高考数学二轮复习:(理数)专题20 填空题解题方法

合集下载

高考数学填空题解题方法和技巧

高考数学填空题解题方法和技巧

高考数学填空题解题方法和技巧高考数学填空题解题在保证准确率的前提下,还要追求解题速率,做到既快又准,要小题小做,切忌小题大做。

高三数学填空题复习要多实施“多一点想的,少一点算的”的思维训练,高考数学题常见解题方法和技巧有:①直接法、②特例法(特殊值、特殊函数、特殊角、特殊数列、特殊方程、特殊模型、图形的特殊位置、特殊性点)、③数形结合法、④等价转化法、⑤构造法、⑥归纳法。

(一)直接法直接法求解就是从题设条件出发,运用定义、定理、公式性质、法则等知识,通过变形、推理、计算等,得出正确的结论。

例1.不等式0|)|1)(1(>-+x x 的解集是(二)特例法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的变量用特例替之,即可得到结论。

特例法一般可取特殊值、特殊函数、特殊角、特殊数列、特殊方程、特殊模型、图形的特殊位置、特殊性点等。

例2.1.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是例2.2.已知等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为________(三)数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想。

例3.已知直线m x y +=与函数21x y -=的图像有两个不同的交点,则实数m 的取值范围是(四)等价转化法“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而等到正确的结果。

例4.1.若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是例4.2.计算=-++33257257(五)构造法根据题设条件与结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决。

高中数学填空题解题技巧剖析

高中数学填空题解题技巧剖析

高中数学填空题解题技巧剖析填空题是高中数学试卷中常见的一种题型,通常考查考生对基础知识的掌握程度以及对解题思路的把握。

以下将对高中数学填空题的解题技巧进行剖析。

一、审题与理解首先,对于填空题,我们需要认真审题,理解题意,确定题目的求解目标和题目所给出的信息。

在阅读题目时,我们要注重以下几个方面的内容:1.题目要求:明确题目的求解目标和所需填空的个数。

2.已知条件:理解题目中已给出的条件,包括数据、等式、图形等,这些已知条件是解题的基础。

3.隐含条件:有些题目会有一些隐含条件,需要我们根据题目的描述自行推断。

通过仔细审题,我们可以对题目的信息做到心中有数,才能在解题过程中根据所给条件与已知知识来推导解答。

二、关注关键词在填空题的解题过程中,识别和把握题目中的关键词是非常重要的。

常见的数学关键词包括“最大值”、“最小值”、“相似”、“比例”、“约分”、“倍数”、“公因数”等。

在解题时,我们可以通过关键词的提示,判断题目的解题思路和逻辑。

举个例子,如果题目中出现了“比例”,那么我们就要考虑使用比例的性质来求解;如果出现了“最大值”、“最小值”,那么就要通过极值的方法来求解。

三、思路明确解题思路的明确是填空题的解题关键之一。

仔细阅读题,在弄清题目的目标,所给条件之后,要通过思考,明确解题的思路。

对于一些简单的题目,需要使用基本公式,例如利用勾股定理解三角形边长,利用圆周率求圆的面积和周长等;对于一些复杂的题目,则需要结合已有的知识和技巧来思考如何解决问题。

四、记忆公式高中数学包含很多的公式和定理,掌握这些公式和定理是解题的必要条件。

在平时的学习过程中,要注意理解和记忆公式的使用方法和注意事项,以便在考试中运用自如。

五、检查答案检查结果在填空题中非常必要,因为填空题的答案相对比较简单,在计算过程中容易出现错别字、错位、运算符号错误等小错误,所以我们需要反复检查计算过程,确保每一个空都填对了,并且运算过程没有错误。

高考数学填空题答题套路和技巧

高考数学填空题答题套路和技巧

高考数学填空题答题套路和技巧考试答题,对分数影响最为关键的就是答案的正确性。

下面是为大家整理的高考数学填空题答题套路和技巧相关内容,以供参考,一起来看看!高考数学填空题答题套路和技巧1、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

