一阶倒立摆系统的双闭环模糊控制方案范文,毕业设计
基于模糊控制的一级倒立摆控制系统设计【毕业作品】
BI YE SHE JI(20 届)基于模糊控制的一级倒立摆控制系统设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月II摘要倒立摆系统是研究控制理论的典型实验装置,具有价格低廉,结构简单,参数易于调整等优点。
但是倒立摆同时也是一个典型的快速,非线性,多变量,本质不稳定系统,对于其稳定性的控制绝非易事。
也正因为如此,对于倒立摆系统控制方法的研究和开发才具有重要和深远的意义。
目前适用此系统的控制理论包括变结构控制,非线性控制,目标定位控制,智能控制等。
本文根据一级直线倒立摆系统,建立了数学模型,依据模糊控制的相关规则设计了模糊控制规则,并从位移和角度观点出发设计了双模糊控制器,经过仿真调试对重要参数进行不断的调试和优化,最终实现了“摆杆不倒,小车稳住”的总体目标。
对于实物实验系统,本文对构成倒立摆运动控制系统的电机,编码器和运动控制模块进行了比较选择,选择了交流伺服电机,增量式光电编码器和基于DSP技术的运动控制器作为主要的硬件组合,该运动控制器具有良好的性能,可以保证控制的精度。
关键词:倒立摆,模糊控制,系统设计,仿真,稳定IIAbstractInverted pendulum system is the study of the typical experiment device control theory, which is inexpensive, simple structure and easy to adjust the parameters. But it is also a system that typical rapid, nonlinear, many variables, and its essence is not stable, for its stability control is not going to be easy. Also because of this inverted pendulum system control method of the research and development are important and profound significance. At present the system for the control theory including variable structure control, nonlinear control, the goal positioning control, intelligent control, etc.According to the level of linear inverted pendulum system, this paper established the mathematical model, based on the fuzzy control rules we designed its fuzzy control rules, and from the view point of view design displacement and the dual fuzzy controller, through the simulation test of continuing the important parameters of debugging and optimization, and finally achieved "swinging rod, the car is not steady overall goal.For physical experiment system, this paper constitutes inverted pendulum motion control system of motor, encoder and motion control module are compared choice. Choose the ac servo motor, the solid-axes photoelectric encoder and the motion controller based on DSP technology as the main combination of hardware, this controller has good performance, and can ensure the precision of the control.Key words: inverted pendulum,Fuzzy control,System design ,The simulation,stabilityII目录摘要 (I)Abstract.......................................................................................................................................... I I 目录 (III)第一章引言 (1)1.1课题研究目的及意义 (1)1.3倒立摆系统介绍 (3)第二章倒立摆系统建模 (6)第三章模糊控制 (11)3.1概念 (11)第四章基于模糊控制的一级倒立摆系统设计 (15)4.1控制系统部件选择 (15)4.1.1位置传感器选择 (15)4.1.3运动控制模块 (17)4.2 模糊控制器设计 (18)4.2.1 确定模糊控制器的结构 (19)4.2.2位置模糊控制器的设计 (19)4.2.3角度模糊控制器设计 (27)4.3simulink仿真 (28)4.3.1将simulink与模糊控制器相关联 (28)4.3.2进行仿真 (32)结论 (39)III参考文献 (40)致谢 (41)III第一章引言1.1课题研究目的及意义倒立摆系统作为一个本身绝对不稳定的非线性系统,兼具高阶次、多变量、强耦合的特点。
一级直线倒立摆系统模糊控制器设计---实验指导书精讲
一级直线倒立摆系统模糊控制器设计---实验指导书精讲第一篇:一级直线倒立摆系统模糊控制器设计---实验指导书精讲一级直线倒立摆系统模糊控制器设计实验指导书目录实验要求........................................................................................................................... ...................3 1.1 实验准备........................................................................................................................... ................3 1.2 评分规则........................................................................................................................... ................3 1.3 实验报告内容........................................................................................................................... ........3 1.4 