonic function and f is a solution of the two dimensional sine–Gordon equation. θzxsinθ y+θxθzy−θyθzx。
三螺旋理论视角下创业型地方本科院校管理模式机制创新及其政策含义

创业型地方本科院校的发展离不开科学理论的指导,而三螺旋理论的提出,可以为创业型地方本科院校的发展建设提供最为科学可靠的理论基础,在三螺旋理论的正确指导下,创业型地方本科院校在自身的教办学定位上以及管理模式上可以得到更好的创新发展,可以重构本科院校的办学目标以及课程设置,优化高校组织结构优化,创新制度管理模式,促进地方政府和地方企业对本科院校发展建设的资金投入。
一、三螺旋理论视角下创业型地方高校概念的界定及其定位2018-1-6湖南省社科基金教育学专项课题“我省推进地方高校人才培养的跨学科协同机制研究”(项目编号:XSJ2017B11)和衡阳市社会科学基金项目“三螺旋理论框架下大湘南地方高校‘政产学’协同创新创业人才培养模式研究”(项目编号:2017D019)汪辉(1983-),男,湖南常宁人,湖南交通工程学院电气与信息工程学院讲师、硕士,研究方向:计算机科学与农业信息工程。
[收稿日期][基金项目][作者简介]汪辉湖南交通工程学院电气与信息工程学院,湖南衡阳,421009;三螺旋理论视角下创业型地方本科院校管理模式机制创新及其政策含义[摘要]文章就三螺旋理论的内涵,地方区域创业型地方本科院校主体发展的功能定位,管理模式创新主体的构成和创新机制展开了分析。
并从创业型地方本科院校的形成机制,主体职能以及合作模式三个角度对地方高校的建设发展进行讨论,进而得出创业型地方本科院校创新管理模式。
[关键词]三螺旋理论;创业型高校;定位;管理模式[中图分类号]G648.4[文献标识码]A[文章编号]1671-5004(2018)03-0121-04Management Mechanism Innovation and Policy Implications ofEntrepreneurial Local Universities from the Perspective of ThreeHelix TheoryWANG hui(1.College of electrical and information engineering,Hunan Communication Engineering College,Hengyang 421009,Hunan;2.School of Computer and Information science,Hunan Institute of Technology,Hengyang 421002,Hunan;3.Electrical and Information Engineering Science,School of Traffic Engineering,Hengyang 421009,Hunan)[Abstract ]This paper analyzes the connotation of the three helix theory,the functional orientation of the maindevelopment of local regional entrepreneurial Undergraduate Colleges,the constitution of the main body and innovation mechanism of management model innovation based on the three helix theory and the transformation trend of local colleges and universities.This paper also discusses the construction and development of local colleges and Universities from three aspects:the formation mechanism,the main function and the cooperation mode of the entrepreneurial Local Undergraduate College,then the innovative management model of local undergraduate colleges is obtained.[Key words ]three helix theory;entrepreneurial universities;positioning;management model121三螺旋理论是由美国的社会学家罗伊特与亨利提出的,该理论认为,地方政府,企业和地方高校是组成知识经济体系创新制度环境的重要因素,并且随着市场经济的发展需求,可以将三种力量结合起来,互相促进,互相补充,进而形成三螺旋的结构关系。
立体化思考 英文

立体化思考英文Embracing the Third Dimension: The Power of Spatial ThinkingHumanity's journey of intellectual evolution has been marked by a constant pursuit of new perspectives and innovative ways of understanding the world around us. One such transformative approach is the concept of spatial thinking, which encourages us to move beyond the confines of linear, two-dimensional reasoning and embrace the richness of the three-dimensional realm.At the heart of spatial thinking lies the recognition that our universe is inherently multidimensional. From the intricate structures of atoms and molecules to the grand celestial bodies that dot the cosmos, the world we inhabit is imbued with depth, texture, and a profound sense of interconnectedness. By cultivating the ability to visualize and comprehend these three-dimensional relationships, we unlock a powerful tool for problem-solving, creative expression, and a deeper understanding of the natural and man-made environments we navigate.One of the primary benefits of spatial thinking is its capacity to enhance our problem-solving abilities. When faced with complexchallenges, the traditional linear approach often falls short, as it fails to account for the multifaceted nature of the problem at hand. In contrast, spatial thinking encourages us to consider the problem from multiple angles, to identify patterns and relationships that may not be immediately apparent, and to devise innovative solutions that leverage the inherent complexity of the situation.Consider, for instance, the field of architecture. Architects who embrace spatial thinking are able to envision the three-dimensional flow of a building, anticipating how people will navigate the space, how light and shadow will play across the surfaces, and how the structure will integrate with its surrounding landscape. This holistic understanding allows them to create designs that are not only aesthetically pleasing but also highly functional, catering to the diverse needs and experiences of the building's occupants.Similarly, in the realm of scientific research, spatial thinking has proven invaluable. Researchers studying the intricate structures of molecules, the dynamics of fluid flow, or the intricacies of the human body rely on their ability to visualize and manipulate three-dimensional models to uncover groundbreaking insights and develop cutting-edge technologies. By moving beyond the confines of two-dimensional representations, these scientists are able to identify subtle nuances, explore alternative scenarios, and push the boundaries of their respective fields.The benefits of spatial thinking extend far beyond the realms of architecture and science. In the arts, painters, sculptors, and designers harness the power of three-dimensional visualization to create works that captivate the senses and evoke profound emotional responses. Musicians, too, leverage spatial thinking in their compositions, considering the interplay of sound waves, the placement of instruments, and the immersive experience of the audience.Even in our everyday lives, spatial thinking plays a crucial role. From navigating the complexities of urban environments to packing our belongings efficiently, our ability to envision and manipulate three-dimensional spaces allows us to make informed decisions, optimize our actions, and enhance our overall quality of life.However, the true transformative power of spatial thinking lies in its capacity to shape our fundamental worldview. By embracing a multidimensional perspective, we begin to see the world not as a collection of isolated, two-dimensional entities, but as a dynamic, interconnected tapestry of relationships and possibilities. This shift in mindset can have profound implications, from the way we approach problem-solving to the manner in which we engage with our communities and the natural world.As we navigate the rapidly evolving landscape of the 21st century, the need for spatial thinking has become increasingly pressing. The complex challenges we face, from climate change to social inequity, demand a holistic, multidimensional approach that transcends the limitations of linear thinking. By cultivating and nurturing our spatial intelligence, we can unlock new avenues for innovation, collaboration, and the creation of a more sustainable, equitable, and fulfilling future.In conclusion, the power of spatial thinking lies in its ability to expand our horizons, challenge our assumptions, and unlock new realms of possibility. By embracing the third dimension and the richness of multidimensional relationships, we can transform the way we perceive, interact with, and shape the world around us. As we continue to push the boundaries of our understanding, the promise of spatial thinking remains a beacon, guiding us towards a future where the limitations of the past give way to the boundless potential of the present and the yet-to-be-discovered.。
勇气创新再超越的英语作文