3、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

4、等价转化法通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

5、图像法借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。

文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

6、构造法在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。

高考数学答题规范1、答题工具答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。

禁止使用涂改液、修正带或透明胶带改错。

必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。

2、答题规则与程序①先填空题,再做解答题;②先填涂再解答;③先易后难。

3、答题位置按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。

4、解题过程及书写格式要求关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

高考数学二轮复习填空题的解题策略课件

高考数学二轮复习填空题的解题策略课件

五、整体代入法
整体代入法:将需要解决的问题看作一个整体,通过研究
问题的整体形式、整体结构、整体功能或作种种整体处理 后,达到准确而又简捷地解决问题的目的.
17/36
五、整体代入法
例12 三棱锥的三个侧面两两互相垂直,它们的侧面积分 别是6、4、3,则它的体积等于 .
解析
设三条棱长分别为x、y、z, 则xy=6, xz=4, yz=3. 1 1 1 得V xyz (xy ) xz ( yz ) 6 43 2 6 6 6
9/36
三、数形结合法
例6
如果不等式 4 x x 2 (a 1) x的解集为A且,A {x | 0<x<2}, 那么实数a的取值范围是 .
y
解析
根据不等式解集的几何意义, 作函数y= 4x x2 和 函数 y=(a-1)x 的图象(如图),
o
2
4
z
从图上容易得出实数a的取值范围是a∈[2,+∞).
1 2 x ,3 , y 0. 易知 因为y与y 有相同的单调区间,而 4
y 11 4 4 x 13x 3, ,所以可得结果为
2 2
13 ,3 . 8
【点评】能够多角度思考问题,灵活选择方法, 是快速准确地解数学填空题的关键.
16/36
恒有交点,则实数a的取值范围是
解析
.
题设条件等价于点(0,1)在圆内或圆上,或等价于点(0, 1)到圆(x-a) +y =2a+4的圆心的距离小于或等于 2a 4 , 所以 -1≤a≤3.
2 2
15/36
四、等价转化法
例11 函数 y 4x 1 2 3 x 的单调递减区间为

高考数学第二轮复习专题填空题的解题方法与策略

高考数学第二轮复习专题填空题的解题方法与策略

填空题的解题方法与策略填空题的主要特征是题目小、跨度大、知识覆盖面广、形式灵活,突出考查考生准确、严谨、全面、灵活运用知识的能力。

对于填空题“见错记零分”。

所以答题时一定要严谨、规范。

数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。

求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。

常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

一、填空题的解题方法有:(1)直接法(2)观察法(3)定义法(4)特值法(5)图解法(6)分析法(7)引参法(8)构造法。

1、 直接法:就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得到正确的结论。

这是最常用的方法。

例题:例1:22121992-的系数是展开式中x x x ⎪⎭⎫ ⎝⎛-ex :1、()()的系数是的展开式中1021012x xx -+2210C 21179⨯答案:-=例2:给出问题:12016,2221=-y x F F 是双曲线的焦点,点P 到焦点F 1的距离等于9,点P 到焦点F 2的距离,某学生的解答如下:双曲线的实轴长为8,由221PF 98-即=-PF PF =8,得2PF =1或17,该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,请将正确结果填在下面空格内(17)练习:已知sin θ+cos θ=15,θ∈(0,π),则cot θ的值是 。

解高中数学选填题的妙招

解高中数学选填题的妙招

解高中数学选填题的妙招高中数学选填题是一种难度较大的题型,要求考生在有限的时间内找到解题思路,并给出准确的答案。

下面是一些解高中数学选填题的妙招:1. 提高基本知识掌握:选填题往往涉及多个数学概念和定理,所以要提前准备好基本知识,熟悉各种定理及其应用,这样在遇到选填题时可以更好地分析题意,找到解法。

2. 观察题目特点:选填题通常比较灵活,可以根据题目特点和提示来解答。

在读题时要仔细观察各个选项的形式和关键词,找到蛛丝马迹,从而找到解题思路。

3. 运用逻辑思维:选填题常常利用逻辑关系进行推理。

要学会根据已知条件的逻辑关系,运用逻辑思维进行推演,找到合理解题路径。

可以尝试反证法、假设法等。

4. 善于利用数学方法:在解题过程中,可以尝试不同的数学方法。

可以尝试代入法、分类讨论法、图形法等,从不同角度解题,找到最佳解法。

5. 巧妙使用辅助线和图形:选填题中,辅助线和图形经常是解题的关键。

正确地引入辅助线或绘制合适的图形,可以简化题目,提供更多的线索,帮助找到解题方法。

6. 多进行实践训练:解高中数学选填题需要一定的经验积累,在平时的学习中要多进行实践训练。

可以参加数学竞赛,做一些难度适中的习题,多和同学交流,提高自己的解题能力。

7. 保持冷静和耐心:解高中数学选填题需要保持冷静和耐心,不能急于求成。

遇到不会解答的题目,可以暂时放一放,先解答其他题目,等到思路清晰再回过头来解决困难题。

解高中数学选填题需要全面掌握基本知识,发挥逻辑思维能力,善于利用辅助线和图形,并进行多次实践训练。

相信通过不断的努力和积累,你会在解高中数学选填题中取得好成绩。

2018高考数学理二轮备考课件—20填空题解题方法

2018高考数学理二轮备考课件—20填空题解题方法
(方法二)把平行四边形 ABCD 看成正方形,则点 P 为对角线的交 点,AC=6,则������������ ·������������=18. (2)令 a=3,b=4,c=5,则△ABC 为直角三角形,
且 cos A=45,cos C=0,代入所求式子,得
cos������+cos������ 1+cos������cos������
-1
21-1
2 -1
(1)2 (2)2
-10-
对点训练 2(1)如图,在平行四边形 ABCD 中,AP⊥BD,垂足为 P,且
AP=3,则������������ ·��������பைடு நூலகம்���=
.
(2)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 a,b,c 成等差数列,
则1c+osc���o���s+������ccooss������������=
年,“割圆术”的第一步是计算单位圆内接正六边形的面积
S6,S6=
.
常用解法
-5-
将正六边形分割为 6个等边三角形,

S6=6×
1 2
×
1
×
1
×
sin60°
= 323.
33 2
-6-
对点训练 1 已知向量 a=(1,-1),b=(6,-4).若 a⊥(ta+b),则实数 t 的值

.
答案:-5 解析: 由 a⊥(ta+b)可得 a·(ta+b)=0, 所以 ta2+a·b=0, 而 a2=12+(-1)2=2,a·b=1×6+(-1)×(-4)=10,所以有 t×2+10=0,解得 t=-5.