安全注意事项........................................................................................................................... ........3 2 倒立摆实验平台介绍..........................................................................................................................4 2.1 硬件组成........................................................................................................................... ................4 2.2 软件结构........................................................................................................................... ................4 3 倒立摆数学建模(预习内容)............................................................................................................6 4 模糊控制实验........................................................................................................................... ............8 4.1 模糊控制器设计(预习内容).......................................................................................................8 4.2 模糊控制器仿真........................................................................................................................... ...12 4.3 模糊控制器实时控制实验..............................................................................................................12 5 附录:控制理论中常用的MATLAB 函数.......................................................................................13 6 参考文献........................................................................................................................... .................14 实验要求1.1 实验准备实验准备是顺利完成实验内容的必要条件。
一阶倒立摆模糊控制实验报告
一阶倒立摆模糊控制实验报告本次实验旨在研究一阶倒立摆系统的模糊控制方法,通过对系统进行建模、设计控制器并进行仿真,最终评估控制效果。
实验过程主要包括系统建模、控制器设计、模糊控制器参数调节和性能评价四个步骤。
首先,我们对一阶倒立摆系统进行建模。
一阶倒立摆系统是一种具有非线性特性的控制系统,主要由电机、倒立摆、支撑杆等组成。
我们需要建立数学模型描述系统的动力学特性,包括倒立角度、倒立角速度、杆角度等状态变量,并考虑控制输入电压对系统的影响。
接着,我们设计模糊控制器。
模糊控制是一种基于模糊逻辑的控制方法,适用于非线性系统和模糊系统。
我们根据系统模型,设计模糊控制器的模糊规则、隶属函数等参数,以实现系统的稳定控制。
在设计过程中,我们需要考虑系统的性能指标,如超调量、稳态误差等。
第三步是模糊控制器参数调节。
通过仿真实验,我们可以对模糊控制器的参数进行调节,以使系统的性能达到最佳状态。
调节参数的过程需要考虑系统的稳定性、鲁棒性和响应速度,以达到控制效果的要求。
最后,我们对模糊控制系统进行性能评价。
通过对系统的响应曲线、稳定性、控制精度等指标进行分析,评价模糊控制器的控制效果。
我们可以比较模糊控制系统和传统控制系统的性能,探讨模糊控制在一阶倒立摆系统中的优势和局限性。
总的来说,本次实验通过研究一阶倒立摆系统的模糊控制方法,探讨了模糊控制在非线性系统中的应用。
通过实验,我们对模糊控制的基本原理和设计方法有了更深入的理解,同时也对一阶倒立摆系统的控制特性有了更清晰的认识。
希望通过实验的研究,能够为控制系统的设计和应用提供一定的参考和借鉴。
基于双闭环PID控制的一阶倒立摆控制系统设计
基于双闭环PID控制的一阶倒立摆控制系统设计一阶倒立摆是一种常见的控制系统,它由一个旋转臂和一个悬挂在旋转臂末端的摆杆组成。
控制目标是使摆杆保持垂直位置并保持在指定的角度范围内。
本文将基于双闭环PID控制设计一阶倒立摆控制系统,并对其进行详细的分析和讨论。
首先,我们需要明确控制系统的结构。
一阶倒立摆控制系统可以分为两个闭环:内环和外环。
内环用于控制旋转臂的角度,并将输出作为外环的输入。
外环用于控制摆杆的角度,并根据测量的摆杆角度和设定的目标角度来调整内环的输入。
在进行控制系统设计之前,我们需要先建立一阶倒立摆的数学模型。
假设倒立摆的质量集中在摆杆的一端,摆杆的长度为L,质量为m,摩擦系数为b,重力加速度为g。
通过应用牛顿第二定律,可以得到如下动力学方程:mL²θ¨ + bLθ˙ + mgLsinθ = u其中,θ是旋转臂的角度,u是旋转臂的扭矩。
为了简化方程,我们进行恒定参数修正和线性化处理,得到线性方程:θ¨ + 2ξωnθ˙ + ωn²θ = kru其中,ξ是阻尼比,ωn是无阻尼自然频率,kr是旋转臂的增益。
接下来,我们将按照以下步骤设计基于双闭环PID控制的一阶倒立摆控制系统:1.内环设计:-选择合适的内环闭环控制器类型。
对于一阶倒立摆,可以选择PID控制器。
-根据倒立摆的特性和性能要求,选择合适的PID参数。
可以使用试错法、经验法、系统辨识等方法进行参数调整。
-将PID控制器的输入设置为旋转臂角度误差,输出为旋转臂的扭矩。
2.外环设计:-选择合适的外环闭环控制器类型。
对于一阶倒立摆,可以选择PID控制器。
-根据倒立摆的特性和性能要求,选择合适的PID参数。
-将PID控制器的输入设置为摆杆角度误差,输出为旋转臂的角度设定值。
3.进行系统仿真和调试:-使用MATLAB等仿真工具建立一阶倒立摆的数学模型,并将设计的控制器与模型进行集成。
-调整控制器的参数,以满足性能指标和系统稳定性的要求。
一级倒立摆的模糊控制
一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
故其研究意义广泛。
一、倒立摆的数学模型质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。
由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。
在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型。
倒立摆模型如图2-1所示。