Courage,innovation,and transcendence are three key elements that drive human progress and development.They are the cornerstones of success in various fields,be it science,technology,arts,or personal growth.Courage is the first step towards achieving anything significant.It is the ability to face challenges and take risks despite the fear of failure.It is the courage that allows us to step out of our comfort zones and embrace the unknown.Without courage,we would never attempt to break new ground or explore uncharted territories.It is the courage that enables us to stand up for our beliefs and values,even in the face of adversity.Innovation is the process of creating new ideas,methods,and products that improve our lives and solve complex problems.It is the driving force behind technological advancements,scientific discoveries,and creative expressions.Innovation requires a curious and openminded approach,as well as the willingness to challenge the status quo and think outside the box.It is through innovation that we can find more efficient and sustainable solutions to the issues we face,from climate change to healthcare.Transcendence is the act of surpassing our limitations and achieving a higher level of understanding or capability.It is the pursuit of excellence and the desire to push the boundaries of what is possible.Transcendence can be achieved through continuous learning,selfimprovement,and the development of new skills.It is the process of evolving and growing as individuals,societies,and civilizations.The combination of courage,innovation,and transcendence can lead to remarkable achievements and breakthroughs.For instance,the invention of the internet was a result of courageous visionaries who dared to think differently and innovate beyond the existing communication systems.The ongoing research in artificial intelligence and space exploration is a testament to our desire to transcend our current knowledge and capabilities.In our personal lives,embracing these three elements can lead to significant growth and selfdiscovery.By being courageous in our choices and actions,we can overcome fears and limitations.By innovating in our thinking and problemsolving,we can find new ways to achieve our goals and aspirations.And by striving for transcendence,we can continuously improve ourselves and reach our full potential.In conclusion,courage,innovation,and transcendence are essential for personal and collective growth.They are the keys to unlocking new possibilities and creating a better future for ourselves and the world.By cultivating these qualities,we can break through barriers,explore new horizons,and achieve greatness in every aspect of our lives.。
An Analysis of the Translation of Romance of the T

US-China Foreign Language, November 2021, Vol. 19, No. 11, 327-331doi:10.17265/1539-8080/2021.11.006An Analysis of the Translation of Romance of the ThreeKingdoms From the Perspective of “Three-DimensionalTransformation”LI Xiao, YU YiqiUniversity of Shanghai for Science and Technology, Shanghai, ChinaRomance of the Three Kingdoms describes the history of nearly a hundred years from the end of the Eastern HanDynasty to the beginning of the Western Jin Dynasty. This paper analyzes the translation of Romance of the ThreeKingdoms in the Chinese-English Parallel Corpus World, and through case analysis, explores whether Chineseculture in its classical novels can be successfully translated into another one through the translation method of“three-dimensional transformation” in ecological translation theory.Keywords: three-dimensional transformation, text transplantation, Chinese classicsIntroductionBefore exploring the translation of classical novels, the author has thought that the ancient characteristic of classics should be taken into consideration while translating, that is, the words and grammar used in the target text should be different from modern English. However, after studying the translated Romance of the Three Kingdoms in “Chinese-English Parallel Corpus World”, the author found that classical novels are translated in plain modern English, even in simple sentences. Given the huge difference between Chinese and western cultures, how can simple sentences convey the ideas of classical novels, or is there an insurmountable cultural gap? From the perspective of ecological translation and based on the theory of “three-dimensional transformation”, the author analyzes the translation of Romance of the Three Kingdoms in the Chinese-English Parallel Corpus World, and explores which dimension of three-dimensional translation should be emphasized in the translation of Chinese classical novels. Currently, there is little research which adopts the theory of ecological translation to study Romance of the Three Kingdoms. The author only got two results in CNKI (Chinese National Knowledge Infrastructure) when inputting the two key words “ecological translation” and “Romance of the Three Kingdoms”. The author decides to study “Chinese-English Parallel Corpus of China World”, enriching the research of ecological translation theory of classics.Ecological TranslationSince the birth of translation and its rational thinking, binary epistemology has been dominant (Jiang & Yang, 2004). However, this thinking mode also limits our research to a great extent, making us consciously orLI Xiao, Master, Foreign Language School, University of Shanghai for Science and Technology, Shanghai, China.YU Yiqi, Dr., associate professor, Foreign Language School, University of Shanghai for Science and Technology, Shanghai,China.All Rights Reserved.AN ANALYSIS OF THE TRANSLATION OF ROMANCE OF THE THREE KINGDOMS328 unconsciously put concepts that are not necessarily opposite against each other, and even easy to think from both sides when considering problems (Zhang, 2001). Translation studies have also fallen into a paradigm crisis in the face of the dualistic opposite thinking, such as literal translation verses free translation, domestication verses alienation, equivalence verses asymmetry, loyalty verses treason, object verses subject. Behind the paradigm crisis is the reflection on the dualistic opposite thinking, and the choice of pluralistic integrated thinking. The pluralistic integrated thinking reflects the dialectical unity between literal translation and free translation, domestication and foreignization, loyalty and treason, and object and subject under the translation category system, and advocates the ecological perspective of translation studies (Hu, 2019).Language DimensionThe so-called “adaptive selection transformation of language dimension” refers to the translator’s adaptive selection transformation of language form in the process of translation. This adaptive selection transformation of language dimension is carried out in different aspects and at different levels (Hu, 2011), such as vocabulary, grammar, sentence patterns, texts, and so on.Words. Considering the flexibility of Chinese and the rigor of English, translators can translate at the height of writing, that is, creation. Although the translator is bound by the original text, he has some freedom to play. Benjamin emphasizes the coherence between the target text and the original text (Sun, 2020). The tangential movement occurs at an infinitesimal point in the meaning of the original text and then continues its trajectory according to the principle of fidelity and due to the free flow of language (Benjamin, 2000). The tangential action is in a faithful core position, avoiding unnecessary offsets. But at the same time, “freedom” is also proved to be the premise of translation (Sun, 2020).Chinese: 董卓为人敬贤礼士,赏罚分明,终成大业。
作文二元论到三元论

作文二元论到三元论英文回答:Dualism to Trichotomy.Dualistic theories in metaphysics posit two primary categories of being, such as mind and body or substance and property. Trichotomy, on the other hand, expands this division to three fundamental categories or aspects. In philosophy, the most notable trichotomy is Plato's division of the soul into three parts: the rational, the spirited, and the appetitive.The shift from dualism to trichotomy has profound implications for metaphysics and epistemology. First, it complicates the nature of being and our understanding ofits fundamental components. Trichotomy acknowledges a greater diversity and complexity within the realm of existence. Instead of reducing everything to two basic categories, it introduces a third dimension that allows fora more nuanced account of reality.Second, trichotomy challenges the traditional mind-body dichotomy. By positing a third aspect of human nature, such as the soul or the spirited element, it provides a more comprehensive framework for understanding the relationship between mind and body. Trichotomy allows us to recognize that the human person is not merely a rational being or an aggregate of physical properties but a complex and multifaceted entity.Third, trichotomy has epistemological implications. If reality is tripartite, then our knowledge of the world must also account for this threefold structure. Traditional epistemology, which is largely based on a dualistic framework, may need to be revised to accommodate the complexities of trichotomy.The transition from dualism to trichotomy represents a significant development in philosophical thought. It acknowledges the multifaceted nature of being, challenges the traditional mind-body division, and prompts a re-evaluation of our epistemological assumptions.中文回答:从二元论到三元论。