2024年高考数学二轮技巧02 填空题的答题技巧(精讲精练)(解析版)

2024年高考数学二轮技巧02 填空题的答题技巧(精讲精练)(解析版)

技巧02 填空题的答题技巧【命题规律】高考的填空题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:填空题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:填空题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:特殊法速解填空题核心考点二:转化法巧解填空题核心考点三:数形结合巧解填空题核心考点四:换元法巧解填空题核心考点五:整体代换法巧解填空题核心考点六:坐标法巧解填空题核心考点七:赋值法巧解填空题核心考点八:正难则反法巧解填空题【真题回归】1.(2022·浙江·统考高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是_______.【答案】[12+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,(1,0),,(0,1),,(1,0)A A A A A A A ⎛-- ⎝,8A ⎛ ⎝,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤,所以221cos 4512x y +≤+≤,故222128PA PA PA +++的取值范围是[12+.故答案为:[12+.2.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e ..3.(2022·浙江·统考高考真题)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】 8 2-【解析】含2x 的项为:()()3232222244C 12C 14128x x x x x x ⋅⋅⋅-+⋅⋅⋅-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.4.(2022·全国·统考高考真题)已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1【解析】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m 时,等号成立,所以当ACAB取最小值时,1m .1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==当且仅当即时等号成立。

高三数学第二轮专题复习填空题解答策略方法课堂资料 教案

高三数学第二轮专题复习填空题解答策略方法课堂资料 教案

word高三数学第二轮专题复习填空题解答策略方法课堂资料一、基础知识整合数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题.填空题缺少选择支的信息,故解答题的求解思路可以原封不动地移植到填空题上.但填空题既不用说明理由,又无须书写过程,因而解选择题的有关策略、方法有时也适合于填空题.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

下面以一些典型的问题为例,介绍解填空题的几种常用方法与技巧,从中体会到解题的要领:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

二、例题解析(一)直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果.[例1] 设(1)3,(1),a m i j b i m j =+-=+-其中i j 、为互相垂直的单位向量,又()()a b a b +⊥-,则实数m = 。

[解](2)(4),(2).a b m i m j a b mi m j +=++--=-+∵()()a b a b +⊥-,∴()()0a b a b +⋅-=,∴其中i j 、为互相垂直的单位向(2)(2)(4)0m m m m +-+-=,∴2-=m . [例2] 已知函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则实数a 的取值X 围是.[解]22121)(+-+=++=x a a x ax x f ,由复合函数的增减性可知,221)(+-=x a x g 在),2(+∞-上为增函数,∴021<-a ,∴21>a .[例3] 现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13长比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为。