图2-2 单机倒立摆模型图小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。
电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。
导轨截面成H型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。
轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。
以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入。
如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。
当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。
现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为 F’cosθ -mg=m(lcosθ)’’=-mlθ’’sinθ-mlcosθ(θ’)^2即 F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2 (c)由(b)、(c)两式得cosθx’’ =gsinθ- lθ’’ <2>故可得以下运动方程组:F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2cosθx’’ =gsinθ- lθ’’以上方程组为非线性方程组,故需做如下线性化处理:32 sin,cos13!2!θθθθθ≈-≈-当θ很小时,由cosθ、sinθ的幂级数展开式可知,忽略高次项后,可得cosθ≈1,sinθ≈θ,θ’’≈0故线性化后运动方程组简化为F= (M+m)x’’ +mlθ’’x’’ =gθ- lθ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-M mg x1+M1 F 故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010Mm gMl g m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F二、 立题方案倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例。
毕业设计毕业论文一阶倒立摆模糊控制系统[管理资料]
摘要一阶直线倒立摆是一个典型的“快速、多变量、非线性、自不稳定系统”,对一阶倒立摆系统的稳定性研究在理论上和方法上具有深远的意义。
对一阶倒立摆的研究可以归结为对非线性、多变量、不稳定系统的研究。
在应用上,一阶倒立摆广泛应用于控制理论研究、航空航天控制等领域,在自动化领域中具有重要的价值。
本文首先是建立一阶倒立摆的数学模型,并且采用的是双闭环控制系统,通过对一阶倒立摆的双闭环控制系统数学模型的分析,将模糊控制方法应用于一阶倒立摆的控制问题,其中,内环控制倒立摆的摆角,外环控制倒立摆的位置。
采用模糊控制器的设计包括隶属函数及模糊控制规则、解模糊,最后利用MATLAB软件进行仿真实验。
模糊控制方法应用于一阶倒立摆系统的控制中,能够发挥模糊控制在非线性系统的控制、复杂对象系统控制方面的优势,简化设计,提高系统的鲁棒性。
关键词:一阶倒立摆,数学模型,模糊控制,MATLABAbstractThe first-order linear inverted pendulum is a typical “fast, multivariable, nonlinear, unstable system”, for an inverted pendulum system stability research in theory and method has the profound significance. For an inverted pendulum can boil down to the research on nonlinear, multivariable, unstable system research. In application, an inverted pendulum is widely used in control theory, aerospace control and other fields, in the field of automation has important value.This paper is to establish a mathematical model of the inverted pendulum, and using the double closed-loop control system, through the inverted pendulum double closed-loop control mathematical model analysis, a fuzzy control method is applied to an inverted pendulum control, Wherein, the inner control of the inverted pendulum swing angle, the outer loop controls the position of inverted pendulum. Fuzzy controller design including the membership function and fuzzy control rule, fuzzy solution, finally using the Matlab software simulation. The fuzzy control method is applied to an inverted pendulum control system, fuzzy control can play in the control of nonlinear system, complex object systems control advantages, simplify the design, improve the stability of system.Key words: Inverted pendulum,Mathematical model,Fuzzy control,Matlab目录摘要 (I)Abstract.............................................................................................................................................. I I 1 绪论 (1)一阶倒立摆系统研究的意义 (1)一阶倒立摆系统在国内外研究综述 (1)本论文的研究内容和所用方法 (2)2 一阶倒立摆数学模型的建立与控制系统 (3)一阶倒立摆的数学模型 (3)一阶倒立摆系统的动力学分析 (4)系统微分方程的线性化 (5)系统微分方程状态空间表示 (6)一阶倒立摆定性分析 (7)系统的稳定性、能控性和能观测性判据 (7)基于状态方程的系统定性分析 (8)一阶倒立摆控制系统 (11)一阶倒立摆控制系统硬件 (11)一阶倒立摆系统总体控制框图 (11)3 模糊控制的基本原理 (15)模糊控制理论的基本概念 (15)模糊逻辑操作 (16)模糊规则与模糊推理 (16)模糊控制系统 (16)模糊控制系统的组成 (17)模糊控制系统的特点 (18)模糊控制器 (18)模糊控制器的组成 (18)模糊控制器的结构 (19)4 双闭环模糊控制系统设计 (21)建立双闭环模糊控制系统 (21)模糊控制器的设计 (21)隶属函数的确定 (21)模糊控制规则 (23)输出向量的解模糊 (24)建立模糊控制查询表 (25)5 一阶倒立摆系统仿真及其分析 (28)MATLAB及其模糊工具箱的介绍 (28)MATLAB的主要特点 (28)MATLAB的基本组成 (29)一阶倒立摆模糊控制系统仿真实验 (30)利用GUI编辑FIS结构文件,即设计模糊控制器 (30)建立一阶倒立摆模糊控制系统的仿真模型图 (33)6 结论与展望 (38)参考文献 (39)致谢 (40)系统总体框图 (41)系统总体原理图 (42)1 绪论一阶倒立摆系统研究的意义一阶倒立摆在稳定性控制问题中具有成本低廉,结构简单,形象直观,物理参数和结构易于调整的优点。