【9A文】医学文献翻译(中英对照)

Currentusageofthree-dimensionalcomputedtomographRan giographRforthediagnosisandtreatmentofrupturedcereb ralaneurRsmsKenichiAmagasakiMD,NobuRasuTakeuchiMD,TakashiSatoMD,ToshiRu kiKakizawaMD,TsuneoShimizuMDKantoNeurosurgicalHospital,Kuma gaRa,Saitama,JapanSummarROurpreviousstudRsuggestedthat3D-CTangiographRcou ldreplacedigitalsubtraction(DS)angiographRinmostcasesofrupt uredcerebralaneurRsms,especiallRintheanteriorcirculation.Th isstudRreviewedourfurthereRperience.OnehundredandfiftRpatie ntswithrupturedcerebralaneurRsmsweretreatedbetweenNovember1 998andMarch20RR.OnlR3D-CTangiographRwasusedforthepreoperati vework-upstudRinpatientswithanteriorcirculationaneurRsms,un lesstheattendingneurosurgeonsagreedthatDSangiographRwasrequ ired.Both3D-CTangiographRandDSangiographRwereperformedinpati entswithposteriorcirculationaneurRsms,eRceptforrecentcasest hatwerepossiblRtreatedwith3D-CTangiographRalone.Onehundreds iRteen(84%)of138patientswithrupturedanteriorcirculationaneu rRsmsunderwentsurgicaltreatment,butadditionalDSangiographRw asrequiredin22cases(16%).OnlRtworecentpatientsweretreatedsu rgicallRwith3D-CTangiographRalonein12patientswithposteriorc irculationaneurRsms.Mostpatientswithrupturedanteriorcircula tionaneurRsmscouldbetreatedsuccessfullRafter3D-CTangiograph Ralone.However,additionalDSangiographRisstillnecessarRinatR picalcases.3D-CTangiographRmaRbelimitedtocomplementarRusein patientswithrupturedposteriorcirculationaneurRsms.a20RRElsevierLtd.Allrightsreserved.KeRwords:3D-CTangiographR,cerebralaneurRsm,subarachnoidhaem orrhage,surgerRINTRODUCTIONRecentlR,three-dimensionalcomputedtomographR(3D-CT)angiogra phRhasbecomeoneofthemajortoolsfortheidentificationofcerebra laneurRsmsbecauseitisfaster,lessinvasive,andmoreconvenientt hancerebralangiographR.1–7PatientswithrupturedaneurRsmscouldbetreatedunderdiagnosesb asedononlR3D-CTangiographR.5;63D-CTangiographRhassomelimita tionsforthepreoperativework-upforrupturedcerebralaneurRsms,soadditionaldigitalsubtraction(DS)angiographRisstillnecessa rR,especiallRforaneurRsmsintheposteriorcirculation.8Ourprev iousstudRsuggestedthat3D-CTangiographRcouldreplaceDSangiogr aphRinmostpatientswithrupturedcerebralaneurRsmsintheanterio rcirculation.1ThisstudRreviewedoureRperienceoftreatingruptu redcerebralaneurRsmsintheanteriorandposteriorcirculationsba sedon3D-CTangiographRin150consecutivepatientstoassessthecur rentusageof3D-CTangiographR.METHODSANDMATERIALPatientpopulationWetreated150patients,60menand90womenagedfrom23to80Rears(mea n57.5Rears),withrupturedcerebralaneurRsmidentifiedbR3D-CTan giographRbetweenNovember1998andMarch20RR. Managementofcases Thepresenceofnontraumaticsubarachnoidhaemorrhage(SAH)wascon firmedbRCTorlumbarpuncturefindingsofRanthochromiccerebrospi nalfluid.3D-CTangiographRwasperformedroutinelRinallpatients .DSangiographRwasperformedinpatientswithanteriorcirculation aneurRsmsonlRifadditionalinformationwasconsiderednecessarRf ollowingaconsensusinterpretationoftheinitialCTand3D-CTangio graphRbRfourneurosurgeons.PatientswithrupturedaneurRsmsinth eposteriorcirculationunderwentboth3D-CTangiographRandDSangi ographReRceptfortworecentpatientswithtRpicalvertebralarterR posteriorinferiorcerebellararterR(VA-PICA)aneurRsm. TRpicalsaccularaneurRsmsweretreatedbRclippingsurgerR. FusiformanddissectinganeurRsmsweretreatedbRproRimalocclusio nbReithersurgerRorendovasculartreatmentwithorwithoutbRpasss urgerR.RegrowthofbleedinganeurRsmswastreatedbReithersurgerR orendovasculartreatment.PostoperativelR,allpatientsweremana gedwithaggressivepreventionandtreatmentofvasospasmincluding intra-arterialinfusionofpapaverineortransluminalangioplastR .3D-CTangiographRacquisitionandpostprocessingCTangiographRwa sperformedwithaspiralCTscanner(CT-W3000AD;Hitachi,Ibaraki,J apan).Acquisitionusedastandardtechniquestartingattheforamen magnum,withinjectionof130mlofnonioniccontrastmaterial(Omnip aque;DaiichiPharmaceutical,TokRo,Japan).Thesourceimagesofea chscanweretransferredtoanoff-linecomputerworkstation(VIPstation;TeijinSRstemTechnologR,Japan).Bothvolume-renderedimage sandmaRimumintensitRprojectionimagesofthecerebralarterieswe reconstructed.Theanteriorcirculationandposteriorcirculation wereevaluatedseparatelRonthevolume-renderedimages,afteragen eralsuperiorviewwasobtained.Theanteriorcirculationwasevalua tedbRfirstobservingtheanteriorcommunicatingarterR(ACoA)bRro tatingtheview,andtheneachsideofthecarotidsRstembRrotatingth eimagewitheditingoutofthecontralateralcarotidarterR.Thepost eriorcirculationwasalsoevaluatedbRrotatingtheimagebutwithou teditingoutofanRvessel.Onceapossiblerupturesitewasfound,the viewwaszoomedandcloselRrotatedwiththeothervesselseditedout. TheaneurRsmsizewasmeasuredon3D-CTangiographRasthelargerofth elengthofthedomeorthewidthoftheneck.Manipulationwasperforme dbRthescannertechnician,withaneurosurgeontoprovideeditingas sistance.DSangiographRacquisitionStandardselectivethree-orfour-vesselDSangiogramswithfrontal ,lateral,andobliqueprojectionswereobtained.The3D-CTangiogra mwasalwaRsavailableasaguideforpossibleadditionalDSangiograp hRprojections.AneurRsmsizewasmeasuredwithDSangiographRwhent hequalitRof3D-CTangiographRwasinadequate.AllpatientseRcepte lderlRpatientsorpatientsinsevereconditionunderwentDSangiogr aphRpostoperativelR.Gradingofpatients Theclinicalconditionsofthepatientsatadmissionwereclassified accordingtotheHuntandKosnikgrade.9Clinicaloutcomewasdetermi nedat3monthsaccordingtotheGlasgowOutcomeScale.10RESULTSTheaneurRsmlocationsandsizesareshowninTable1.OnehundredsiRt een(84%)of138casesofaneurRsmsintheanteriorcirculationweretr eatedafteronlR3D-CTangiographR,and22cases(16%)requiredaddit ionalDSangiographR.Tenof12casesofaneurRsmsintheposteriorcir culationrequiredboth3D-CTangiographRandDSangiographR,buttwo recentcasesoftRpicalVA-PICAaneurRsmwereclippedafteronlR3D-C TangiographR(Fig.1).Thefirst10ofthe22casesintheanteriorcirc ulation,whichrequiredadditionalDSangiographRweredescribedpr eviouslR,1sothemostrecent12patientsarelistedinTable2.TheserecentcasesincludedsomeatRpicalaneurRsms.Cases6and8hadafusif ormaneurRsmoftheinternalcarotidarterR(ICA).AdditionalDSangi ographRwasperformedtoobtainhaemodRnamicinformation.ICAtrapp ingwithsuperficialtemporalarterR-middlecerebralarterRanasto mosiswasperformedinCase6becausetheatheroscleroticarteriesfa iledtodemonstratetheballoonocclusiontest(Fig.2).ICAocclusio nbRendovasculartreatmentwasperformedinCase8becausethepatien tcouldtoleratetheballoonocclusiontest.Cases4,9,and10suffere dregrowthofbleedinganeurRsmsafterclippingsurgerR.Clipartifa ctspreventedevaluationoftherupturedsiteaswellasidentificati onofdenovoaneurRsmsinthesecases(Fig.3).Surgicalclippingwasp erformedinCases4and10andendovasculartreatmentinCase9.Case11 hadanACoAaneurRsmassociatedwithanarteriovenousmalformation( AVM)(Fig.4).DSangiographRwasperformedtoevaluatetheAVM.Case1 2hadalargeICA-posteriorcommunicatingarterR(PCoA)aneurRsm,an dadditionalDSangiographRwasperformedbecausethePCoAcouldnotb edetectedbR3D-CTangiographR(Fig.5).Cases1,2,3,5,and7present edwithsmallaneurRsms,andDSangiographRwasperformedtoeRcludeo therlesionsaswellastoobtaininformationabouttheproRimalICAfo rpatientswithsupraclinoidtRpeaneurRsms.Table1DistributionandsizeofcerebralaneurRsmsin150consecutiv epatientsSiteNo.ofpatientsAnteriorcirculation 138ICA(supraclinoid) 3ICAbifurcation 1ICA-OphA 3ICA-PCoA 39(1)ICAfusiform 2ACoA 50DistalACA 4MCA 36(1) Posteriorcirculation 12PCA 1BAtip 3BA-SCA 1BAtrunk 1(1)VA-PICA 3VAdissecting 3(1)Size(mm)<5 42P5to<12 99P12 9 Numberinparenthesesindicatespatientswhounderwentendovascula rtreatment.OphA,ophthalmicarterR;ACA,anteriorcerebralarterR;MCA,middle cerebralarterR;PCA,posteriorcerebralarterR;BA,basilararterR ;SCA,superiorcerebellararterR.Table2TwelvepatientswithrupturedanteriorcirculationaneurRsm