备战中考数学锐角三角函数(大题培优 易错 难题)含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学锐角三角函数(大题培优 易错 难题)含详细答案
一、锐角三角函数
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m . 【解析】 【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,
3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .
【点睛】
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).
【答案】32.4米.
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.
试题解析:如图,过点B作BE⊥CD于点E,
根据题意,∠DBE=45°,∠CBE=30°.
∵AB⊥AC,CD⊥AC,
∴四边形ABEC为矩形,
∴CE=AB=12m,
在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE•cot30°=12×3=123,
在Rt△BDE中,由∠DBE=45°,
得DE=BE=123.
∴CD=CE+DE=12(3+1)≈32.4.
答:楼房CD的高度约为32.4m.
考点:解直角三角形的应用——仰角俯角问题.
3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,
∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2时,S=﹣h2+4h+8,
当h≥2时,S=18﹣3h.
【解析】
试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;
(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;
(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.
试题解析:解:(1)如图2,
∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如图3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
考点:1、三角形的外角定理;2、相似;3、解直角三角形
4.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的
延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.
【答案】(1)证明见解析;
(2)四边形AOCD为菱形;
(3)DH=2.
【解析】
试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得
,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出
∠AEC=90°;
(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由
DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.
试题解析:(1)连接OC,
∵EC与⊙O切点C,
∴OC⊥EC,
∴∠OCE=90°,
∵点CD是半圆O的三等分点,
∴,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(内错角相等,两直线平行)
∴∠AEC+∠OCE=180°,
∴∠AEC=90°;
(2)四边形AOCD为菱形.理由是:
∵,
∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四边形AOCD是平行四边形,
∵OA=OC,
∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.
∵四边形AOCD为菱形,
∴OA=AD=DC=2,
∵OA=OD,
∴OA=OD=AD=2,
∴△OAD是等边三角形,
∴∠AOD=60°,
∵DH⊥AB于点F,AB为直径,
∴DH=2DF,
在Rt△OFD中,sin∠AOD=,
∴DF=ODsin∠AOD=2sin60°=,
∴DH=2DF=2.
考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O
于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
【答案】(1)证明见解析;(2);(3).
【解析】
试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.
(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得
,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,
由(1)△PAC∽△PDF得,即可求得PD的长.
(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得
,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.
试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.
∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.
又∵∠PAC=∠PDC,∴△PAC∽△PDF.
(2)连接BP,设,∵∠ACB=90°,AB=5,
∴.∴.
∵△ACE∽△ABC,∴,即. ∴.
∵AB⊥CD,∴.
如图,连接BP,
∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.
∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.
由(1)△PAC∽△PDF得,即.
∴PD的长为.
(3)如图,连接BP,BD,AD,
∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.
∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.
∵,∴.
∵△AGP∽△DGB,∴.
∵△AGD∽△PGB,∴.
∴,即.
∵,∴.
∴与之间的函数关系式为.
考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.
6.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:
∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣
∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)24.
【解析】
试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.
在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.
试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,
∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,
∵tan∠ABC=,∴,∴,
∴,∵∠BNQ=∠QHD=90°,
∴∠ABC=∠QDH,∵OE=OD,
∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,
∴BG=BQ=,GN=NQ=,
∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,
设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,
∵OB2=BH2+OH2,∴,解得:,当QH=
时,∴QD=,
∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=
∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,
∵tan∠OED=,∴,
∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.
考点:1圆;2相似三角形;3三角函数;4直角三角形.
7.如图,矩形OABC中,A(6,0)、C(0,3、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.
(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标
为;
(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
【答案】(1)(6,23). 30.(3,33)(2)
()
()
()
()
2
43
x430x3
3
31333
x x3x5
S{
23
x1235x9
3
543
x9
+≤≤
-+-<≤
=
-+<≤
>
【解析】
解:(1)(6,23). 30.(3,33).
(2)当0≤x≤3时,
如图1,
OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;
由题意可知直线l∥BC∥OA,
可得
EF PE DC31
==
OQ PO DO3
33
==,∴EF=
1
3
(3+x),
此时重叠部分是梯形,其面积为:
EFQO
14343S S EF OQ OC 3x x 432
33
==+⋅=+=+梯形()() 当3<x≤5时,如图2,
()HAQ EFQO EFQO 221S S S S AH AQ 243331333 x 43x 3=x x 32232
∆=-=-⋅⋅=+---+-梯形梯形。