基于双闭环PID控制的一阶倒立摆控制系统设计
自动控制原理课程设计说明书基于双闭环PID控制的一阶倒立摆控制系统设计姓名:学号:学院:专业:指导教师:2018年 1月目录1 任务概述 (3)1.1设计概述 (3)1.2 要完成的设计任务: (4)2系统建模 (4)2.1 对象模型 (4)2.2 模型建立及封装 (5)3仿真验证 (9)3.1 实验设计 (9)3.2 建立M文件编制绘图子程序 (9)4 双闭环PID控制器设计 (12)4.1内环控制器的设计 (13)4.2外环控制器的设计 (13)5 仿真实验 (15)5.1简化模型 (15)5.2 仿真实验 (17)6 检验系统的鲁棒性 (18)6.1 编写程序求系统性能指标 (18)6.2 改变参数验证控制系统的鲁棒性 (19)7 结论 (22)附录 (22)1 任务概述1.1设计概述如图1 所示的“一阶倒立摆控制系统”中,通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。
图1 一阶倒立摆控制系统这是一个借助于“SIMULINK封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。
1.2 要完成的设计任务:(1)通过理论分析建立对象模型(实际模型),并在原点进行线性化,得到线性化模型;将实际模型和线性化模型作为子系统,并进行封装,将倒立摆的振子质量m和倒摆长度L作为子系统的参数,可以由用户根据需要输入;(2)设计实验,进行模型验证;(3)一阶倒立摆系统为“自不稳定的非最小相位系统”。
将系统小车位置作为“外环”,而将摆杆摆角作为“内环”,设计内化与外环的PID控制器;(4)在单位阶跃输入下,进行SIMULINK仿真;(5)编写绘图程序,绘制阶跃响应曲线,并编程求解系统性能指标:最大超调量、调节时间、上升时间;(6)检验系统的鲁棒性:将对象的特性做如下变化后,同样在单位阶跃输入下,检验所设计控制系统的鲁棒性能,列表比较系统的性能指标(最大超调量、调节时间、上升时间)。
一阶直线倒立摆双闭环PID控制仿真报告
目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。
在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。
图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。
一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。
θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。
基于模糊控制的倒立摆系统设计【毕业作品】
第二章倒立摆系统建模5
2.1直线一级倒立摆的数学模型5
2.1.1微分方程的推导5
2.1.2传递函数8
2.1.3状态空间方程9
2.2小结10
第三章模糊控制11
3.1传统控制的局限性12
3.2模糊控制的基本概念12
3.3模糊控制器结构13
3.4模糊控制器设计步骤14
第四章直线一级倒立摆的模糊控制15
4.1模糊控制器的设计15
BI YE SHE JI
(20 届)
基于模糊控制的倒立摆系统设计
所在学院
专业班级自动化
学生姓名学号
指导教师职称
完成日期年月
倒立摆系统是研究控制理论的理想实验平台,具有价格低廉、结构简单、参数易于调整等优点。但是倒立摆同时也是一个典型的快速、非线性、多变量、本质不稳定系统,对于其稳定性的控制绝非易事。也正因为如此,对于倒立摆系统控制方法的研究和开发才具有重要和深远的意义。更重要的是实现其控制稳定的过程中不断发现新的控制方法,探索新的控制理论,并进而将新的控制方法用到更广泛的受控对象中。倒立摆系统可以有效的反映一些诸如鲁棒性,随动性和跟踪性能等等许多控制领域的关键问题。
4.1.1位置模糊控制器的设计15
4.1.2角度模糊控制器的设计19
一阶倒立摆双闭环模糊控制
摘要本文讨论基于鲁棒性设计的一阶倒立摆双闭环控制问题。
以摆角为内环.以小车位置为外环利用鲁棒孔子系统理论进行模糊控制器设计及参数整定,使控制系统对于确定系统参数的变化具有较强的鲁棒性。
倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。
论文首先介绍了模糊系统的理论基础,和模糊控制器的分析和设计,充分的理解了倒立摆智能控制系统研究与设计所需要的理论知识。
然后通过对倒立摆系统的分析建模,采用模糊推理系统,设计相应的模糊控制器,对倒立摆进行控制,最后将控制过程在MATLAB上加以仿真。
在MATLAB仿真中,应用模糊逻辑工具箱来设计模糊逻辑控制器,然后通过Simulink来建立模糊系统,最后得到仿真结果。
关键词:倒立摆,模糊控制,双闭环模糊控制器,MATLAB仿真。
ABSTRACTThis article discusses the question of inverted pendulum double loop control that based on robust design. Take the pivot angle as the inner ring , the car position as the outer ring, Carries on the fuzzy controller design and the parameter installation by use robust control system theory, enable the control system to have strong robustness that determine changes in system parameters. As the inverted pendulum system is unstable,multivariable, nonlinear and strongly coupling and so on, many modern control theory researchers regard it as the object of study. The thesis introduced the Fuzzy systems theory ,the analysis and design of fuzzy controller , understand the theory knowledge that needed in study of intelligent control system of inverted pendulum . Then use fuzzy inference system and design corresponding fuzzy controller to control Inverted pendulum by making model of analysis of the inverted pndulum system.Finally,simulate the control processing in MATLAB.The simulation in MATLAB,design Fuzzy logic controller by applicating fuzzy logic toolbox,then set up fuzzy systems by use Simulink and at last obtained simulation results.Key word:Inverted pendulum, fuzzy control, double closed loop fuzzy controller, MATLAB simulation.