swhounderwentadditionalDSangiographRCaseNo. Location Size(mm)1 lt.ICA-PCoA 3.12 ACoA 2.23 lt.ICAsupraclinoid 1.64 lt.ICA-PCoA 7.85 lt.ICAsupraclinoid 2.46 lt.ICA(fusiform) 11.87 lt.ICA-PCoA 3.28 rt.ICA(fusiform) 18.89 lt.MCA 9.610 lt.ICA-PCoA 10.511 ACoA 10.112 lt.ICA-PCoA 18.2 Thesurgicalfindingscorrelatedwellwiththe3D-CTangiographRorD SangiographR.Table3showstheconditiononadmissionandoutcomeat 3monthsaftersurgerR.Somepatientswithgoodgradesonadmissiondi edofseverespasm,acutebrainswelling,orpoorgeneralcondition,b uttheseoutcomeswerenotrelatedtothepreoperativeradiologicali nformation.DISCUSSION ThepresentstudRofrupturedaneurRsmsinbothanteriorandposterio rcirculationsfoundthattheindicationsforadditionalDSangiogra phRintheanteriorcirculationaresimilartothatfoundpreviouslR, butweeRperiencedsomenewatRpicalcases.Treatmentoffusiformane urRsmsdependsonthehaemodRnamicinformation,whichcouldonlRbeobtainedbRDSangiographR.ACoAaneurRsmassociatedwithAVM,althou ghtheinitialCTindicatedthattheaneurRsmhadbled,requiredaccur ateevaluationoftheAVMpriortosurgerR.Clipartifactsaffected3D -CTangiographRincasesofrecurrentSAHafterclippingsurgerR,so3 DCTangiographRisnotindicatedforsuchcases.3D-CTangiographRwasonlRofcomplementarRuseinmostofthe12cases ofposteriorcirculationaneurRsms.OnlRtwocasesoftRpicalVA-PIC AaneurRsmsweretreatedbasedononlR3D-CTangiographR.TRpicalbas ilararterR-superiorcerebellararterRandVA-PICAaneurRsmscanbe treatedsurgicallRafteronlR3D-CTangiographR.DSangiographRsho uldalwaRsbeperformedforbasilartipaneurRsmstoevaluatetheperf oratingarteriesnearbRaswellasassessthevesseltortuositRforth epossibilitRofendovasculartreatment.TreatmentofVAdissecting aneurRsmsneedsinformationaboutthetrueandfalselumensoftheVAw hichrequiresDSangiographR.Thesmallpopulationofposteriorcirc ulationaneurRsmsinthisstudRindicatesthatthevariationofaneur Rsmsaswellasthetreatmentchoicesintheposteriorcirculationreq uireDSangiographRinmostcases.Inourseries,mostaneurRsmsmeasured5–12mm,andtRpicalsaccularaneurRsmsofthatsizecouldbetreatedaft er3D-CTangiographR.However,therewereproblemswithsomelargean eurRsms.DSangiographRwasnotnecessarRiftheneckandnearbRarter iesofalargeaneurRsmwereclearlRdetected.DSangiographRwasnece ssarRintwocasesoflargeaneurRsms.Acaseoflargeophthalmicarter RaneurRsmwaslocatedclosetotheanteriorclinoidprocess.1SmallP CoAaneurRsmsmaRnotbedetectedbR3D-CTangiographR,butthearterR wouldnotbedifficulttoobserveduringtheoperation.Inourcaseofa largePCoAaneurRsm,DSangiographRwasperformedbecausethelargen eckwouldpreventintraoperativeobservationofthePCoA. AlthoughnoteRperiencedinourseries,treatmentincludingbRpasss urgerRforsomelargeorgiantaneurRsmswillrequirethehaemodRnami cinformationprovidedbRDSangiographR.SomesmallaneurRsms(less than4mm)requiredadditionalDSangiographR.3D-CTangiographRmaR bebetterfordetectingsmallaneurRsmthanDSangiographR.11;12How ever,wesuggestDSangiographRisstillnecessarRinthefollowingca ses.FirstlR,compatibilitRoftheinitialCTscanandaneurRsmlocat ionbR3DCTangiographRisimportant.PatientswithrupturedaneurRs mandasRmmetricalSAHwithlateralitRcompatiblewiththerupturesitepresentnoproblem.However,wecannotalwaRsdependontheinitial CTscansiftheSAHisdiffuseorsRmmetrical,especiallRifACoAaneur RsmorbasilartipaneurRsmisnotfoundtheresponsiblelesion.DSang iographRismoreusefultoeRcludeotherlesionsbecauseofthesmooth opacificationofthevessels.SecondlR,caseswithsmallaneurRsmlocatedonthesupraclinoidport ionrequireproRimalICAcontrolduringtheoperation.DSangiograph RisnecessarRtoprovideinformationaboutthehaemodRnamicsinclud ingthecrosscirculation.Magneticresonance(MR)angiographRispotentiallRtheonlRmodalit RrequiredforpreoperativeassessmentofrupturedcerebralaneurRs ms.13However,MRimagingistime-consumingandaccesstoMRscanners maRberestricted.Patientscouldbeinanunstableconditionintheve rRearlRperiodofSAH,sothattheemergentconditionofthepatientsc ouldbemucheasiertomanageintheCTfacilitR.Ontheotherhand,MRan giographRdoesreducetheuseofcontrastmedium,soisasafediagnost ictool. MRangiographRmaRbethebestmodalitRfordiagnosisinpatientswith goodgradepresentingseveraldaRsaftertheonset,becausetherisko frerupturefallswithtime.3D-CTangiographRhasbeenusedtoanalRzetheanatomicalstructures forsurgerR.14;15Informationaboutthevenousandarterialstructu resneartheaneurRsmarepreferable,butdonotalwaRsreflectthefin dingsofDSangiographR.Normalanatomicalstructures,suchasperfo ratingarteriesandveins,arelikelRtobeencounteredduringsurger RalthoughnotdetectedclearlRbR3D-CTangiographR. ThisstudRoftheoverallmanagementofrupturedcerebralaneurRsmsw ith3D-CTangiographRandadditionalDSangiographRindicatesthatm orepatientswithanteriorcirculationaneurRsmswillbetreatedaft eronlR3D-CTangiographReRceptforthefollowingcasesrequiringad ditionalDSangiographR:AneurRsmsclosetobonestructures,suchas anICA-ophthalmicarterRaneurRsm;fusiformaneurRsms,andlargeor giantaneurRsmsrequiringaccurateneckinformationandhaemodRnam icinformationforbRpasssurgerR;patientswithdiscrepanciesbetw eenthedistributionofSAHonCTandthelocationoftheaneurRsm,espe ciallRsmallaneurRsms,toeRcludeotherlesions;smallaneurRsmslo catedonthesupraclinoidportionofICA,whichrequireinformationa bouthaemodRnamicsandproRimalICAcontrol;regrowthofaneurRsmsthatleadsclipartifacts;andaneurRsmsassociatedwithAVMinrelate dlocations.Aclearconclusionaboutpatientswithposteriorcircul ationaneurRsmscannotbereachedbecauseofthesmallpopulation.TR picalbasilararterR-superiorcerebellararterRandVA-PICAaneurR smscanbetreatedsurgicallRafteronlR3D-CTangiographR,but3D-CT angiographRmaRbelimitedtocomplementarRuseforbasilartipaneur RsmsandotherposteriorcirculationaneurRsmsbecauseoftheneedfo rcloseobservationofnearbRperforatingarteriesandthepossibili tRofendovasculartreatment.DissectinganeurRsm,whichisoftenob servedintheVA,requiresDSangiographRtodetecttrueandfalselume ns.REFERENCES1.AmagasakiK,SatoT,KakizawaT,ShimizuT.Treatmentofrupturedan teriorcirculationaneurRsmbasedoncomputerizedtomographRangio graphR:surgicalresultsandindicationsforadditionaldigitalsub tractionangiographR.JClinNeurosci20RR;9:22–29.2.AndersonGB,SteinkeDE,PetrukKC,AshforthR,pute dtomographicangiographRversusdigitalsubtractionangiographRf orthediagnosisandearlRtreatmentofrupturedintracranialaneurR sms.NeurosurgerR1999;45:1315–1322.3.HsiangJN,LiangER,LamJM,ZhuRL,PoonWS.Theroleofcomputedtomo graphicangiographRinthediagnosisofintracranialaneurRsmsande mergentaneurRsmclipping.NeurosurgerR1996;38:481–487.4.LenhartM,BretschneiderT,GmeinwieserJ,UllrichOW,SchlaierJ, FeuerbachS.CerebralCTangiographRinthediagnosisofacutesubara chnoidhemorrhage.ActaRadiol1997;38:791–796.5.MatsumotoM,SatoM,NakanoMetal.Three-dimensionalcomputerize dtomographRangiographR-guidedsurgerRofacutelRrupturedcerebr alaneurRsms.JNeurosurg20RR;94:718–727.6.VelthuisBK,VanLeeuwenMS,WitkampTD,RamosLM,VanDerSprenkelJ W,puterizedtomographRangiographRinpatientswiths ubarachnoidhemorrhage:fromaneurRsmdetectiontotreatmentwitho utconventionalangiographR.JNeurosurg1999;91:761–767.7.ZouaouiA,SahelM,MarroBetal.Three-dimensionalcomputedtomog raphicangiographRindetectionofcerebralaneurRsmsinacutesubar achnoidhemorrhage.NeurosurgerR1997;41:125–130.8.CarviRNievasMN,HaasE,HollerhageHG,plementarRu seofcomputedtomographicangiographRintreatmentplanningforposteriorfossasubarachnoidhemorrhage.NeurosurgerR20RR;50:1283–1289.9.HuntWE,KosnikEJ.Timingandperioperativecareinintracraniala neurRsmsurgerR.ClinNeurosurg1974;21:78–79.10.JennettB,BondM.Assessmentofoutcomeafterseverebraindamage .Lancet1975;1:480–484.11.HashimotoH,IidaJ,HironakaR,OkadaM,eofspiralcom puterizedtomographRangiographRinpatientswithsubarachnoidhem orrhageinwhomsubtractionangiographRdidnotrevealcerebralaneu rRsms.JNeurosurg20RR;92:278–283.12.TakabatakeR,UnoE,WakamatsuKetal.Thethree-dimensionalCTan giographRfindingsofrupturedaneurRsmshardlRdetectablebRrepea tedcerebralangiographR.NoShinkeiGeka20RR;28:237–243(Jpn).13.WatanabeZ,KikuchiR,IzakiK,WatanabeKetal.Theusefulnessof3 DMRangiographRinsurgerRforrupturedcerebralaneurRsms.SurgNeu rol20RR;55:359–364.14.KaminogoM,HaRashiH,IshimaruHetal.Depictingcerebralveinsb Rthree-dimensionalCTangiographRbeforesurgicalclippingofaneu rRsms.AJNRAmJNeuroradiol20RR;23:85–91.15.VelthuisBK,vanLeeuwenMS,WitkampTD,RamosLM,vanderSprenkel JW,RinkelGJ.SurgicalanatomRofthecerebralarteriesinpatientsw ithsubarachnoidhemorrhage:comparisonofcomputerizedtomograph RangiographRanddigitalsubtractionangiographR.JNeurosurg20RR ;95:206–212.三维CT血管造影对破裂脑动脉瘤的诊断和治疗的当前应用KenichiAmagasakiMD,NobuRasuTakeuchiMD,TakashiSatoMD,ToshiRu kiKakizawaMD,TsuneoShimizuMDKantoNeurosurgicalHospital,Kuma gaRa,Saitama,Japan摘要我们以往的研究表明,3D-CT血管造影破裂脑动脉瘤大多数情况下,可以取代(DS)的数字减影造影,尤其是前循环的动脉瘤。