当5<x≤9时,如图3,
12S BE OA OC 312x 2323 =x 123=+⋅=--+()()。

当x >9时,如图4,
111833S OA AH 6=22x x
=⋅=⋅⋅. 综上所述,S 与x 的函数关系式为:
(
)()()()243x 430x 33
31333x x 3x 5S {23x 1235x 9543x 9+≤≤-+-<≤=-+<≤>. (1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标:
∵四边形OABC 是矩形,∴AB=OC ,OA=BC ,
∵A (6,0)、C (0,23),∴点B 的坐标为:(6,23).
②由正切函数,即可求得∠CAO 的度数:
∵OC 233tan CAO ==OA 63
∠=,∴∠CAO=30°. ③由三角函数的性质,即可求得点P 的坐标;如图:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,
∵∠PQO=60°,D (0,3∴3
∴0PE
AE 3tan 60==.
∴OE=OA ﹣AE=6﹣3=3,∴点P 的坐标为(3,3).
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.
8.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高
3,结果精确到0.1米)
【答案】22.4m
【解析】
【分析】
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.
【详解】
解:在Rt △AFG 中,tan ∠AFG =3, ∴FG =tan 3
AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =
AG CG , ∴CG =tan AG ACG
∠=3AG . 又∵CG ﹣FG =24m ,
即3AG ﹣3
=24m , ∴AG =123m ,
∴AB =123+1.6≈22.4m .
9.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,
40),直线AB :y =
13
x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作EF ⊥x 轴交直线AB 于点F ,以EF 为一边向右作正方形EFGH .
(1)求边EF 的长; (2)将正方形EFGH 沿射线FB 10个单位的速度匀速平移,得到正方形
E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).
①当点F1移动到点B时,求t的值;
②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.
【答案】(1)EF=15;(2)①10;②120;
【解析】
【分析】
(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4
3
x+40,可
求出P点坐标,进而求出F点坐标即可;
(2)①易求B(0,5),当点F1移动到点B时,1010=10;
②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE
上时,在Rt△F'NF中,NF
NF'
=
1
3
,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,
4
3
MH
EM
'
=,
t=4,S=1
2
×(12+
45
4
)×11=
1023
8
;当点G运动到直线DE上时,在Rt△F'PK中,
PK
F K'
=
1
3

PK=t-3,F'K=3t-9,在Rt△PKG'中,PK
KG'

3
1539
t
t
-
-+

4
3
,t=7,S=15×(15-7)=120.
【详解】
(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),