高考数学填空题解题方法与策略

高考数学填空题解题方法与策略

高考数学填空题解题方法与策略高考数学填空题解题方法一、解填空题的常用方法和技巧1.直接推理法:直接法是从题设条件出发,通过计算、分析推理得出正确结论的方法. 解题过程中要注意优化思路、少算多思,尽量减少运算步骤,合理跳步,小题小(巧)做,以节约时间.例2:从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员、与体育委员,其中甲、乙二人不能担任文娱文员,则不同的选法共有_____(用数字作答). 解法1:分四类:①选甲不选乙有112322CC A ⋅⋅=12种;②选乙不选甲,同上有12种;③甲乙都选上有2123AC ⋅=6种;④甲乙二人都不选有33A =6种. 共有选法12+12+6+6=36种.解法2:从反面考虑,共有32542AA -=36种.点评:本题考查有限制条件的排列组合问题,两种解法显然解法2更简捷. 另外题目要求用数字作答,就不能用32542AA -等形式表示.例3:如图,平面内有三个向量OAu u u r 、 OBuuu r 、OCu u u r ,其中OAu u u r 与OBuuu r 夹角为0120,OA u u u r 与OCu u u r 的夹角为030,且||||1OA OB ==u u u r u u u r,||OC =u u u rOCu u u r=OA OBλμ+u u u r u u u r(,R λμ∈),则λμ+的值为________.解法1:∵OAu u u r 与OBuuu r 夹角为0120,OA u u u r 与OCu u u r 的夹角为030,∴OCu u u r与OBuuu r 夹角为090,∴OB OC⋅u u u r u u u r =0,即()0OB OA OB λμ⋅+=u u u r u u u r u u u r ,∴2OB OA OB λμ⋅+=u u u r u u u r u u u r ,∴102λμ-+=,即2λμ=…………①. O ABC又cos ,||||OA OCOA OC OA OC ⋅<>=⋅u u u r u u u ru u u r u u u r u u ur u u u ru u u r u u u r u u u ru u u r u u u r1λμ-∴132λμ-=…………② 由①,②解得2,4μλ==. ∴6λμ+=.解法2:以O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A,1(2B -,∴OCu u u r =OA OBλμ+u u u r u u u r=1()2λμ-, ∴12OA OC λμ⋅=-u u u r u u u r=01cos30⨯=3,则(3,)2OC μ=u u u r .∴2222||3)2OC μ=+=u u u r ,得2μ=±,由图可知μ>0,则2μ=,4λ=. 故6λμ+=.例4:定义在R 上的函数f(x),对于任意实数x 都有(3)f x +≤()3f x +和(2)f x +≥()2f x +,且f(1)=1,则f(2011)=________________.解:由f(x+3)≤f(x)+3得:f(2011)≤f(2008)+3,f(2008)≤f(2005)+3,f(2005)≤f(2002)+3,…,f(7)≤f(4)+3,f(4)≤f(1)+3,共进行670次,将上述同向不等式相加可得:f(2011)≤f(1)+3×670,即f(2011)≤2011. 由(2)f x +≥()2f x +得:f(2011)≥f(2009)+2,f(2009)≥f(2007)+2,f(2007)≥f(2005)+2,…,f(5)≥f(3)+2,f(3)≥f(1)+2,共进行1005次,将上述同向不等式相加可得:f(2011)≥f(1)+2×1005,即f(2011)≥2011. 从而f(2011)=2011. 例5:数列{}na 定义如下:1a =1,且当n ≥2时,21n a +(当n 为偶数时) 11n a -(当n 为奇数时)解:由题设易知0na>,又由11a=可得,当n 为偶数时,1na>,所以当n(n >1)为奇数时11nn aa -=<1. ∵32na=>1,∴n 为偶数,32n a ==21n a+,2112n a=<,∴2n 为奇数,212112n naa -==,1221n a-=>,∴12n -为偶数,212421n n aa --==+,∴24n a -=1.∴214n aa -=,即214n -=,即6n =. 例6:设函数f(x)的定义域为D ,如果对于任意的1x D ∈,存在唯一的2xD∈,使12()()2f x f x C +=(C 为常数)成立,则称函数f(x)在D 上均值为C ,下列五个函数:①4sin y x =;②3y x =;③lg y x =;④2xy =;⑤21y x =-.则满足其定义域上均值为2的所有函数的序号是_________________.解:对于①,若124sin 4sin 22x x+=,则12sin sin 1x x+=,因为2x 不唯一,①不合题意;对于②,若331222x x +=,则2x=是唯一的,②符合题意;对于③,若12lg lg 22x x +=,则42110x x =是唯一的,③符合题意;na =已知32na =,则正整数n对于④,若122222x x +=,12224x x +=,则2x 可能不存在,④不合题意;对于⑤,若12212122x x-+-=,则213xx =-是唯一的,⑤符合. 故填②③⑤.2. 特例法:当填空题的答案暗示是与变量无关的一个定值时,常可用特例法(特殊值、特殊图形、特殊位置等)迅速求解.例7:如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB mAM=u u u r u u u u r,AC nAN=u u u r u u u r ,则m + n 的值为__________.解1:∵O 是BC 的中点,∴1()2AO AB AC =+u u u r u u u r u u u r =2m AM u u u u r+2n AN u u u r ,∴,,M O N 三点共线,∴122m n+=,得2m n +=. 解2:用特例法. 取M 与B 重合,N 与C 重合,此时m = n =1,得m + n = 2 .点评:本题利用特殊位置迅速得解.3.充分应用已知结论:因为填空题不必写出解答过程,要提高解题速度,可以应用一些典型习题的重要结论或方法,心算、笔算结合,能减少运算步骤,简化计算. 例8:已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()aa a a a a ++++的值等于___________________.