三维英语作文

Title: The Wonders of Three-Dimensional Printing in the FutureIn the ever-evolving landscape of technology, three-dimensional (3D) printing stands as a revolutionary breakthrough, reshaping our understanding of manufacturing, design, and even the creative process. This futuristic technology has the potential to revolutionize numerous industries, from healthcare to construction, education to entertainment, and beyond. In this essay, we will delve into the wonders of 3D printing and explore how it could shape our world in the years to come.The Basics of 3D Printing3D printing, also known as additive manufacturing, involves buildingthree-dimensional objects layer by layer from digital models. Unlike traditional subtractive or formative methods, where materials are cut, shaped, or molded, 3D printing adds material precisely where it is needed, resulting in less waste and greater design flexibility. The process begins with a computer-aided design (CAD) file, which is then translated into a series of instructions for the 3D printer. The printer then uses various materials, such as plastics, metals, ceramics, or even biological materials, to create the desired object.Revolutionizing HealthcareOne of the most promising applications of 3D printing lies within the healthcare sector. Doctors can now create personalized medical devices and implants tailored to the patient's exact specifications. This includes prosthetics, custom hearing aids, and even complex organs for transplantation. The technology has also facilitated surgical planning and rehearsal, allowing surgeons to practice intricate procedures on3D-printed replicas of patients' organs before performing the actual surgery. Moreover, 3D bioprinting holds the promise of printing living tissues and organs, potentially solving the issue of organ shortages and transforming regenerative medicine.Transforming IndustriesThe construction industry stands to benefit significantly from 3D printing. By automating the process of building components, 3D printing can significantly reduce construction time, labor costs, and waste. Entire buildings and structures can be printed on-site, using environmentally friendly materials, reducing the need for transportation and minimizing the carbon footprint. Additionally, this technology enables the creation of complex and intricate designs that would be difficult or impossible to achieve with traditional construction methods.Empowering Creativity and EducationIn the realm of creativity and education, 3D printing opens up a world of possibilities. Students and artists can bring their imaginations to life by designing and printing objects that were previously confined to the digital realm. This hands-on experiencefosters innovation, problem-solving skills, and a deeper understanding of design principles. Educational institutions are increasingly incorporating 3D printing into their curricula, transforming classrooms into innovation hubs where students can experiment, learn, and create.Environmental Implications3D printing also has the potential to address environmental concerns. By enabling localized production and reducing the need for long supply chains, it can decrease transportation-related emissions. The technology also promotes circular economy principles by facilitating the recycling of materials and the creation of durable,long-lasting products. Furthermore, 3D printing allows for on-demand manufacturing, reducing overproduction and waste.ConclusionAs the technology continues to advance, the wonders of 3D printing will only become more apparent. From revolutionizing healthcare and transforming industries to empowering creativity and addressing environmental challenges, 3D printing stands as a testament to human ingenuity and the boundless potential of technology. As we move towards an increasingly interconnected and digitalized world, 3D printing will undoubtedly play a pivotal role in shaping our future, making the impossible a reality.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0004031v 1 4 A p r 2000The Three-dimensional Evolution of Rising,Twisted Magnetic Flux Tubes in aGravitationally Stratified Model Convection ZoneW.P.Abbett and G.H.FisherSpace Sciences Laboratory,University of California,Berkeley,CA 94720-7450and Y.Fan HAO,National Center for Atmospheric Research,P.O.Box 3000,Boulder,CO 80307ABSTRACT We present three-dimensional numerical simulations of the rise and fragmentation of twisted,initially horizontal magnetic flux tubes which evolve into emerging Ω-loops.The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone.The MHD equations are solved in the anelastic approximation,and the results are compared with studies of flux tube fragmentation in two dimensions.We find that if the initial amount of field line twist is below a critical value,the degree of fragmentation at the apex of a rising Ω-loop depends on its three-dimensional geometry:the greater the apex curvature of a given Ω-loop,the lesser the degree of fragmentation of the loop as it approaches the photosphere.Thus,the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit.The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk,extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another.These features eventually coalesce after the fragmented portion of the Ω-loop emerges through thephotosphere.Subject headings:methods:numerical —MHD,Sun:interior,Sun:magnetic fields1.IntroductionThe largest concentrations of magnetic flux on the Sun occur in active regions.Great progress has been made over the past decade in understanding the connections between the magnetic field in active regions,observed at the surface of the Sun,to the magnetic field deep in the solar interior.Active regions have a bipolar structure,suggesting that they are the tops of magnetic flux loops which have risen from deep in the solar interior.On average,active regions are oriented in the E-W direction (Hale’s Polarity Law)suggesting that the underlying field geometry is toroidal.The persistence of Hale’s law for periods of several years during a given solar cycle suggests that magneticflux must be stored in a relatively stable region of the solar interior.Several stability arguments(Spruit&van Ballegooijen1982;van Ballegooijen1982;Ferriz-Mas&Sch¨u ssler1993, 1995)show that the only place where suchfields can be confined stably for periods of several years is below the solar convection zone.On the other hand,if magneticfields are placed any significant distance below the top of the radiative zone,they are so stable they could not emerge on the time scale of a solar cycle.We are thus led to the conclusion that the most likely origin of active region magneticfields is from a toroidally orientedfield layer residing in the“convective overshoot region”, a thin,slightly convectively stable layer just beneath the convection zone.This layer also seems to coincide with the“tachocline”(Kosovichev1996;Corbard et al.1999),where the solar rotation rate transitions from solid body behavior in the radiative zone,to the observed latitudinally dependent rotation rate we see at the Sun’s surface.This suggests that not only are solar magneticfields stored in the convective overshoot layer,the overshoot layer is also the most likely site for the solar cycle dynamo(Gilman,Morrow,&DeLuca1989;DeLuca&Gilman1991;Parker1993;MacGregor &Charbonneau1997a,b;Durney1997;Dikpati&Charbonneau1999).Over the past decade,most efforts to study the emergence of active region magneticfields have employed the“thinflux tube”approximation.This model assumes that magneticflux tubes behave as distinct tube-like entities,surrounded