图像分割

合集下载

图像分割

图像分割

图像分割的方法体系
基于阈值的分割方法
阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度 阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据 比较结果分到合适的类别中。因此,该类方法最为关键的一步就是按 照某个准则函数来求解最佳灰度阈值。 1.灰度阈值分割法
灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中 应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g 的如下变换:灰度阈值分割法是一种最常用的并行区域技术,它是图 像分割中应用数量最多的一类。
形状特征
通常情况下,形状特征有两类表示方法,一类是 轮廓特征,另一类是区域特征。图像的轮廓特征 主要针对物体的外边界,而图像的区域特征则关 系到整个形状区域。
各种基于形状特征的检索方法都可以比较有效地 利用图像中感兴趣的目标来进行检索,但它们也 有一些共同的问题,包括:
1.目前基于形状的检索方法还缺乏比较完善的 数学模型;
3.自适应阈值:
在许多情况下,物体和背景的对比度在图像中的各处不是一样的, 这时很难用一个统一的阈值将物体与背景分开。这时可以根据图像的 局部特征分别采用不同的阈值进行分割。实际处理时,需要按照具体 问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻 域范围选择每点处的阈值,进行图像分割。这时的阈值为自适应阈值
其中,T为阈值,对于物体的图像元素g(i,j)=1,对于背景的图 像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适 的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度 值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接 给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算 效率的应用场合(如用于硬件实现),它得到了广泛应用。人们发展了各种 各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等。