分析:在二项式()()nf x ax b =+的展开式中有结论:其展开式各项系数的和为(1)f ;奇数项的系数和为1[(1)(1)]2f f --;偶数项的系数和AB O NCM为1[(1)(1)]2f f +-. 解:分别令x=1、x=-1,得012345aa a a a a +++++=0,0123aa a a -+-+4a -5a =32,由此解得02416aa a ++=,13516a aa ++=-.∴024135()()aa a a a a ++++=-256.例9顶点都在一个球的面上,则此球的体积为_________________. 分析:当一个正n 棱柱各顶点都在球面上,则有结论:正n 棱柱的体对角线即为外接球的直径.解:正六棱柱的外接球的球心在正六棱柱的体对角线的中点上,如图所示.∵11112FC A F ==1F F =∴四边形11F FCC为正方形,∴1FC =∴外接球直径2R =R =∴343V R π==.例10:已知O e 的方程是2220x y +-=,O 'e 的方程是2x +2y -8x +10=0. 由动点P 向O e 和O 'e 所引的切线长相等,则动点P 的轨迹方程是_____________________.分析:有关圆的切线长有结论:若圆方程为220x y Dx Ey F ++++=(2D + 2E4F->0),则由点P(x,y)引圆的切线长为解:设P(x,y) D1得动点P 的轨迹方程为32x =. 4.观察法:通过仔细观察,抓住题设中的隐含条件或特征,挖掘出题目的内在规律进行求解. 例11:已知数列{}na 对于任意,*p q N ∈,有p q p qaa a ++=,若119a =,则36a =______________. 解:令p n =,1q =,则11n n aa a ++=,∴1119n n aa a +-==,所以数列{}na 是等差数列. ∴36136aa ==4.5.图解法:有些填空题涉及的问题可以转化为数与形的结合,数以形而直观,形以数而入微,利用图形往往直观易懂,又可节省时间.例12:已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为______________. 解法1:设双曲线方程为22221x y a b -=,顶点(,0)a ,焦点(,0)c ,渐近线0bx ay +=,则有2==ab c,6=3ce a==. 解法2:如图,A 、F 则||||||||OF FC OA AB =,即632c a ==. 6.等价转化法:通过命题的等价转换,将所给命题转化为熟悉的或容易解决的命题形式. 例13:若函数()f x =R ,则a 的取值范围为____________________.解:函数()f x =的定义域为R ,即222x ax a--≥1对x R ∈恒成立,等价于22xax a--≥0对x R ∈恒成立.∴Δ=2(2)4a a--≤0⇒(1)a a +≤0,∴-1≤a ≤0 .例14:函数|cos ||cos 2|()y x x x R =+∈的最小值是__________________.分析:本题关键在于去掉绝对值符号. 由2cos 22cos 1x x =-=22|cos |1x -,可设|cos |t x =,将原函数转化为关于变量t的函数,最后利用转化的思想将问题转化为关于求解t 的绝对值的函数的最小值问题. 解:令|cos |t x =∈[0,1],则2|21|y t t =+-.当12t ≤≤时,221y tt =+-=2192()48t +-,得22y ≤≤;当02t ≤<时,221y tt =-++=2192()48t --+,得928y ≤≤.∴y 的最小值是2.训练题1. (1) 把10个相同的小球放入三个盒子中,每个盒子至少放一个球,则不同的放法种数是__________________.(2) 方程x + y + z = 15的非负整数解的个数是_____________.(3) 把10个相同的小球放入三个编号为①、②、③的三个盒子中,要求放入各盒的个数不少于它们的编号数,则共有不同的放法_________________种.2. 给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}x m =. 在此基础上给出下列关于函数f (x) = | x – {x}|的四个命题:①函数y = f (x)的定义域是R ,值域是1[0,]2;②函数y = f (x)的图像关于直线x =2k (k ∈Z)对称;③函数y = f (x)是周期函数,最小正周期是1;④函数y = f (x)在11[,]22-上是增函数. 则其中真命题是____________(写出所有真命题的序号).3. 定义一种新运算“⊗”如下:当a b ≥时,a b a ⊗=;当a b <时,2a b b ⊗=. 对于函数f (x) = [(–2)x ⊗]2)x x ⋅-⊗,(2,2)x ∈-(“⋅”和“-”仍是通常的乘法和减法). 把f (x)的图像按向量ar 平移后得到g (x)的图像,若g (x)为奇函数,则ar=_______________.4. 在四棱锥P —ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP = MC , 则点M 在正方形ABCD 内的轨迹为下图中的______________.ABC D PAB C DAB C DAB C DABCD甲乙丙丁5. 给出下列定义:连接平面点集内两点的线段上的点都在该点集内,则这种线段的最大长度就叫做该平面点集的长度. 已知平面点集M 由不等式组 2220x x --≤10x y -+≥ 给出,则M 的长度是__________________.0y ≥6. 已知M 是△ABC 内的一点,且AB AC ⋅=u u u r u u u r30BAC ∠=,定义:f (M) = (m , n , p ), 其中m 、n 、p 分别是△MBC 、△MCA 、△MAB 的面积,若 f (P) =1(,,)2x y ,则14x y+的最小值是_________________.7. 在数列{}na 中,若()111,231n n n a aa n +==+≥,则该数列的通项na =__________.8. 口袋里装有m 个红球和n 个白球,4m n >≥,现从中随机摸出两个球,若摸出的两个球是同色的概率等于摸出的两个球是异色的概率,则满足关系40m n +≤的数组(,)m n 的个数有____________个.9. 已知椭圆2211612x y +=的长轴为12A A ,短轴为12B B 。