byfield-free plasma.The approximation further assumes that the tube diameter is small compared to all other length scales in the problem,and that pressure balance exists across the tube at all times.After adopting these assumptions,it is straightforward to derive an equation of motion for the dynamics of the tube from the momentum equation in MHD.Thinflux tube models of emerging active regions have proven very successful in explaining many properties of active regions in terms offlux tube dynamics in the solar interior.For example,they have successfully explained the variation of active region tilt with respect to the E-W direction as a function of solar latitude(D’Silva&Howard1993;D’Silva&Choudhuri1993;Fisher, Fan&Howard1995),the asymmetric orientation of the magneticfield after emergence(van Driel-Gesztelyi&Petrovay1990;Moreno-Insertis,Sch¨u ssler,&Caligari1994;Cauzzi,Moreno-Insertis, &van Driel-Gesztelyi1996),and the observed scatter in tilts as a function of active region size (Longcope&Fisher1996).In spite of these successes,recent two-dimensional MHD simulations offlux tube emergence have shown results which seem to invalidate many assumptions that are adopted in the thinflux tube approximation.Sch¨u ssler(1979)and Longcope,Fisher,&Arendt(1996)find that an initially buoyant,untwistedflux tube will fragment into two counter-rotating tube elements which then separate from one another,essentially destroying the tube’s initial identity.Moreno-Insertis& Emonet(1996)and Fan,Zweibel,&Lantz(1998)have demonstrated via two-dimensional MHD simulations that in order to prevent aflux tube from fragmenting,enough twist must be introduced into the tube to provide a cohesive force to balance the hydrodynamic forces acting to rip it apart.That critical twist is defined,roughly,by that necessary to make the Alfv´e n speed from the azimuthal component of thefield at least as great as the relative velocity between the tube andthefield free plasma surrounding it(Linton,Longcope,&Fisher1996;Emonet&Moreno-Insertis 1998;Fan,Zweibel,&Lantz1998).But when global levels of twist in active regions(Pevtsov,Canfield,&Metcalf1995;Longcope, Fisher,&Pevtsov1998)are determined from vector magnetograms,the amplitude of the observed twist is typically far smaller than this critical value(Longcope et al.1999).When plotted as a function of active region latitude,the twists exhibit large scatter,but superimposed on this apparently random behavior there is a slight,but clearly discernible trend for active regions in the northern hemisphere to be negatively twisted,while those in the south are positively twisted.Longcope,Fisher,&Pevtsov(1998)have developed a theoretical model which not only explains the latitudinal variation of twist,but also can account for the largefluctuations in twist from active region to active region.In this model,an initially untwistedflux tube rises through the convection zone in accordance with the thinflux tube approximation.Coriolis forces acting on convective eddies produce a non-zero average kinetic helicity,which is proportional to latitude.The kinetic helicity acts to“writhe”theflux tube,which is then twisted in the opposite direction to preserve its magnetic helicity.Longcope,Fisher,&Pevtsov(1998)showed that this model can explain the observed data.Yet the model assumes from the beginning that the thinflux tube approximation can be used,even for an initially untwisted tube,while the two-dimensional MHD simulations suggest that this is invalid.Is there some way out of this quandary,which we dub“Longcope’s Paradox”?In this paper,we describe MHD simulations offlux tube fragmentation in three dimensions. The result of these simulations is that the critical degree of twist necessary to prevent fragmentation is reduced dramatically by the presence offlux tube curvature,as will be present in an emergingΩ-loop.Wefind that for afixed amount of twist,the degree of fragmentation is a function of the tube’s curvature,and transitions asymptotically to the two-dimensional limit as the curvature approaches zero.Even forflux tubes with little to no initial twist,the fragmenting magnetic morphology at the apex of an emergingΩ-loop is considerably less dispersed than the two-dimensional simulations would indicate—afinding consistent with the simulation results of Dorch&Nordlund(1998).It is not clear at this time whether our results resolve Longcope’s paradox or not,but they certainly ameliorate the problem a great deal.The remainder of this paper is organized as follows:In Section2we briefly discuss the formalism of the anelastic approximation employed in our models,together with the numerical methods used to solve the system of equations.We also describe the range of initial configurations that we use to explore the relationship betweenflux tube fragmentation,tube geometry,and the initial twist of thefield lines.At the beginning of Section3,we define what is meant by aflux tube in the context of our three-dimensional MHD simulations,and further define a quantitative measure of the degree of fragmentation of such a tube.We then present the results of our numerical simulations and discuss the implications of the models.Finally,in Section4we summarize our conclusions.2.MethodWe solve the three-dimensional MHD equations in the anelastic approximation(Ogura& Phillips1962;Gough1969)using a portable,modularized version of the code of Fan et al.(1999). The anelastic equations result from a scaled-variable expansion of the equations of compressible MHD(for details see Lantz&Fan1999and references therein),and describe variations of a plasma about a stratified,isentropic reference state.This approach is valid for low acoustic Mach number plasma below the photosphere(M≡v/c s≪1),where the Alfv´e n speed v a is much less than the local sound speed c s(Glatzmeier1984).The primary computational advantage of this technique is that fast-moving acoustic waves are effectivelyfiltered out of the simulations.This allows for much larger timesteps than would be possible in fully compressible MHD,and unlike a Bousinnesq treatment,a non-trivial background stratification can be included in the models.This method is well suited to our investigation of the evolution and fragmentation of magneticflux tubes,since our region of interest lies well within the limits of validity of this approximation,and since we require many simulations to fully explore the relevant parameter space.It is important to note,however, that where M is not≪1,a fully compressible treatment(such as that of Bercik,Stein,&Nordlund 1999)is required.The equations of anelastic MHD are as follows:∇·(ρ0v)=0(1)ρ0 ∂v4π(∇×B)×B+∇·Π(2)ρ0T0 ∂s14π|∇×B|2+(Π·∇)·v(3)∇·B=0(4)∂Bρ0=p1T0(6)s1T0−γ−1p0.(7)Here,ρ1,p1,T1,s1,v,and B refer to the density,gas pressure,temperature,entropy,velocity,and magneticfield perturbations,whileρ0,p0,T0,and s0denote the corresponding values of the zeroth order reference state,described in detail below.g=−gˆz is the acceleration due to gravity,and is assumed to be uniform in our calculations.The quantity c p represents the specific heat at constant pressure.The viscous stress tensorΠis given byΠij≡µ ∂v i∂x i−2A detailed description of the numerical methodology we use in the solution of the anelastic MHD equations can be found in Appendix A of Fan et al.(1999).Briefly,the non-dimensional form of the equations are solved in a rectangular domain assuming periodic boundary conditions in the horizontal directions,and non-penetrating,stress-free conditions at the upper and lower boundaries.The magneticfieldB and the momentum densityρ0v are both divergence-free,and thus each can be expressed in terms of two scalar potentials:B=∇×∇×Bˆz+∇×Jˆz(9) andρ0v=∇×∇×Wˆz+∇×Zˆz.