第七章 图像分割_PPT课件

第七章 图像分割_PPT课件
•关键点
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义

图像分割方法

图像分割方法

图像分割方法图像分割是图像处理的基本任务之一,它是用来从图像中将特征区分出来的一种编程技术,以提高图像处理任务的效率。

简单地说,图像分割是把一幅图像划分成若干个小块,每块代表一个特定的物体或物体的一部分。

它允许人们更好地理解图像的全局结构和本质,也有助于改善图像识别、检测、分类、检索等方面的性能。

图像分割的本质是将图像分解成两部分:分割区域和非分割区域。

分割区域是指要分割出的物体,而非分割区域表示背景或其他无关物体。

此外,分割有两个重要的部分:分割质量与分割效率。

常见的图像分割方法有基于边缘的方法、基于区域的方法和基于分段树的方法等。

基于边缘的方法是通过边缘检测技术检测图像中的边缘,然后将边缘分割出来,完成图像的分割。

由于这种方法主要考虑的是边缘信息,它不考虑整体的空间关系,所以当边缘信息不够时,可能会出现分割失败的现象。

因此,基于边缘的方法并不是很常用。

基于区域的方法是在图像中检测物体的区域,并将这些区域进行分割。

这种方法可以考虑整体的空间关系,但是也容易在细节考虑方面出现问题,比如区域界限不清晰,或者两个不同物体太接近,造成分割失败。

基于分段树的方法是利用每个像素的连通性和空间关系来构建连通域,然后分割连通域中的物体。

基于分段树的方法不仅可以考虑整体的空间关系,而且可以考虑细节的关系,由于考虑范围较广,因此在一些图像分割任务上,分段树的方法可以得到较好的效果。

此外,还有一种新兴的图像分割技术深度学习。

它采用了深度神经网络,通过深度学习网络可以实现半自动化的图像分割,它的效率要比传统的图像分割技术更高,具有潜力发展。

总之,图像分割是一种非常重要的图像处理技术,它可以帮助人们更好的理解图像的结构,改善图像识别的性能,并且可以应用在诸如自动驾驶、目标跟踪等领域中。

未来,深度学习在图像分割领域也将发挥很重要的作用,带来更高效率、更精确的分割结果。

图像分割的概念

图像分割的概念

图像分割的概念
1、概念:“图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。

2、意义︰它是由图像处理到图像分析的关键步骤。

图像分割是图像处理与理解、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中关键步骤。

图像分割应用在许多方面。

3、应用:汽车车型自动识别系统、检查癌细胞、精密零件表面缺陷检测,处理卫星拍摄的地形地
貌照片等。

在所有这些应用领域中,最终结果很大程度上依赖于图像分割的结果。

图像分割方法

图像分割方法

图像分割方法图像分割是计算机视觉领域中的一个重要问题,它旨在将图像分成具有语义信息的区域。

图像分割在许多应用中都扮演着重要的角色,比如医学图像分析、自动驾驶、图像检索等。

针对不同的应用场景,有多种图像分割方法被提出并应用于实际问题中。

本文将介绍几种常见的图像分割方法,并对它们的原理和特点进行简要的分析。

1. 阈值分割。

阈值分割是一种简单而有效的图像分割方法。

其基本思想是将图像的灰度值按照设定的阈值进行划分,从而将图像分成不同的区域。

对于灰度图像,可以根据像素的灰度值与设定的阈值进行比较,将像素分为目标和背景两类。

阈值分割方法简单易行,但对光照变化和噪声敏感,对于复杂背景和多目标分割效果有限。

2. 边缘检测分割。

边缘检测分割是一种基于图像边缘信息的分割方法。

其基本思想是利用图像中目标与背景之间的边缘信息进行分割。

常用的边缘检测算子有Sobel、Prewitt、Canny等。

通过检测图像中的边缘信息,可以将图像分成具有明显边界的区域。

边缘检测分割方法对光照变化和噪声具有一定的鲁棒性,但在边缘连接处容易出现断裂和断点。

3. 区域生长分割。

区域生长分割是一种基于像素生长的分割方法。

其基本思想是从种子点开始,根据一定的生长准则逐步将与种子点相邻且满足条件的像素加入到同一区域中,直到满足停止准则为止。

区域生长分割方法适用于具有明显区域特征的图像,对于光照变化和噪声具有一定的鲁棒性,但对于种子点的选择和生长准则的确定比较敏感。

4. 基于深度学习的分割方法。

随着深度学习技术的发展,基于深度学习的图像分割方法逐渐成为研究热点。

深度学习模型如FCN、U-Net等在图像分割领域取得了显著的成果。

这些方法利用卷积神经网络对图像进行端到端的学习,能够有效地提取图像的语义信息,对于复杂背景和多目标分割效果较好。

总结。

图像分割是计算机视觉领域中的重要问题,有许多方法可以用来实现图像分割。

不同的方法适用于不同的应用场景,具有各自的特点和局限性。

数字图像处理图像分割

数字图像处理图像分割

如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值

图像分割的常用方法

图像分割的常用方法

图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。

2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。

3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。

4. 模型分割:使用先前训练好的模型对图像分类和分割。

例如,利用卷积神经网络(CNN) 对图像进行分类和分割。

5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。

6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。

7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。

图像分割技术

图像分割技术
数可能找不到边界,此时二阶导数就能提供很有用的信
息。二阶导数对噪声也比较敏感,解决的方法是先对图
像进行平滑滤波,消除部分噪声,再进行边缘检测。
✓ 利用二阶导数信息的算法是基于过零检测的,因此得到
的边缘点数比较少,有利于后继的处理和识别工作。
✓ 各种算子的存在就是对这种导数分割原理进行的实例化
计算,是为了在计算过程中直接使用的一种计算单位。
4.1 边缘检测
4.1.5 Log边缘算子
(2)增强:对平滑图像进行拉普拉斯运算,即:
h( x, y ) 2 ( f ( x, y ) G ( x, y ))
(3)检测:边缘检测判据是二阶导数过零交叉点,并对
应一阶导数的较大峰值。
这种方法的特点是:图像首先与高斯滤波器进行卷积,
这样既平滑了图像又降低了噪声,孤立的噪声点和
第四章 图像分割
在对图像的研究和应用中,人们往往仅对图像中的某些
部分感兴趣,这部分常常称为目标或前景(其他部分称为背
景),它们一般对应图像中特定的、具有独特性质的区域。
为了识别和分析图像中的目标,需要将它们从图像中分离、
提取出来。
图像处理过程
图像分割是指把图像分成各具特性的区域并提取出感
兴趣目标的技术和过程。
同的像素具有不同的权值,对算子结果产生的影响也不同。
4.1 边缘检测
4.1.2 Sobel边缘算子
离散性差分算子
计算简单,检测效率高,对噪声具有平滑抑制作用,但是得
到的边缘较粗,且可能出现伪边缘。Sobel算子并没有将图像
的主体与背景严格地区分开来,换言之就是Sobel算子没有基
于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视