目录第一章绪论 (4)1.1倒立摆系统稳定性研究 (4)1.1.1 倒立摆系统稳定性研究的意义 (4)1.1.2 倒立摆研究的发展状况 (5)1.2 模糊控制的研究现状 (6)1.2.1模糊控制理论的产生 (6)1.2.2模糊控制的数学基础 (7)1.2.3模糊控制的研究现状 (8)1.2.4模糊控制理论的发展前景 (9)1.3 论文主要工作 (10)第二章:单支点倒立摆系统数学模型的建立及系统分析 (11)2.1建模机理 (11)2.2系统建模 (11)2.3 模型简化 (13)第三章:模糊控制的基本原理 (16)3.1 模糊集合与隶属函数 (16)3.2 模糊逻辑操作 (16)3.3 模糊规则与模糊推理 (17)3.4 模糊推理系统 (17)第四章:一阶倒立摆系统的双闭环模糊控制器的设计与仿真 (19)4.1 一阶倒立摆系统的双闭环模糊控制方案 (19)4.1.1 问题的提出 (19)4.1.2 模糊控制器的设计 (20)4.2 仿真实验 (23)4.2.1 MATLAB模糊逻辑工具箱 (23)4.2.2 一阶倒立摆系统数字仿真模型的建立 (26)4.3仿真实验结果 (28)第五章结论 (33)致谢 (34)参考文献: (35)附录: (36)中文翻译: (41)第一章绪论1.1倒立摆系统稳定性研究倒立摆控制系统是应用于自动控制理论实验室的经典实验装置。
基于模糊控制的一级倒立摆控制系统设计【毕业作品】
BI YE SHE JI(20 届)基于模糊控制的一级倒立摆控制系统设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月II摘要倒立摆系统是研究控制理论的典型实验装置,具有价格低廉,结构简单,参数易于调整等优点。
但是倒立摆同时也是一个典型的快速,非线性,多变量,本质不稳定系统,对于其稳定性的控制绝非易事。
也正因为如此,对于倒立摆系统控制方法的研究和开发才具有重要和深远的意义。
目前适用此系统的控制理论包括变结构控制,非线性控制,目标定位控制,智能控制等。
本文根据一级直线倒立摆系统,建立了数学模型,依据模糊控制的相关规则设计了模糊控制规则,并从位移和角度观点出发设计了双模糊控制器,经过仿真调试对重要参数进行不断的调试和优化,最终实现了“摆杆不倒,小车稳住”的总体目标。
对于实物实验系统,本文对构成倒立摆运动控制系统的电机,编码器和运动控制模块进行了比较选择,选择了交流伺服电机,增量式光电编码器和基于DSP技术的运动控制器作为主要的硬件组合,该运动控制器具有良好的性能,可以保证控制的精度。
关键词:倒立摆,模糊控制,系统设计,仿真,稳定IIAbstractInverted pendulum system is the study of the typical experiment device control theory, which is inexpensive, simple structure and easy to adjust the parameters. But it is also a system that typical rapid, nonlinear, many variables, and its essence is not stable, for its stability control is not going to be easy. Also because of this inverted pendulum system control method of the research and development are important and profound significance. At present the system for the control theory including variable structure control, nonlinear control, the goal positioning control, intelligent control, etc.According to the level of linear inverted pendulum system, this paper established the mathematical model, based on the fuzzy control rules we designed its fuzzy control rules, and from the view point of view design displacement and the dual fuzzy controller, through the simulation test of continuing the important parameters of debugging and optimization, and finally achieved "swinging rod, the car is not steady overall goal.For physical experiment system, this paper constitutes inverted pendulum motion control system of motor, encoder and motion control module are compared choice. Choose the ac servo motor, the solid-axes photoelectric encoder and the motion controller based on DSP technology as the main combination of hardware, this controller has good performance, and can ensure the precision of the control.Key words: inverted pendulum,Fuzzy control,System design ,The simulation,stabilityII目录摘要 (I)Abstract.......................................................................................................................................... I I 目录 (III)第一章引言 (1)1.1课题研究目的及意义 (1)1.3倒立摆系统介绍 (3)第二章倒立摆系统建模 (6)第三章模糊控制 (11)3.1概念 (11)第四章基于模糊控制的一级倒立摆系统设计 (15)4.1控制系统部件选择 (15)4.1.1位置传感器选择 (15)4.1.3运动控制模块 (17)4.2 模糊控制器设计 (18)4.2.1 确定模糊控制器的结构 (19)4.2.2位置模糊控制器的设计 (19)4.2.3角度模糊控制器设计 (27)4.3simulink仿真 (28)4.3.1将simulink与模糊控制器相关联 (28)4.3.2进行仿真 (32)结论 (39)III参考文献 (40)致谢 (41)III第一章引言1.1课题研究目的及意义倒立摆系统作为一个本身绝对不稳定的非线性系统,兼具高阶次、多变量、强耦合的特点。