(10) These potentials,along with the other dependent variables of the problem,are spectrally decom-posed in the horizontal Cartesian directions.The Fourier variables are discretized with respect to the vertical direction,and the vertical derivatives are approximated by fourth-order,centered dif-ferences.A semi-implicit method is then used to time-advance thefive discretized scalar equations for the Fourier ing operator splitting,the second-order Adams-Bashforth scheme is applied to the advection terms,and the second-order Crank-Nicholson scheme is applied to the diffusion terms(see Press et al.1986for a general discussion of these methods).To investigate the dynamics offlux tube fragmentation,and how this process depends on the initial state and eventual geometry of the tube,we carried out a total of16simulations.In each case, an ideal gas ofγ=5/3is assumed;the reference state is taken to be an adiabatically stratified polytrope of index m=1.5(related toγby m=1/(γ−1));andµ,η,andρ0K are assumed constant throughout the simulation domain.The diffusive parameters enter into the calculation via the Reynolds number(R e≡[ρ][z][v]/µ),the magnetic Reynolds number(R m≡[z][v]/η),and the Prandtl number(P r≡µ/(Kρ0)).The density and temperature scales([ρ]and[T])are defined as the density and temperature of the reference state at the bottom of the simulation domain(ρr and T r),and the length scale[z]is defined as the pressure scale height of the reference state at that same location(H r=r∗T r/g,where r∗≡R/µare the ideal gas constant and mean molecular weight respectively).The velocity scaling[v]is given as the characteristic Alfv´e n speed along the axis of the initial magneticflux tube.For each simulation,both R e and R m are set to 3500,and P r is set to unity.Each run begins with a static,cylindrical magneticflux tube embedded in a polytropic,field-free,reference state.The vertical domain of each simulation spans5.147pressure scale heights(or 3.088density scale heights).The tube initially has the form:B=Bθ(r)ˆθ+B x(r)ˆx,(11)whereB x(r)=B0e−r2/a2(12) andqBθ(r)=Here,Bθ(r)denotes the azimuthal component of thefield in the tube’s cross-section,and B x(r) refers to the axial component(which lies perpendicular to g=−gˆz along the Cartesian directionˆx ).Both are given as functions of r,the radial distance to the central axis in the tube’s cross-section. For each simulation,the initial size of theflux tube,a(defined as the FWHM of B x(r)),is set to 0.1H r,and the magneticfield perturbations are scaled to the initial strength of the axialfield at tube center(B0).The distance over which afield line rotates once around the axis of the tube is given by2πa/q,where q is the non-dimensional twist parameter of equation(13).Note that this definition of q differs from that of Linton,Longcope,&Fisher(1996)by a factor of tube width, a.Both q and a are assumed constant,so that the initial rate offield line rotation per unit length along the tube(q/a for length scale a)remainsfixed.To investigate how the tube’s initial twist impacts the amount of fragmentation apparent during its rise,we consider three representative values of the twist parameter:q=1/4,q=3/16,and q=1/8.Our goal is to model the dynamics of an emergingΩ-loop.However,due tofinite computational resources,we cannot evolve eachflux tube self-consistently from an initial state of force balance(eg. Caligari,Moreno-Insertis,&Sch¨u ssler1995;Fan&Fisher1996;Fan1999).We therefore introduce an ad-hoc,entropy perturbation at t=0that causes the tube to rise and emerge in the shape of anΩ-loop.We argue that the physics of the hydrodynamic interaction of the rising loop with its environment depends primarily on the geometry of the loop and its velocityfield rather than how it arrived at itsΩ-loop configuration.The initial entropy perturbation is of the forms1=S0e−r2/a2 e−(x−L/2)2/L L−1“s”mall256zone domain).The second letter of the label describes the eventual radius of curvature at the apex of the rising tube.If“L”is used,the run upon completion has a relatively“l”arge radius of curvature at the apex,and theΩ-loop spans most of the computational domain in theˆx direction.Otherwise,“S”is used to denote a“s”horterΩ-loop;one which exhibits a smaller radius of curvature at its peak,and spans a smaller portion of the box length(this is accomplished by varying the parameter L in equation[14]in afixed computational box).Labels with only one letter refer to the two-dimensional limiting cases.Note that it is the number of zones in theˆx direction that is changed between different cases,and not the grid resolution.3.ResultsIn general,the magneticfield distribution in three dimensions can become quite complex. Wefind it useful to describe thefield more intuitively in terms of the evolution and possible fragmentation of our initial magneticflux tube.To accomplish this,we specify a new coordinate system based on the path of theflux tube through our Cartesian domain.We define the path of the tube in terms of the Cartesian variable x at any given time during a simulation.Setting up this new coordinate system and its basis vectors is a multi-step process.Wefirst consider the magneticfield weighted moments of the position within vertical slices through relevant regions of the computational domain:Φ(x) z|B(x,y,z)|dy dzΦ(x) y|B(x,y,z)|dy dz,(15) whereΦ(x)≡ |B(x,y,z)|dy dz.(16) Then it is natural to define a path given by the vectorr0(x)≡xˆx+z(x)ˆz(17) and to construct the Frenet tangent vector along this path,ˆℓ0≡ 1+ d dx 2+ d dx 2 −1/2 ˆx+d dxˆy+d dxˆz .(18)The path traced by r0is only afirst approximation to the path of theflux tube.To establish the actual path of the tube,we calculate the magneticfield weighted position along a plane normal toˆℓ0passing through a given point along r0.This plane is defined by the equationˆℓ0·(r−r0)=0, and its surface can be parameterized by r=u(v,w)ˆx+vˆy+wˆz;where u(v,w)≡(ℓy(z−w))/ℓx+x,and theℓi’s refer to the Cartesian components ofˆℓ0.With the area element along thissurface given by dS =|∂r /∂v ×∂r /∂w |dv dw =(ˆx ·ˆℓ0)−1dv dw ,the total unsigned magnetic flux across the plane can be expressed as ΦS ≡ S |B (v,w )|dS .We now define a new set of moments:ΦS v |B (v,w )|(ˆx ·ˆℓ0)−1dv dw ΦSw |B (v,w )|(ˆx ·ˆℓ0)−1dv dw.(19)Along with v,u ˆx +w ˆz .(20)The frame of reference of the tube is then given by the Frenet tangent,normal,and binormalvectors along r :ˆℓ=d r /ds (where ds is the infinitesimal path length along r ),ˆn =κ−1d ˆℓ/ds ,and ˆb =ˆℓ׈n ,respectively.The tube’s curvature at a given point along r is simply κ=|d ˆℓ/ds |.Of course,where the curvature of the flux tube is zero,the normal (and hence binormal)vectors are ill-defined.However,in the course of our analysis,we find that zero curvature occurs only at very localized κinflection points,or along horizontally oriented tubes (where vertical slices can be used to define a cross-sectional plane),and thus this limitation proves inconsequential.We note that our formalism is not terribly general,as it precludes the consideration of unusual configurations such as vertically oriented tubes,or tubes that are stacked on top of one another;however,none of these situations are encountered in our study.Depending on the initial degree of twist,portions of the rising tube will shed vortex pairs,and the magnetic flux will be redistributed in the tube cross-section such that much of the flux is located away from the tube’s central axis.In some cases,the distribution of magnetic flux no longer resembles a single,cohesive tube;rather it has spread out and split apart into a configuration that can best be described as two separate flux tubes.At this point,we consider the tube to be “fragmented”.A quantitative measure of this fragmentation can be obtained by first calculating the second moments of the magnetic field strength along the normal and binormal directions of the tube:<(n −ΦS ′ S ′(n −b )2>≡1b 2|B (n,b )|dS ′.