数学填空题的方法和技巧

数学填空题的方法和技巧

数学填空题的方法和技巧数学填空题是一种选择题,通常是在数学考试中遇到的题型之一。

完成数学填空题需要一定的技巧和方法,以下是一些建议:1. 理解问题:首先,你需要仔细阅读题目,确保你完全理解了问题的要求。

2. 分析选项:在开始解题之前,分析所有选项可以帮助你更好地理解问题。

有些选项可能明显错误,你可以立即排除它们。

3. 使用合适的方法:根据问题的类型,选择合适的方法或公式来解决问题。

例如,如果是一个几何问题,可能需要使用相关的几何公式或定理。

4. 推理和计算:使用逻辑推理和计算技巧来解决具体问题。

这可能涉及到基础的数学运算,如加、减、乘、除等。

5. 检查答案:完成问题后,检查你的答案是否符合问题的要求。

如果可能的话,尝试用另一种方法解决问题,以验证你的答案是否正确。

6. 注意细节:在填写答案时,注意细节是非常重要的。

例如,确保你填写了正确的单位,并注意答案的格式和书写方式。

7. 练习和复习:通过大量的练习和复习,提高解决数学填空题的能力。

熟悉不同的题型和解题方法可以帮助你更好地应对各种问题。

8. 合理猜测:如果你对问题的答案不确定,合理猜测也是一种有效的策略。

基于问题和选项提供的信息,尝试猜测可能的答案。

9. 时间管理:在考试中,时间是非常宝贵的资源。

合理分配时间,确保你有足够的时间来仔细阅读问题和解决问题。

10. 保持冷静:遇到难题时,保持冷静的心态是非常重要的。

不要因为一个问题而影响整个考试的表现。

遵循以上建议,掌握数学填空题的解题技巧和方法,提高解决问题的能力和准确性。

同时,也要不断练习和总结经验,提高自己的数学水平。

高考数学复习资料填空题答题方法

高考数学复习资料填空题答题方法

高考数学复习资料填空题答题方法高考数学复习填空题解题方法方法一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.适用范围:对于计算型的试题,多通过计算求结果.方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.方法二、特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.方法点津:填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件.方法三、数形结合法对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等.适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算.方法点津:图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.方法四、构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.高考数学复习答题方法的铁律1.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;2.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的.三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;3.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;5.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;高考数学冲刺复习的提醒(一)数学复习适当“读题”读题的任务就是要理清解题思路,明确解题步骤,分析最佳解题切入点。

高考数学填空题解题方法

高考数学填空题解题方法

高考数学填空题解题方法填空题是一种传统的题型,也是高考试卷中罕见题型.查字典数学网为大家引荐了高考数学填空题解题方法,请大家细心阅读,希望你喜欢。

一、直接法这是解填空题的基本方法,它是直接从题设条件动身、应用定义、定理、性质、公式等知识,经过变形、推理、运算等进程,直接失掉结果。

它是解填空题的最基本、最常用的方法。

运用直接法解填空题,要擅长经过现象看实质,熟练运用解方程和解不等式的方法,自觉地、无看法地采取灵敏、简捷的解法。

二、特殊化法当填空题的结论独一或题设条件中提供的信息暗示答案是一个定值时,而条件中含有某些不确定的量,可以将题中变化的不定量选取一些契合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)停止处置,从而得出探求的结论。

这样可大大地简化推理、论证的进程。

三、数形结合法"数缺形时少直观,形缺数时难入微。

"数学中少量数的效果前面都隐含着形的信息,图形的特征上也表达着数的关系。

我们要将笼统、复杂的数量关系,经过形的笼统、直观提醒出来,以到达"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻觅处置形的方法,来到达"数促形"的目的。

关于一些含有几何背景的填空题,假定能数中思形,以形助数,那么往往可以简捷地处置效果,得出正确的结果。

四、等价转化法经过"化复杂为复杂、化生疏为熟习",将效果等价地转化成便于处置的效果,从而得出正确的结果。

数学里常用的几种经典解题方法引见:1、配方法所谓配方,就是把一个解析式应用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和方式。

经过配方处置数学效果的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的运用十分十分普遍,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