图像分割

图像分割

图像分割胡辑伟信息工程学院图像分割●概述●间断检测●边缘连接和边界检测●阈值处理●基于区域的分割●分割中运动的应用图像分割●分割的目的:将图像划分为不同区域●三大类方法✓根据区域间灰度不连续搜寻区域之间的边界,在间断检测、边缘连接和边界检测介绍✓以像素性质的分布进行阈值处理,在阈值处理介绍✓直接搜寻区域进行分割,在基于区域的分割中介绍图像分割●概述✓在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景✓为了辨识和分析目标,需要将有关区域分离提取出来,在此基础上对目标进一步利用,如进行特征提取和测量✓图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程图像分割●概述(续)✓特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域✓图像分割算法是基于亮度值的不连续性和相似性不连续性是基于亮度的不连续变化分割图像,如图像的边缘根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合图像分割举例PR=0.718PR=0.781#249061#253036#169012PR=0.800PR=0.607PR=0.758PR=0.759PR=0.933PR=0.897PR=0.763PR=0.933PR=0.897PR=0.953PR=0.951PR=0.670PR=0.865PR=0.710#134052Image MDL MML ERL1ERL2#3096#85048#175043#182053#219090pr=0.521 pr=0.480 pr=0.861pr=0.740pr=0.375pr=0.613pr=0.822 pr=0.565pr=0.401pr=0.858pr=0.820 pr=0.850pr=0.789pr=0.890pr=0.914Row 1: Image Row 2: RPCL Row 3: CAC Row 4: ERL基于边缘生长的图像分割算法结果参考文献:林通,“基于内容的视频索引与检索方法的研究”,北京大学数学科学学院,博士论文,2001。

第7章图像分割1

第7章图像分割1

-1 1
Grad( x,y ) T 其它
-1
1
为了检测边缘点,选取适当的阈值T,对梯度图像进行二值化,则有:
1 g ( x, y ) 0
这样形成了一幅边缘二值图像g(x,y).
特点:仅计算相邻像素的灰度差,对噪声比较敏感,无法抑止噪声的影响。
2)Roberts算子
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx’Leabharlann fy’-1• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度
算子略好。
3) Prewitt算子
• 公式 f x f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1)
1
1
1
• 特点:在检测边缘的同时,能抑止噪声的影响.
4)Sobel算子
• 公式
f x f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f y f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1)
3 0
3 3
3 3 3
3 0
3 -5