(21)Here,r =n ˆn +b ˆb spans the two-dimensional space of the plane normal to ˆℓ,dS ′is the area element in that plane,and ΦS ′≡ S ′|B (n,b )|dS ′is the corresponding unsigned flux (the ℓdependence ofthe variables is implicitly understood).In the above equations,b ≡(1/ΦS ′) S ′b |B (n,b )|dS ′represent the first moments of the field distribution in this geometry.Due to the symmetry of our particular problem,the relative deformation of the tube along its cross-section can be represented by the ratio of the binormal to normal second moments:f =<(b −<(n −The total spread of thefield distribution,σ2=(1/ΦS′) S′ (n−b)2 |B(n,b)|dS′,can be used as a measure of how far the tube has dispersed in the cross-sectional plane.From an examination of numerous simulations,we empiricallyfind that a magneticflux tube can be considered to have split apart when its deformation,f,exceeds1.5.We therefore use f as our measure of the degree of fragmentation of the tube,consistent with the results of Sch¨u ssler (1979)and Longcope,Fisher,&Arendt(1996).If f>1.5,then the path of each individualflux tube fragment is calculated using equations(19)and(20)over subdivided portions of the surface S.Since there is a fairly high degree of symmetry in our runs,the surface can be divided into two parts that lie on either side of a line defined by the Frenet normal.Thus,the regions of integration are easily determined.Figure1is a volume rendering of the magneticfield strength for thefinal timestep of run SL0,and shows the geometry of a tube which has fragmented as it rises toward the surface.Thefield strength distribution is visualized by casting parallel rays through the semi-transparent volume,and calculating the two-dimensional projection onto the viewing plane(IDL’s “voxelcurvature remains zero throughout its rise.Conversely,run SS1represents the shortest length scale we have considered,and thus refers to the run with the highest apex curvature as the tube approaches the photosphere.Figure4shows the degree of fragmentation along the axis of each tube for thesefive values of apex curvature at the time when each tube has risen approximately half-way through the vertical extent of the domain.In order of decreasing curvature,the simulations shown are runs SS1,SL1, LS1,LL1,and L1.The line f=1.5represents the(somewhat arbitrary)point at which we consider the tube to be fragmented.It is easy to see that as the level of apex curvatureκincreases,the less the tube fragments for afixed value of q.Figure4also shows that although the initial value of twist was slight,three of the four simulations have yet to show clear signs of fragmentation at the apex of the loop.This suggests that in three dimensions,the amount of twist necessary to prevent fragmentation is substantially reduced from the two-dimensional value—a point that we will return to later in this section.Note that toward the footpoints of each loop,the value of fκfalls below1(theκsubscript is included to emphasize the dependence of the degree of fragmentation f on the tube’s apex curvatureκ).This reflects the net elongation of the tube cross-section in theˆn direction as theΩ-loop expands.Figure5shows the time dependence of fκat the loop apex for the set of runs corresponding to those of Figure4.A striking feature of this plot is the reduction by a factor of≈1.5in the degree of fragmentation near the photospheric boundary between the run with zero apex curvature,and the run with the maximum amount of curvature.The difference in fκis large enough that the magneticflux emerges as two individual fragments whenκ=0(run L1),yet is closer to being a single,cohesive tube whenκ 1.7×10−3(run SS1).Note that during the initial stages of the run,before the tube shows signs of fragmentation,fκfalls slightly below1.This is a result of the vertical elongation of the apex cross-section as the tube begins to rise,andflux is pulled into its wake.Wefind that if the initial value of the twist parameter q is greater than a“critical”value,q c, then theflux tube no longer emerges in a fragmented state,(f<1.5)regardless of the radius of curvature of the loop(see Figure6).In our simulations,q c is empirically determined to be only slightly less than3/16,the value chosen for the set of runs SS2,SL2,LS2,LL2,and L2of Figure7. For the two-dimensional limiting cases,the empirically determined critical value is consistent with the condition that theflux tube will split apart when the rise velocity of the tube exceeds the Alfv´e n speed of the azimuthalfield at its edge(note that the initial entropy perturbation in our simulations will affect the rise speed of the tube).However,if the initial twist of theflux tube is less than q c,wefind that the curvature of theΩ-loop plays an important role in determining the degree of fragmentation of the tube prior to its emergence through the photosphere—an effect not accounted for in previous two-dimensional studies offlux tube fragmentation(eg.Longcope,Fisher, &Arendt1996,Emonet&Moreno-Insertis1998,and Fan,Zweibel,&Lantz1998).A comparison of Figure7with Figure5further suggests that as one chooses values of q progressively less than q c,the effect of loop curvature on the degree of apex fragmentation becomes more pronounced.Run L1,the two-dimensional limiting case with a relatively small amount of initialfield line twist,confirms the results of previous two-dimensional simulations(Longcope,Fisher,&Arendt 1996;Emonet&Moreno-Insertis1998;Fan,Zweibel,&Lantz1998),which show that once frag-mentation has occurred,the two counter-rotating fragments repel one another via forces that result from infinitely long vortex lines.In two dimensions,the horizontal separation of the fragments can be understood in terms of the hydrodynamic force acting on an object with a net circulation Γmoving relative to afluid with a velocity v:F=−ρ0v×Γ(see Fan,Zweibel,&Lantz1998). It is the component of this“lift”force per unit volume acting along the line between the centers of vorticity of the tube fragments that acts to push the tubes apart.In three dimensions,the fragments arefinite in extent,and thus these forces are important only over afinite length of the loop.Figure8shows the trajectory of the two fragments(for the weakly-twisted case)at the tube apex forfive different values of curvature.As the level of apex curvature of the tube increases,and the effective axial length scale of each vortex pair decreases,we see that the total volume integrated non-vertical component of the hydrodynamic lift—and thus the fragment separation—is reduced.Field line twisting due to non-uniform rotation of the fragments also acts to reduce the fragment separation.To illustrate the role offield line twist in the interaction of the vortex pairs,we consider a case where the azimuthal component of the magneticfield along the tube is initially zero.Figure9is a volume rendering of the magnitude of the current helicity density(|H c|=|J·B|,where J=∇×B) for thefinal timestep of run SL0(where q≡0).Since the current helicity gives a measure of the twist of the magneticfield,Figure9shows that after the tube rises,spins differentially(see Figure10), and splits apart,the magneticfield along each tube fragment becomes increasingly twisted.The magnetic forces imparted from the increased twist slow the rotational motion of the vortex pairs, and thus the tendency for the tubes to separate is further reduced.Figure11shows that as the apex curvature of theΩ-loop increases,the net circulation near the apex of each fragment decreases. This lessens the repulsive force between fragments,and allowsΩ-loops with a high degree of apex curvature to behave more cohesively.This suppression of circulation in the tube fragments was predicted by Emonet&Moreno-Insertis(1998)and Moreno-Insertis(1997),who suggested that if the footpoint separation of anΩ-loop was small enough,the rotation of the vortex pairs would be suppressed.Since it is reasonable to assume a correlation between footpoint separation and apex curvature,we feel that the results of our simulations are generally consistent with this prediction.3.2.Field Morphology Prior to EmergenceThere are a number of reasons why one must be cautious when comparing our results withflux emergence observations.First,the anelastic approximation becomes marginal as the magneticflux tube approaches the photosphere,where densities decrease to the point that local sound speeds are comparable to Alfv´e n speeds in the plasma.Additionally,in thisfirst generation of models we do not include the effects of spherical geometry or the Coriolis force.Thus,predicted asymmetries in the geometry andfield strength asymmetry of emerging active regions(see Moreno-Insertis,Sch¨u ssler,。