高考数学填空题的解题方法与技巧

高考数学填空题的解题方法与技巧

数学填空题的解题方法与技巧填空题的主要作用是考查学生的基础知识、基本技能及思维能力和分析问题、解决问题的能力,填空题的结果必须是数值准确、形式规范、表达式(数)最简,结果稍有毛病,便得零分.学生在解答填空题时注意以下几点;1.对于计算型填空题要运算到底,结果要规范;2.填空题所填结果要完整,不可缺少一些限制条件;3.填空题所填结论要符合高中数学教材要求;4.解答填空题平均每小题3分钟,解题时间应控制在12分钟左右. 总之,解填空题的基本原则是“小题小做”,要“准”、“活”、“灵”、“快”. 基础训练(1)设直线α平面⊂l ,过平面α外一点A 作直线,则与α,l 都成 45角的直线有 条. (2)如下图所示,过点Q (2,1)的动直线l 分别交x 轴、y 轴于A 、B 两点,则线段AB 的中点P 有轨迹方程为: .(3)若数列}{n a 中,)1(3,111≥==+n S a a n n ,则n S 为: .(4)对于满足40≤≤p 的一切实数x ,不等式342-+>+p x px x 恒成立,则x 的取值范围是:(5)设实数x 、y 满足⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,则|42|-+y x 的最大值是:答案:(1)2 (2))1(022≠=--x y x xy(3))(4*1N n S n n ∈=- (4)),3()1,(+∞--∞ (5)21 典型例题(一)直接法xy A B ·Q(2,1) ·P(x,y)直接法求解就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确的结论.例1、不等式0|)|1)(1(>-+x x 的解集是:【解析】当0≥x 时,原不等式等价于0)1)(1(>-+x x ,∴11<<-x ,此时应有:10<≤x ;当0<x 时,原不等式等价于0)1(2>+x ,∴1-≠x ,此时应有:011<<--<x x 或;∴不等式0|)|1)(1(>-+x x 的解集是:}11|{-≠<x x x 且.例2、在等差数列}{n a 中,135,3851-=-=a na a ,则数列}{n a 的前n 项和S n 的最小值为:【解析】设公差为d ,则13)73(5)43(11-+-=+-d d , ∴95=d ,∴数列}{n a 为递增数列, 令0≥n a ,∴095)1(3≤⨯-+-n ,∴526≤n , ∵*N n ∈,∴7≤n ,∴前6项和均为负值,∴S n 的最小值为3296-=S . 【题后反思】由于填空题不需要解题材过程,因此可以透过现象看本质,自觉地、有意识地采用灵活、简洁的解法,省去某些步骤,大跨度前进,也可配合心算、速算、力求快速,辟免“小题大做”.(二)特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替之,即可得到结论.例3、函数)(x f y =在(0,2)上是一增函数,函数)2(+=x f y 是偶函数,则)27(),25(),1(f f f 的大小关系为: (用“<”号连接) 【解析】取2)2()(--=x x f ,则)25()1()27(f f f <<,例4、椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是:【解析】设P(x,y),则当 9021=∠PF F 时,点P 的轨迹方程为522=+y x ,由此可得点P 的横坐标53±=x ,又当点P 在x 轴上时, 021=∠PF F ;点P 在y轴上时,21PF F ∠为钝角,由此可得点P 横坐标的取值范围是:553553<<-x . 【题后反思】特殊值法一般可取特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊性点、特殊方程、特殊模型等.(三)数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.例5、已知直线m x y +=与函数21x y -=的图像有两个不同的交点,则实数m 的取值范围是: .【解析】∵函数21x y -=的图像如图所示,∴由图可知:21<≤m .例6、设函数c bx ax x x f +++=22131)(23,若当)1,0(∈x 时,)(x f 可取得极大值;当)2,1(∈x 时,)(x f 可取得极小值,则12--a b 的取值范围是: 【解析】b ax x x f 2)(2/++=,由条件知,0)(/=x f 的一个根在(0,1)上,另一个根在(1,2)上,∴⎪⎩⎪⎨⎧>><0)2(0)0(0)1(///f f f ,即⎪⎩⎪⎨⎧>++><++020012b a b b a如图所示,在平面直角坐标系xOy 中作出上述区域,得点P (a ,b )在图中的阴影区域内,而12--a b 的几何意义是过两点P (a ,b )与A (1,2)的直线的斜x y -1 1 2+=x y x y = 1+=x y 1-=x y . …… ……… ……… ……… … … x yA(1,2) (-3,1) -2 -1 -2 a+2b+1=0 a+b+1=0率,易知)1,41(12∈=--PA k a b . 【题后反思】数形结合法,常用的有Venn 图,三角函数线,函数图像及方程的曲线等,另一面,有些图形问题转化为数量关系,如直线垂直可转化为斜率关系或向量积等.(四)等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而等到正确的结果.例7、若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是:【解析】题设条件等价于直线上的定点(0,1)在圆内或圆上,或等价于点(0,1)到圆心(a ,0)的距离小于或等到于圆的半径42+a ,所以31≤≤-a 例8、计算=-++33257257【解析】分别求这两个二重根式的值显然不是那么容易,不妨从整体考虑,通过解方程求之. 设x =-++33257257,两边同时立方得:01433=-+x x ,即:0)72)(2(2=++-x x x ,∵0722≠++x x ,∴2=x ,即=-++332572572,因此应填2.【题后反思】在研究解决数学问题时,常采用转化的手段将问题向有利于解答的方面转化,从而使问题转化为熟悉的、规范的、甚至模式的问题,把复杂的问题转化为简单的问题.(五)构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助于它来认识和解决问题.