遥感数字图像处理教程11图像分割PPT课件

遥感数字图像处理教程11图像分割PPT课件

优点
能够准确提取目标的边缘信息 。
缺点
对噪声和细节较为敏感,容易 产生伪边缘。ቤተ መጻሕፍቲ ባይዱ
基于特定理论的分割
基于特定理论或算法的分割
根据特定的理论或算法,如分形理论、小波 变换、遗传算法等,对图像进行分割。
优点
能够针对特定问题提出有效的解决方案。
适用场景
适用于特定领域的图像分割问题。
缺点
实现难度较大,运算量较大。
对复杂场景的应对能力有限
在复杂背景、光照不均、目标遮挡等情况下,现有算法的分割效果不 佳。
未来研究的方向与展望
提升算法泛化能力
研究能够适应不同场景和数据 集的图像分割算法,提高算法 的鲁棒性和泛化能力。
优化算法计算效率
通过算法优化、并行计算等技 术手段,降低计算复杂度,提 高处理速度,满足实时性要求 。
03
遥感数字图像处理中的图像分割
遥感数字图像的特点
数据量大
遥感数字图像通常覆盖大面积区域,产生大量的 数据。
多种波段
多光谱和超光谱遥感图像包含多个波段,提供更 丰富的地物信息。
动态变化
遥感数字图像可以反映地物的动态变化,如城市 扩张、植被生长等。
地理信息丰富
遥感数字图像包含丰富的地理信息,如经纬度、 高程等。
在遥感图像处理中,图像分割 技术尤为重要,因为遥感图像 通常具有较大的尺寸、复杂的 背景和多种类型的目标,需要 采用高效的图像分割方法来提 取有用的信息。
图像分割的应用领域
医学影像分析
在医学领域中,图像分割技术被广泛应用于医学影 像的预处理阶段,如X光片、CT和MRI等影像的分割 ,以便于医生对病变部位的定位和诊断。
算法泛化能力不足

图像分割概述

图像分割概述

图像分割总结图像分割就是把图像中有意义的特征部分提取出来,例如,图像中的边缘、区域等,通过特征部分的提取将图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标。

图像分割是由图像处理到图像分析以及其他操作的关键步骤。

现有的图像分割方法主要分以下几类:基于阈值的分割方法(可以分为全局阈值方法和局部阈值方法)、基于区域的分割方法(区域生长算法、分裂合并算法、分水岭算法等)、基于边缘的分割方法(分为串行边缘检测技术和并行边缘检测技术)以及基于统计模式分类的分割方法等。

1、智能剪刀智能剪刀是一个新的,交互式的,用于图像分割和合成的工具。

数字图像分割技术用来从周围的背景中提取图像成分。

但是当时基于计算机的分割工具非常粗糙,并且和手工跟踪相比没有太大的优势。

然而,智能剪刀可以通过鼠标的移动快速和精确地提取图像中的物体。

当鼠标确定的位置接近一个物体的边缘的时候,一个live-wire边界捕捉并且包围了我们感兴趣的物体。

live-wir e是一种交互式分割方法,其基本思想是利用动态规划方法产生图像中给定两点间的最优路径,合理地构造代价函数和选择起始点和目标点,用以提取物体的边缘。

live-wir e边界检测将离散的动态规划问题规划为一个二维图像的搜索问题。

动态规划提供了数学意义上最佳的边界,同时也极大的减少了局部噪声和其他干扰结构的影响。

该算法选择的边界不是邻接边中的最强壮的边,而是与现在正在被跟踪的边的特定类型相符合的边,这一过程我们成为on-the-fly training,增强了算法的可靠性和智能剪刀工具的健壮性。

通过智能剪刀提取出来的物体可以被放大或者缩小,旋转,以及利用live-wire掩模和空间频率等值性组合成新的图像。

空间频率等值是利用巴特沃斯低通滤波器实现的。

智能剪刀提供了一个用于物体提取和图像合成的精确并且高效的交互性工具,它不仅可以用于灰度图像,同时也可适用于任意复杂度的彩色图像,并且基于这个工作还有很多扩展应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重复步骤2,当没有区域需分裂时,算法结束。
9
区域合并
基本思想
合并运算就是把相邻的具有相似性质的区域合成为一个区域
合并算法中最重要的运算是确定两个区域的相似性 评判区域相似性方法有许多,评判相似性的方法可以基于区域的灰 度值,也可以基于区域边界的强弱性等因素。一种简单的方法是比较 它们的灰度均值。
基本概念 对图像进行三维可视化处理:其中两个是坐标,另一个是灰度级。
基本思想:假设在每个区域最小值的位置上打一个洞并且让水以均
匀的上升速率从洞中涌出,从低到高淹没整个地形。当处在不同的汇 聚盆地中的水将要聚合在一起时,修建的大坝将阻止聚合。水将只能 到达大坝的顶部处于水线之上的程度。这些大坝的边界对应于分水岭 的分割线。所以,它们是由分水岭算法提取出来的(连续的)边界线。 分水岭分割的主要应用之一是从背景中提取近乎一致(类似于水滴 )。由变化较小的灰度表征的区域有较小的梯度值。
三个种子点区域 生长结果
图1 区域生长
8
区域分裂
条件:区域的某些特性不满足一致性准则 开始:从图像的最大区域开始,一般情况下,是从整幅图像开始 注意: 确定分裂准则(一致性准则) 确定分裂方法,即如何分裂区域,使得分裂后的子区域的特性尽可能都 满足一致性准则值。 算法:
形成初始区域