一阶倒立摆系统的双闭环模糊控制方案范文
系统仿真课程设计报告题目:一阶倒立摆系统的双闭环模糊控制方案专业、班级:自动本091班学生姓名:学号:0905404125指导教师:分数:2012 年 6 月9 日目录摘要: (2)一、引言 (2)二、设计目的 (3)三、设计要求 (3)四、设计原理 (3)五、设计步骤 (3)1、单级倒立摆系统的构成........................ 错误!未定义书签。
2、单级倒立摆的数学模型 (4)3、模糊控制器的设计 (6)3.1单阶倒立摆模糊控制的基本思路 (6)3.2隶属函数的定义 (6)3.3模糊控制器规则 (7)3.4解模糊 (8)4、仿真实验 (8)4.1MATLAB模糊逻辑工具箱 (8)4.2系统数字仿真模型的建立 (11)5、基于MATLAB的数字仿真结果 (12)六、结论 (13)七、感想和建议 (13)八、致谢 (14)九、参考文献 (15)摘要:通过对单阶倒立摆的双闭环的控制数学模型的分析,采用模糊控制理论对倒立摆的控制系统进行计算机仿真。
其中,内环控制倒立摆的角度,外环控制倒立摆的位置。
在Matlab环境下的仿真步骤包括:定义隶属函数及模糊控制规则集,解模糊。
结果表明,摆杆角度和小车位置的控制过程均具有良好的动态性能和稳定性能。
关键词:倒立摆;模糊逻辑控制;计算机仿真;MATLABAbstract:based on the ChanJie inverted pendulum double closed loop control mathematical model analysis, the fuzzy control theory of the inverted pendulum control system by computer simulation. Among them, the inner loop control the point of view of the inverted pendulum, outside loop control the position of the inverted pendulum. In the Matlab environment simulation steps include: definition membership function and fuzzy control rule sets, solution is fuzzy. The results show that, swinging rod Angle and the car position control process are good dynamic performance and stable performance.Keywords: inverted pendulum; Fuzzy logic control; The computer simulation; Matlab一、引言在人类自然科学的发展历史上,人们总是以追求事物的精确描述为目的来进行研究,并取得了大量的成果。
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
内环控制器设计
角度内环对象为一非线性的自不稳定系统,故拟采用 “反馈校正”。
D(s)
r (s)
G2 (s)
K
Ks
D2 ( s )
(s)
采用PD结构的 反馈控制器可 使系统结构简 单,使原自不 稳定的系统稳 定。
系统建模与仿真
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
2) 不同摆杆长度
所设计的双闭环PID控制器在系统参数的一定变化范围内能有效的工 作,保持摆杆直立并使小车有效定位,控制系统具有一定的鲁棒性。
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
5 结论
1. 本节从理论上证明了所设计的“一阶直线倒立摆”双闭环PID 控制方案是可行的;
Simulink子系统
模型的封装
将复杂系统变的简洁,可读性强
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
模型验证
封装模型
精 确 模 型
线 性 化 模 型
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
仿真实验:
在0.1N的冲击力作用下,摆杆倒下,小车位置逐渐增加;这一结果符合前 述的实验设计,故可以认为该“一阶倒立摆系统”的数学模型是有效的。
内环: 2 W
K K sG 2 ( S ) 1 K K sG 2 ( S ) D 2 ( S ) 64 s 64 K D 2s 64 K P 2 40
2
系统建模与仿真
4.2 基于双闭环PID控制的一阶倒立摆控制系统设计
(完整版)一阶环形倒立摆毕业论文
本文以利用电位器检测角度的一阶倒立摆系统作为研究对象,研究了其在摆角信号含有大噪声的情况下的平衡稳定控制问题,这对解决实际工程中的相关问题有一定的指导意义。本文首先设计了一阶环形倒立摆的模型。使用电位器作为姿态测量传感器不断测量摆杆的的姿态信息,通过转换这些模拟信息传送给作为控制核心的8位单片机,经过数据处理后,单片机通过驱动电路将控制信号以PWM方式去驱动直流电机的,达到调节摆杆姿态的目的。
现阶段检验某种控制方法或控制理论是否有较强的解决非线性和不稳定性问题的能力,一般都通过对倒立摆系统控制的研究来实现,倒立摆的研究不仅有其深刻的理论意义,同时还有重要的工程背景。从日常生活中所见到的空间飞行器和各种伺服云台的稳定,到任何重心在上、支点在下的控制问题,都类似于倒立摆的控制,故对倒立摆系统的稳定控制研究在实际中有很多应用,如火箭发射、海上钻井平台以及卫星发射架的稳定控制、化工过程控制、控制飞机安全着陆等都属于这类问题。由于其运动过程与人类的行走姿态相似,而其平衡控制又与火箭飞行的控制类似,致使倒立摆系统的研究在直升机的飞行控制、火箭发射过程中的姿态控制、双足机器人的直立行走控制等领域中具有重要的现实意义。随着现代控制理论的发展,倒立摆系统研究的相关科研成果己广泛应用于机器人、军工、航天科技及一般工业过程等诸多领域。
基于双闭环设计的一阶倒立摆PID控制方法1
基于双闭环设计的一阶倒立摆PID控制方法1摘要倒立摆控制是控制理论中的经典问题,双闭环控制方法在倒立摆控制中得到广泛应用,本文提出了一种基于双闭环设计的一阶倒立摆PID控制方法。
首先建立倒立摆的数学模型,选择控制器型号为PID控制器,并采用标准的Ziegler-Nichols方法进行控制器参数调节。
接着,设计了两级闭环控制系统:外环控制倒立摆的角度,内环控制电机输出的电压,以保证倒立摆稳定控制。
仿真结果表明,该控制器在扰动干扰下也能够实现稳定控制,具有较高的精度和稳定性。
