黄山市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄山市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
2. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量
,
,若
,则角B 的大小为( )
A .
B .
C .
D .
3. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
4. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .123cm
C .243cm
D .26cm
5. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i
C .﹣1+i
D .1﹣i
6. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )
A.B.C.D.
7.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是()
A.a<b<c B.c<a<b C.a<c<b D.b<c<a
8.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()
A.i≥7?B.i>15?C.i≥15?D.i>31?
9.已知集合M={0,1,2},则下列关系式正确的是()
A.{0}∈M B.{0}∉M C.0∈M D.0⊆M
10.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()
A.B.﹣C.﹣D.
11.设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是()
A.c<b<a B.c<a<b C.a<b<c D.b<a<c
12.设{}n a是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()
A.1 B.2 C.4 D.6 二、填空题
13.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是.
14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为.
15.已知点A的坐标为(﹣1,0),点B是圆心为C的圆(x﹣1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为.
16.方程(x+y﹣1)=0所表示的曲线是.
17.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则
椭圆的离心率为 .
18.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .
三、解答题
19.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .
20.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:
[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
21.已知函数f(x)=log2(m+)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.
22.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:
(I)AB∥平面EFG;
(II)平面EFG⊥平面ABC.
23.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;
(2)若恰好当60θ=时,S 取得最大值,求a 的值.
24.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
黄山市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题
1.【答案】B
2.【答案】B
【解析】解:若,
则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,
由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,
化为a2
+c2﹣b2=﹣ac,
∴cosB==﹣,
∵B∈(0,π),
∴B=,
故选:B.
【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.
3.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
4.【答案】D
【解析】
考点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.
5.【答案】D
【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①
又z+=2 ②
由①②解得z=1﹣i
故选D.
6.【答案】C
【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},
P={x|0≤x≤1},且M,N都是集合P的子集,
∴根据题意,M的长度为,N的长度为,
当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M∩N的长度的最小值是=.
故选:C.
7.【答案】C
【解析】解:由对数和指数的性质可知,
∵a=log20.3<0
b=20.1>20=1
c=0.21.3 <0.20=1
∴a<c<b
故选C.
8.【答案】C
【解析】解:模拟执行程序框图,可得
S=2,i=0
不满足条件,S=5,i=1
不满足条件,S=8,i=3
不满足条件,S=11,i=7
不满足条件,S=14,i=15
由题意,此时退出循环,输出S的值即为14,
结合选项可知判断框内应填的条件是:i≥15?
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.
9.【答案】C
【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;
对于C,0是集合中的一个元素,表述正确.
对于D,是元素与集合的关系,错用集合的关系,所以不正确.
故选C
【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用
10.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x
轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ
﹣)的图象,
∴φ
﹣=kπ
+,即φ=kπ
+,k∈Z,则φ
的一个可能值为,
故选:D.
11.【答案】B
【解析】解:∵
a=0.5,
b=0.8,
∴0<a<b,
∵c=log20.5<0,
∴c<a<b,
故选B.
【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.
12.【答案】B
【解析】
试题分析:设{}n a的前三项为123
,,
a a a,则由等差数列的性质,可得
132
2
a a a
+=,所以
1232
3
a a a a
++=,
解得
2
4
a=,由题意得13
13
8
12
a a
a a
+=
⎧
⎨
=
⎩
,解得1
3
2
6
a
a
=
⎧
⎨
=
⎩
或1
3
6
2
a
a
=
⎧
⎨
=
⎩
,因为{}n a是递增的等差数列,所以
13
2,6
a a
==,故选B.
考点:等差数列的性质.
二、填空题
13.【答案】[1
,)∪(9,25].
【解析】解:∵
集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得
9<a≤25,
当a<0时,不符合条件,
综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.14.【答案】(x﹣1)2+(y+1)2=5.
【解析】解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+y=0上,
∴a+b=0,①
且(2﹣a)2+(1﹣b)2=r2;②
又直线x﹣y+1=0截圆所得的弦长为,
且圆心(a,b)到直线x﹣y+1=0的距离为d==,
根据垂径定理得:r2﹣d2=,
即r2﹣()2=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x﹣1)2+(y+1)2=5.
故答案为:(x﹣1)2+(y+1)2=5.
15.【答案】=1
【解析】解:由题意得,圆心C(1,0),半径等于4,
连接MA,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,
∴b=,
∴椭圆的方程为=1.
故答案为:=1.
【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.
16.【答案】两条射线和一个圆.
【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
17.【答案】.
【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),
∵∠F1PF2=60°,
∴=,
即2ac=b2
=(a2﹣c2).
∴e2+2e﹣=0,
∴e=或e=﹣(舍去).
故答案为:.
【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
18.【答案】),0(+∞ 【
解
析
】
考点:利用导数研究函数的单调性.
【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不
等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以x
e ,即
()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1 三、解答题
19.【答案】 【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V 1,小三棱锥的体积为V 2,则根据图中所给条件得:V 1=6×4×4=96cm 3
,
V 2=••2•2•2=cm 3,
∴V=v 1﹣v 2=
cm 3
(3)证明:如图,
在长方体ABCD ﹣A ′B ′C ′D ′中,连接AD ′,则AD ′∥BC ′
因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,
又EG⊂平面EFG,所以BC′∥平面EFG;
2016年4月26日
20.【答案】
【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,
前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.
(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,
∴这2人成绩均不低于90分的概率P==.
【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.
21.【答案】
【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,
∵m>0,
∴(x﹣1)(x﹣)>0,
若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);
若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);
若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).
(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.
所以, 解得:
.
【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.
22.【答案】 【解析】证明:(I )在三棱锥A ﹣BCD 中,E ,G 分别是AC ,BC 的中点.
所以AB ∥EG …
因为EG ⊂平面EFG ,AB ⊄平面EFG
所以AB ∥平面EFG … (II )因为AB ⊥平面BCD ,CD ⊂平面BCD 所以AB ⊥CD …
又BC ⊥CD 且AB ∩BC=B 所以CD ⊥平面ABC …
又E ,F 分别是AC ,AD ,的中点 所以CD ∥EF 所以EF ⊥平面ABC …
又EF ⊂平面EFG ,
所以平面平面EFG ⊥平面ABC .…
【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.
23.【答案】(1)2
1sin 212cos a S a a θθ
=
⋅+- (2)23a =【解析】试题
解析:
(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:
22212cos x ax ax θ=+-,
所以2
2
112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θ
θθ
=⋅⋅=⋅+-,
(2)因为()
()
2
2
2cos 12cos 2sin sin 1212cos a a a a a S a a θθθθ
θ
+--⋅=+-'⋅, ()
()
22
2
2cos 121212cos a a a
a a θθ+-=⋅
+-, 令0S '=,得02
2cos ,1a
a θ=
+ 且当0θθ<时,02
2cos 1a
a θ>+,0S '>, 当0θθ>时,02
2cos 1a
a
θ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以2
21
12
a a =+,
解得2a = 因为1a >
,则2a =点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。
24.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,2
2212p p =⨯⇒=,…………2分
即抛物线C 的方程为2
4y x =;…………5分。