对图像的每一个区域Ri,计算P(Ri),如果P(Ri)=FALSE 则沿着某一 合适的边界分裂区域
分水岭分割算法把图像看成一幅“地形图”,其中亮度比较强
的地区像素值较大,而比较暗的地区像素值较大,通过寻找“汇 水盆地”和“分水岭界限”,对图像进行分割。
标记的使用
使用分水岭分割算法通常会由于噪声和其他诸如梯度的局部不
规则性的影响造成过度分割,如图。用于控制过度分割的方法是
基于标记这一概念为基础的。一个标记是属于一幅图像的连通分 量。我们有与感兴趣物体相联系的内部标记,与背景相联系的外 部标记。选择标记的典型过程包括两个主要步骤:(1)预处理; (2)定义一个所有标记必须满足的准则集合。 图 4 过 度 分 割
实例 这 个 例 子 用 到 了 很 多 图 像 处 理 工 具 的 函 数 , fspecial 、 imregionalmax、imfilter、watershed、label2rgb、imopen、 imclose 、 imerconstruct 、 imcomplement 、 bwareaopen 、 grythresh、imimposemin函数等。
4)单一性:比如每个区域内的灰度级相等, P(Ri)= TRUE,i = 1,2,„,n 5)互斥性:比如任两个区域的灰度级不等, P(Ri∪Rj)= FALSE,i≠j
区域分割
基本思想 阈值分割法由于没有或很少考虑空间关系,使多阈值选择受到 限制。 于区域的分割方法可以弥补这点不足,它利用的是图像的空间 性质,该方法认为分割出来的属于同一区域的像素应具有相似的 性质,其概念是相当直观的。
6
区域生长
区域成长示例
4 4 3 3 3 3 3 5 5 5 4 5 6 6 5 4 8 8 8 2 8 6 5 5 3 4 4 3 3 3 3 3 5 5 5 5 5 5 5 5 5 8 8 8 2 8 6 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 8 8 2 8 6 5 5 3
新像素当作新的种子继续上面的过程,直到没有满足条件的像素可被包
括进来。 区域内像素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
5
区域生长
步骤 选择合适的种子点 确定相似性准则(生长准则) (1)任何像素和种子之间的灰度级绝对差必须小于某个值 (2)与此区域中至少一个像素是8连通的。 常用的生长准则和方法有三种, 即基于区域灰度差的、基于 区域内灰度分布统计性质的、基于区域形状的。 确定生长停止条件 区域生长的停止条件的设定非常重要,尤其是对渐变区域的 判决。一般应该根据具体的图像特征并结合生长准则来综合设 定生长停止的条件。
重复上一步,直到没有区域可以分裂 对图像中任意两个相邻的R1和R2,如果P(R1UR2)=TRUE,则把这 两个区域合并成一个区域。 重复上一步,直到没有相邻区域可以合并,算法结束 。习惯上 要规定一个不能再进一步执行分裂的最小四象限的尺寸。
11
区域分裂合并
图2 数字图像的四叉树分解
基于形态学分水岭的分割
Add Your Company Slogan
图像分割
1 2
图像的几何变换
图像分割
点、线和边缘检测
阈值处理 基于区域的分割
用形态学分水岭的分割
Logo
区域分割
基本概念
目标:将区域R划分为若干个子区域R1,R2,„,Rn,这些子 区域满足5个条件:
n
1)完备性: R i R i 1 2)连通性:每个Ri都是一个连通区域 3)独立性:对于任意i≠j,Ri∩Rj= Ф