关键词:双闭环,一阶倒立摆,PID控制,Ziegler-Nichols方法AbstractInverted pendulum control is a classic problem in control theory. The double closed-loop control method has been widely used in inverted pendulum control. This paper proposes a first-order inverted pendulum PID control method based on double closed-loop design. First, the mathematical model of the inverted pendulum is established, and the controller type is selected as PID controller. The standard Ziegler-Nichols method is used to adjust the controller parameters. Then, atwo-level closed-loop control system is designed: the outer loop controls the angle of the inverted pendulum, and the inner loop controls the voltage output of the motor to ensure stable control of the inverted pendulum. Simulation results show that the controller can achieve stable control even under disturbance interference, and has high accuracy and stability.Keywords: double closed-loop, first-order inverted pendulum, PID control, Ziegler-Nichols method一、引言倒立摆是一种在工业自动化控制、机器人自主导航、交通运输车辆控制等领域应用广泛的研究对象,其控制问题一直是研究的热点,也是控制理论中的经典问题。
一级倒立摆的模糊控制系统设计毕业论文
2.1
图2-1倒立摆结构
在考虑空气流动、小车与导轨之间的摩擦力对倒立摆的影响之后,可将倒立摆抽象成小车和匀质杆,如图2–2所示。图2–2是系统中小车和摆竿的受力分析图,其中N 和P分别为小车和摆竿相互作用力的水平和垂直方向的分量。要求摆角的摆动不超过0.35rad。
表2-1 一级倒立摆系统参数
符号
1.4本论文的主要工作
本论文简单介绍倒立摆系统控制发展过程和国外发展现状;研究了一级倒立摆数学模型的建立;并用牛顿定律推导了倒立摆的数学模型。运用模糊控制的控制方法对倒立摆系统进行研究,并借助MATLAB语言以及SIMULINK进行仿真,在做了大量仿真研究工作的基础上,进行了硬件的调试,软件的编写和调试,对倒立摆控制中遇到的问题进行分析和讨论[8]。
意 义
实际数值
M
小车质量
1.096 kg
m
摆竿质量
0.109 kg
b
小车的摩擦系数
50N/S
l
摆杆转动轴心到杆质心的长度
0.25 m
I
摆杆惯量
0.0034 kg*m*m
F
加在小车上的力
X
小车位置
小车速度
摆杆与垂直向上方向的夹角
图2-2 小车与倒立摆受力分析图
应用牛顿力学进行受力分析,小车在水平方向的受力情况是
(2–6)
设 ( 是摆杆与垂直向上方向之间的夹角),假设 与1(单位是弧度)相比很小,即 ≤1,则可以进行近似处理: , 。
用u来代表被控对象的输入力F,线性化后两个运动方对方程组(2–7)进行拉普拉斯变换,得到
(2–8)
注意:推导传递函数时假设初始条件为0。
由于输出是角度 ,求解方程组(2–8)的第一个方程,可以得到
一阶倒立摆PID控制系统毕业设计方案
一阶倒立摆PID控制系统毕业设计方案倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文具体研究的是一阶倒立摆PID控制系统,并对比了不同方法对一阶倒立摆控制的效果。
由于PID调节器结构简单, 各参数物理意义明确, 在工程上易于实现, 即使在控制理论日新月异发展的今天在工业过程控制中, 90 %以上的控制器仍然是PID调节器[1]。
对于一阶的倒立摆系统,PID控制器足够满足控制效果,达到期望的应用效果。
本文主要内容分四章进行阐述。
各章节主要内容如下:第一章简单的介绍了倒立摆系统的特点及其原理;第二章阐述了不同的对倒立摆的控制方法及其原理、特点与相关研究情况,并确定采用PID控制方案;第三章对一阶倒立摆进行了数学研究,建立起其数学模型,并求出其状态空间描述;第四章根据一阶倒立摆的数学模型,对其进行PID控制器设计,采用MATLAB软件进行参数分析比较,得出PID控制参数;第五章对一阶倒立摆PID控制仿真调试,总结了全文的研究工作,给出了存在的问题和进一步研究的方向。
2.倒立摆系统2.1 倒立摆系统概述概述倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台[1]。
倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)[1]。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等[1]。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等[1]。
2.1.1倒立摆系统组成与结构以小车的位移和摆棍的倾斜位置作为倒立摆系统的输入,在每一个采样周期中,传感器采集小车的位置和摆棍的角度信息,与设定值进行对比,采用控制算法算出控制量,然后通过数电模电转换电机进行摆棍的立即控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统仿真课程设计报告题目:一阶倒立摆系统的双闭环模糊控制方案专业、班级:学生姓名:学号:指导教师:分数:2012 年 6 月9 日目录摘要: (2)一、引言 (2)二、设计目的 (3)三、设计要求 (3)四、设计原理 (3)五、设计步骤 (3)1、单级倒立摆系统的构成......................... 错误!未定义书签。
2、单级倒立摆的数学模型 (4)3、模糊控制器的设计 (6)3.1单阶倒立摆模糊控制的基本思路 (6)3.2隶属函数的定义 (6)3.3模糊控制器规则 (7)3.4解模糊 (8)4、仿真实验 (8)4.1MATLAB模糊逻辑工具箱 (8)4.2系统数字仿真模型的建立 (11)5、基于MATLAB的数字仿真结果 (12)六、结论 (13)七、感想和建议 (13)八、致谢 (14)九、参考文献 (15)摘要:通过对单阶倒立摆的双闭环的控制数学模型的分析,采用模糊控制理论对倒立摆的控制系统进行计算机仿真。
其中,内环控制倒立摆的角度,外环控制倒立摆的位置。
在Matlab环境下的仿真步骤包括:定义隶属函数及模糊控制规则集,解模糊。
结果表明,摆杆角度和小车位置的控制过程均具有良好的动态性能和稳定性能。
关键词:倒立摆;模糊逻辑控制;计算机仿真;MATLABAbstract:based on the ChanJie inverted pendulum double closed loop control mathematical model analysis, the fuzzy control theory of the inverted pendulum control system by computer simulation. Among them, the inner loop control the point of view of the inverted pendulum, outside loop control the position of the inverted pendulum. In the Matlab environment simulation steps include: definition membership function and fuzzy control rule sets, solution is fuzzy. The results show that, swinging rod Angle and the car position control process are good dynamic performance and stable performance.Keywords: inverted pendulum; Fuzzy logic control; The computer simulation; Matlab一、引言在人类自然科学的发展历史上,人们总是以追求事物的精确描述为目的来进行研究,并取得了大量的成果。