300
40
k b
b
+=


=



4
3
40
k
b

=-


⎪=


∴y=﹣4
3
x+40,
直线AB与直线DE的交点P(21,12),由题意知F(30,15),
∴EF=15;
(2)①易求B (0,5),
∴BF =1010, ∴当点F 1移动到点B 时,t =101010÷=10;
②当点H 运动到直线DE 上时,
F 点移动到F'的距离是10t , 在Rt △F'NF 中,NF NF '=13
, ∴FN =t ,F'N =3t ,
∵MH'=FN =t ,
EM =NG'=15﹣F'N =15﹣3t ,
在Rt △DMH'中,
43
MH EM '=, ∴
41533
t t =-, ∴t =4, ∴EM =3,MH'=4,
∴S =
1451023(12)11248
⨯+⨯=; 当点G 运动到直线DE 上时,
F 点移动到F'10,
∵PF =10
∴PF'10t ﹣10,
在Rt △F'PK 中, 13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,
在Rt △PKG'中,
PK KG '=31539t t --+=43
, ∴t =7,
∴S =15×(15﹣7)=120.
【点睛】
本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.
10.如图,A (0,2),B (6,2),C (0,c )(c >0),以A 为圆心AB 长为半径的¶BD
交y 轴正半轴于点D ,¶BD
与BC 有交点时,交点为E ,P 为¶BD 上一点. (1)若c =63+2,
①BC = ,¶DE
的长为 ; ②当CP =62时,判断CP 与⊙A 的位置关系,井加以证明;
(2)若c =10,求点P 与BC 距离的最大值;
(3)分别直接写出当c =1,c =6,c =9,c =11时,点P 与BC 的最大距离(结果无需化简)
【答案】(1)①12,π;②详见解析;(2)①
65;②65
(3)答案见详解 【解析】
【分析】 (1)①先求出AB ,AC ,进而求出BC 和∠ABC ,最后用弧长公式即可得出结论;②判断出△APC 是直角三角形,即可得出结论;
(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;
(3)画图图形,同(2)的方法即可得出结论.
【详解】
(1)①如图1,
∵c =3+2,
∴OC =3,
∴AC =3﹣2=3
∵AB =6,
在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =
AC AB 3 ∴∠ABC =60°,
∵AE =AB ,
∴△ABE 是等边三角形,
∴∠BAE =60°,
∴∠DAE =30°, ∴»DE 的长为306180
π⨯=π, 故答案为12,π;
②CP 与⊙A 相切. 证明:∵AP =AB =6,AC =OC ﹣OA =3
∴AP 2+CP 2=108,
又AC 2=(32=108,
∴AP 2+PC 2=AC 2.
∴∠APC =90°,即:CP ⊥AP .
而AP 是半径,
∴CP 与⊙A 相切.
(2)若c =10,即AC =10﹣2=8,则BC =10.
①若点P 在»BE
上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,
S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245
, ∴PF =AP ﹣AF =65
; ②如图3,若点P 在»DE 上,作PG ⊥BC 于点G ,
当点P 与点D 重合时,PG 最大.
此时,sin ∠ACB =
PG AB CP BC =, 即PG =AB CP BC ⋅=65
∴若c =10,点P 与BC 距离的最大值是
65; (3)当c =1时,如图4,
过点P 作PM ⊥BC ,sin ∠BCP =
AB PM BC CD = ∴PM =3737AB CD BC ⋅===423737
; 当c =6时,如图5,同c =10的①情况,PF =6131213613
-,
当c=9时,如图6,同c=10的①情况,PF=
4285
6
85 ,
当c=11时,如图7,
点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG=18117

【点睛】
此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.
11.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】主塔BD的高约为86.9米.
【解析】
【分析】
根据直角三角形中由三角函数得出BC 相应长度,再由BD=BC+CD 可得出.
【详解】
在Rt △ABC 中,∠ACB =90°,
sin BC A AB
=. ∴sin 152sin311520.5279.04BC AB A ︒=⨯=⨯=⨯=.
79.047.986.9486.9BD BC CD =+=+=≈(米)
答:主塔BD 的高约为86.9米.
【点睛】
本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.
12.如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点
A 的坐标为(4,0),点D 在边A
B 上,且tan ∠AOD =
12
,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H .
(1)求B ,D 两点的坐标;
(2)当点E 在线段OB 上运动时,求∠HDA 的大小; (3)以点G 为圆心,GH 的长为半径画⊙G .是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.
【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣
2,8﹣2)或(2,2)或42164216,77⎛⎫ ⎪ ⎪⎝⎭
或16421642,77⎛-- ⎝⎭
,理由见解析 【解析】
【分析】
(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12

AD=1
2
OA=2,据此可得点D坐标;
(2)由
1
tan
2
GF
GOF
OF
∠==知GF=
1
2
OF,再由∠AOB=∠ABO=45°知OF=EF,即
GF=1
2
EF,根据GH∥x轴知H为AE的中点,结合D为AB的中点知DH是△ABE的中位
线,即HD∥BE,据此可得答案;
(3)分⊙G与对角线OB和对角线AC相切两种情况,设PG=x,结合题意建立关于x的方程求解可得.
【详解】
解:(1)∵A(4,0),
∴OA=4,
∵四边形OABC为正方形,
∴AB=OA=4,∠OAB=90°,
∴B(4,4),
在Rt△OAD中,∠OAD=90°,
∵tan∠AOD=1
2