算法:
使用某种方法进行图像的初始区域分割。 对于图像中相邻各区域,计算是否满足一致性,若满足则合并为一个 区域。 重复步骤2,直到没有区域可以合并,算法结束。
10
区域分裂合并
算法 在基于区域的分裂合并图像分割算法中,常用的方法是基于 四叉树分解的分裂合并算法 设整幅图像为初始区域
对每一区域R,如果P(R)=FLASE,则把该区域分裂成四个子区域
过度分割的部分原因是存在大量潜在的最小值。由于他们的尺
寸许多最小值是不相关的细节。将很小的空间细节的影响降至最
低的有效方法是用一个平滑滤波器对图像进行过滤。 标记的选择可以用基于灰度值和联通性的简单过程归类,更复 杂的描述涉及尺寸、形状、位置、相对距离、纹理内容等。
Logo
标记分水岭分割算法
(2)在引起集合聚合的那些点上不
能执行膨胀(成为单一的连通分量) 。
分水岭分割算法
读取图像;
求取图像边界,在此基础上可直接应用分水岭分割算法,但效
果不佳; 对图像的前景和背景进行标记,其中每个对象内部的前景像素 值都是相连的,背景里的每个像素都不属于任何目标物体; 计算分割图像,应用分水岭变换。
(a)原图像
(b)地形俯视图 (c)被水淹没
(d)被水淹没
(e)进一步淹没
(f)汇水盆地的水开始 聚合 (g)长一些的水坝 (h)最后的分水线
水坝构造
水坝的构建是以二值图像为基础 的,最简单的方法是使用形态膨胀
从最低点开始膨胀,获取连通分
量的两个条件: (1)膨胀受到q的约束(在膨胀的过 程中结构化元素的中心只能定位于 q中)
原图和梯度图像
Logo
直 接 对 梯 度 图 像 进 行 分 水 岭 分 割
开操作和重操作结果对比
关操作和重建操作Байду номын сангаас果对比 Logo
求 取 局 部 极 大 值 的 图 像
Logo
在 原 图 上 显 示 局 部 极 大 值
Logo
调整后的局部极大值图像 和二值图像
分 水 岭 界 限
右图是分割图像的显示
标记的使用
假设在此时将内部标记定义为(1)被更高“海拔”点包围起来
的区域;(2)区域中的点组成一个连通分量; (3)并且所有属于 这个连通分量的点具有相同的灰度级值。问题就因此变为将每个
这样的区域一分为二:单一的对象和它的背景。
图5显示有内部标记(浅灰色区域)和外部标记(分水线)的图像及分割结果
a)原始图像和种子点
b) T=1
c) T=2
区域成长的准则是将种子点与其4邻域的像素点逐个比较,如果两 者的差的绝对值小于等于设定的阈值T,则该像素点包含在种子区域, 并对新的种子点继续相同的生长,直到没有新的像素包括到种子点。
区域生长
实例
原始图像及 种子点位置
两个种子点区域 生长结果
原始图像及 种子点位置
左 图 为 分 割 图 像 的 伪 彩 色 显 示 Logo
Thank you
Add Your Company Slogan
传统的区域分割算法有区域增长法和区域分裂合并法。该类方
法在没有先验知识可以利用时,对含有复杂场景或自然景物等先 验知识不足的图像进行分割, 也可以取得较好的性能。但是,空
间和时间开销都比较大。
4
区域生长
区域生长法主要考虑像素及其空间邻域象素之间的关系
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具 体先对每个需要分割的区域找一个种子像素作为生长起点,然后将种子 像素和周围邻域中与种子像素有相同或相似性质的像素(根据某种事先 确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些
相关文档
最新文档