随着科学技术的进步,在社会生产和生活中存在的大量的不确定性开始引起人们的注意。
有关模糊不确定性的研究直到1965年,美国的L.A.Zadeh教授首次提出模糊集合的概念之后得到广泛开展。
“模糊”是与“精确”相对而言的概念,模糊性普遍存在于人类的思维和语言交流中,是一种不确定性的表现。
随机性则是客观存在的另一类不确定性,两者虽然都是不确定性,单存在本质上的区别。
模糊性主要是人对概念外延的主观理解上的不确定性,而随机性则主要反映客观上的自然的不确定性,即对事件或行为的发生与否的不确定性。
一阶直线倒立摆系统是一个典型的“快速、多变量、非线性、自不稳定系统”,将模糊控制方法应用于一阶倒立摆系统的控制问题,能够发挥模糊控制在非线性系统控制、复杂对象系统控制方面的优势,简化设计,提高控制系统的鲁棒性。
倒立摆系统是典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。
故针对单级倒立摆系统,通过数学建模,采用模糊控制理论研究倒立摆控制系统仿真控制问题。
二、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。
三、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,使用模糊控制方式,并利用 MATLAB进行仿真,并用simulink对相应的模块进行仿真。
四、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。
五、设计步骤1、倒立摆系统的构成图1 倒立摆系统的组成框图如图1所示为倒立摆的结构图。
系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的位置、速度信号由光电码盘2反馈回控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。
2、单级倒立摆的数学模型图2 一阶倒立摆系统示意图如图2,系统有沿导轨运动的小车和通过转轴固定在小车上的摆杆组成。
建模时,忽略系统中难以建模因素,如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带弹性、传动齿轮间隙等。
并将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,即可通过力学原理建立系统较为精确的数学模型。
系统如下假设:摆杆为匀质刚体;摩擦力和相对速度(角速度)成正比。
经对小车和摆杆分别进行受力分析,得到以下2个微分方程:摆杆在竖直向上状态时称为系统平衡位置,即rad0≤时,可近似成=1-1.0cosθ,sin=θ=,。
在平衡位置处线性化,取状态变量可得系统0θ的状态方程:表1 一阶倒立摆的参数表倒立摆的参数如表1,将其带入式(4)、(5)得:3、控制器的设计采用双闭环的倒立摆模糊控制方案,内环控制倒立摆的角度,外环控制倒立摆的位置,如图3。
图3 倒立摆双闭环模糊控制系统结构图对每个输入变量定义5个模糊子集,规则最多有50×条,每条有2个522=输入1个输出,使控制规则设计简单。
采用模糊逻辑控制,即实时模糊化、模糊推理、解模糊等运算的模糊控制法。
该方法便于调整隶属度、控制规则、比率因子等参数。
3.1单阶倒立摆模糊控制的基本思想理论上模糊控制可以由人的直觉和经验来确定模糊控制规则,但多次仿真证明,倒立摆的模糊控制规则很难确定,原因在于,对倒立摆的任一给定位置,难以确定用多大的力来使它稳定,甚至连力的方向都无法确定,如果控制规则不全,系统极易失控。
故模糊控制中,模糊规则的获取是关键问题。
对于单级倒立摆的任意位置,虽无法确定所需控制力的大小和方向,但若把摆杆控制范围限定在一定区域内,则可在这个区域内选定若干参考位置,用极点配置法或最优控制法算出稳定每个参考位置所需的力,当摆处于该控制区域内任一位置时,就可以用这一位置附近的所有参考位置估算出该位置所需的控制力。
3.2定义隶属函数由模糊控制理论可知,在进行模糊控制算法的设计之前必须将系统精确量的输入输出转换成对应的语言值,即必须首先确定各个输入输出量的论域及隶属函数。
论域的确定可通过对实物装置的测量(如倒立摆的摆角范围和小车位移范围)、实验辨识或者通过经验知识确定(角速度和线速度范围)。
对于隶属函数形式的选择,为了简化运算、缩短控制周期,对输入、输出变量的隶属函数均采用较为简单的形式。
出入变量的隶属函数定义成三角形或梯形隶属函数,输出变量则采用单点隶属函数。
经过这样的定义后系统的模糊化和解模糊过程将变得十分简单。
为加快运算速度,对输入变量采用简单的三角形、梯形隶属度函数,对输出变量采用单点的隶属度函数。
图4(a)和(b)分别为内环和外环控制器输入、输出变量的隶属度函数。
(a)内环的隶属函数(b)外环的隶属度函数图4 隶属度函数3.3模糊控制规则集模糊控制规则是模糊控制器的核心,它是将操作者的实践经验加以总结,而得到的一条条模糊条件语句的集合。
在一阶倒立摆双闭环模糊控制系统中,内、外环控制器的输入量均为偏差及其对应的偏差变化率,输出为控制量。
在这种情况下,对输入为偏差和偏差变化率,输出为控制量的简单模糊控制器,可采用以下经验公式设计控制规则:将5个模糊子集(nb,ns,ze,ps,,pb)分别用(-2,-1,0,1,2)表示,其结论数字大约是2个条件数字和的一半。
用此经验方法先求出控制规则集的初值,再经过调整得到内环和外环的模糊控制规则集如表2。
表2 模糊控制规则集3.4解模糊解模糊过程是模糊化过程的逆过程,即将由模糊控制算法得到的模糊控制输出语言值,依据输出量隶属函数和解模糊规则转换成对应的精确化输出量。
由于在一阶倒立摆双闭环模糊控制系统中,内外模糊控制器的输出量的隶属函数均为单点集,所以这里采用重心解模糊的单点公式作为解模糊算法。
根据重心法解模糊的单点计算公式可以方便的推导出控制系统内外环解模糊的计算公式。
由于输出隶属度函数为单点,解模糊运算简单。
以内环为例,有:式中:为个规则的激活强度,为输出隶属度函数中各单点值。
4、仿真实验首先对MATLAB的模糊控制器进行编程,电路图进行设计并且在运行。
模糊控制定义了三个不同阶段:一是模糊化阶段,即定义输入输出变量的模糊集;二是模糊推理阶段,即建立模糊规则,这些规则能根据推理阶段得到的值计算实际的输出值。
4.1 MATLAB 模糊控制逻辑工具箱使用MATLAB模糊逻辑工具箱中的图形界面工具(GUI)可以方便地建立起模糊逻辑系统。
MATLAB模糊逻辑工具箱有五个主要的图形界面工具(GUI),可以用来方便快捷地建立、编辑和观察模糊推理系统。
这五个GUI工具中包括三个编辑器:模糊推理系统(FIS)编辑器、隶属函数编辑器、模糊规则编辑器;两个观察器:模糊规则观察器和输出曲面观察器。
而且这五个CUI工具之间为动态连接---使用中任何一个GUI工具中的参数被修改,其他打开的GUI工具的相应参数或性质也将自动改变。
在MATLAB中,打开的FIS编辑器,并且设计好它的输入和输出。