∴AD=1
2OA=
1
2
×4=2,
∴D(4,2);
(2)如图1,在Rt△OFG中,∠OFG=90°
∴tan∠GOF=GF
OF =
1
2
,即GF=
1
2
OF,
∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,
∴GF=1
2
EF,
∴G为EF的中点,
∵GH∥x轴交AE于H,
∴H为AE的中点,
∵B(4,4),D(4,2),
∴D为AB的中点,
∴DH是△ABE的中位线,
∴HD∥BE,
∴∠HDA=∠ABO=45°.
(3)①若⊙G与对角线OB相切,
如图2,当点E在线段OB上时,
过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=2x,OF=EF=22x,
∵OA=4,
∴AF=4﹣22x,
∵G为EF的中点,H为AE的中点,
∴GH为△AFE的中位线,
∴GH=1
2AF=
1
2
×(4﹣22x)=2﹣2x,
则x=2﹣2x,
解得:x=22﹣2,
∴E(8﹣42,8﹣42),
如图3,当点E在线段OB的延长线上时,
x2x﹣2,
解得:x =2+2, ∴E (8+42,8+42);
②若⊙G 与对角线AC 相切,
如图4,当点E 在线段BM 上时,对角线AC ,OB 相交于点M ,
过点G 作GP ⊥OB 于点P ,设PG =x ,可得PE =x ,
EG =FG =2x ,
OF =EF =22x ,
∵OA =4,
∴AF =4﹣22x ,
∵G 为EF 的中点,H 为AE 的中点,
∴GH 为△AFE 的中位线,
∴GH =12AF =12
×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22,
∴3x ﹣22=2﹣2x ,
∴4227
x +=, ∴42164216,E ⎛⎫++ ⎪ ⎪⎝⎭
; 如图5,当点E 在线段OM 上时,
GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得4227
x -=, ∴16421642,77E ⎛⎫-- ⎪ ⎪⎝⎭
; 如图6,当点E 在线段OB 的延长线上时,
3x ﹣22=2x ﹣2,
解得:422x -=(舍去); 综上所述,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,77⎛⎫++ ⎪ ⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭
. 【点睛】
本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.
13.已知:如图,直线y =-x +12分别交x 轴、y 轴于A 、B 点,将△AOB 折叠,使A 点恰好落在OB 的中点C 处,折痕为DE .
(1)求AE 的长及sin ∠BEC 的值;
(2)求△CDE 的面积.
【答案】(1)2,sin ∠BEC=
35;(2)754
【解析】
【分析】
(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得
∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,
解得:x=52,
故可得sin∠BEC=
3
5
CF
CE
,AE=52;
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
AD•AE×sin45°=
2
4
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=152,即AD=152
, 故S △CDE =S △AED =24
AD×AE=754. 【点睛】 本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键. 14.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:
(发现)(1)MN n
的长度为多少;
(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.
(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.
(拓展)当MN n 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.
【答案】【发现】(1)MN n 的长度为
π3;(23P 的坐标为10(,);或23 0)或23 0();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.
【解析】
【分析】
发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论;
探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;
拓展:先找出·MN
和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】
[发现]
(1)∵P (4,0),∴OP =4.
∵OA =3,∴AP =1,∴·MN 的长度为6011803
ππ⨯=.
故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°.
∵∠PQA =90°,∴PQ 12=
PA 12=,∴AQ =AP ×cos30°32=,∴S 重叠部分=S △APQ 12=PQ ×AQ 38
=. 即重叠部分的面积为
38. [探究]
①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1;
∴点P 的坐标为(1,0);
②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =
,∴OP 12330cos ==︒,∴点P 的坐标为(233
,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23=; ∴点P 的坐标为(233-
,0);
[拓展]
t 的取值范围是2<t ≤3,4≤t <5,理由:
如图5,当点N 运动到与点A 重合时,·MN
与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-=
=3,·MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3. 如图6,当⊙P 运动到PM 与OB 重合时,·MN
与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,·MN
与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
15.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
【答案】20.9km
【解析】
分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.
详解:如图,
在Rt △BDF 中,∵∠DBF=60°,BD=4km ,
∴BF=
cos 60BD o
=8km , ∵AB=20km ,
∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,
∴△AEF ∽△BDF ,
∴AE BD

AF BF
∴AE=6km,
在Rt△AEF中,CE=AE•tan74°≈20.9km.
故这艘轮船的航行路程CE的长度是20.9km.
点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.。

相关文档
最新文档