例9、如果))2,0((,cos )cos 1(sin )sin 1(44πθθθθθ∈+>+,那么角θ的取值范围是: .【解析】设函数x x x f 4)1()(+=,则051)(4/>+=x x f ,所以)(x f 是增函数,由题设,得出)(cos )(sin θθf f >,得θθcos sin >,所以)45,4(ππθ∈.例10、P 是正方体ABCD —A 1B 1C 1D 1的上底面A 1B 1C 1D 1内任意一点,AP 与三条棱AA 1,AB 1,AD 的夹角分别为γβα,,,则=++γβα222co s co s co s【解析】如上图,过P 作平面PQQ /P /,使它们分别与平面B 1C 1CB和平面C 1D 1DC 平行,则构造一个长方体AQ /P /R /—A 1QPR ,故 1cos cos cos 222=++γβα.【题后反思】 凡解题时需要根据题目的具体情况来设计新模式的的问题,通常要用构造法解决.(六)分析法根据题设条件的特征进行观察、分析、从而得出正确的结论.例11、以双曲线1322=-y x 的左焦点F 和左准线l 为相应的焦点和准线的椭圆截直线3+=kx y ,所得的弦恰好被x 轴平分,则k 的取值范围是: .【解析】双曲线的左焦点为F (-2,0),左准线l 为23-=x ,因为椭圆截直线所得的弦恰好被x 轴平分,故根据椭圆的对称性,知椭圆的中心即为直线3+=kx y 与x 轴的交点(0,3k -),故23-<-k ,得230<<k . 例12、(2007福建)某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是1.09.03⨯;③他至少击中目标1次的概率是41.01-.【解析】①第3次击中目标意味着1、2、4次可击中,也可不击中,从而第3次击中目标的概率为9.0)1.09.0(9.0)1.09.0()1.09.0(=+⨯⨯+⨯+;②恰好击中目标3次的概率是独立重复试验,故概率为1.09.0334⨯⨯C ;③运用对立事件4次射击,一次也没有击中的概率为41.0,从而至少击中目标一次的概率为41.01-.故正确结论的序号为①、③.【题后反思】A B C DC 1 A 1 B 1D 1P R Q Q / R /P /分析法是解答问题的常用方法,该方法需要我们从题设出发,对条件进行观察、分析,找到相应的解决方法.五、限时课后练习(1)已知函数52)(3+-=x x x f 在)1,32(-上单调递减,在),1(+∞上单调递增,且)(x f 的导数记为)(/x f ,则下列结论中,正确的是:①32-是方程0)(/=x f 的根; ②1是方程0)(/=x f 的根; ③有极小值)1(f ; ④有极大值)32(-f ; ⑤5.0-=a (2)设m 、n 是异面直线,则:①一定存在平面α,使α⊂m 且α//n ;②一定存在平面β,使β⊂m 且β⊥n ;③一定存在平面γ,使m 、n 到γ的距离相等;④一定存在无数对平面α和β,使βαβα⊥⊂⊂且n m ,.上述四个命题中,正确命题的序号是: .(3)i 是虚单位,=++-ii 43105 (用R b a bi a ∈+,,的形式表示) (4)设1>>b a ,则b b a ab a b log ,log ,log 的大小关系是: .(5)“x 、y 中至少有一个小于0”是“0<+y x ”的 条件.(6)若记符号“*”表示求两个实数a 与b 的算术平均数的运算,即2*b a b a +=,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是: . (7)设椭圆)0(12222>>=+b a by a x 的右焦点为F 1,右准线为1l ,若过F 1且垂直于x 轴的弦长等于点F 1到直线1l 的距离,则椭圆的离心率是: .(8)设j i m a 3)1(-+=,j m i b )1(-+=,其中j i ,为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m= .(9)如果函数c bx x x f ++=2)(对任意实数t ,都有)2()2(t f t f -=+,那么)4(),2(),1(f f f 的大小关系是:(10)过抛物线)0(2>=a ax y 的焦点F 作一直线与抛物线交于P 、Q 两点,若线段PF 、FQ 的长分别为p 、q ,则=+qp 11 . (11)椭圆13422=+y x 的长轴的两端点为M 、N ,点P 在椭圆上,则PM 与PN 的斜率之积为: .(12)方程x x 41)4sin(=-π的实数解的个数是: . (13)不等式23+>ax x 的解集为(4,b ),则a= ,b= ; (14)已知函数812)(3+-=x x x f 在(-3,3)上的最大值与最小值分别为M 、m ,则M+m= .(15)已知集合}2|),{(2y mx x y x A =++=,}20,01|),{(≤≤=+-=x y x y x B ,如果φ≠B A ,则实数m 的取值范围是: .(16)定义在R 上的函数)(x f 是奇函数,且满足)(1)1(x f x f -=+,则=+++++)7()6()5()4(_)3()2()1(f f f f f f f . (17)设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上且 9021=∠PF F ,则21PF F ∆的面积是: .(18)在数列}{n a 中,若)1(32,111≥+==+n a a a n n ,则该数列的通项=n a .答案:(1)①②③④⑤;(2)①③④;(3)i 21+;(4)a b b b a ab log log log <<;(5)必要不充分;(6)))*()*()*()*()*()((*)()*(c a b c b a c b c a c b a c a b a c b a +=++=+++=+或或(答案不唯一); (7)21; (8)-2; (9))4()1()2(f f f <<;(10)4a ; (11)43-; (12)3; (13)3681==b a ,; (14)16; (15)1-≤m ; (16)0; (17)1; (18) 321-+n .。

高三数学高考二轮专题填空题解题策略

高三数学高考二轮专题填空题解题策略

log a (1 t 2 ) 与 log a (1 t) 同号,所以 m n.答案: m n.
点评: 用数形结合法解填空题,直观,容易懂,不必写出严格的步骤。这两种作法的最大的
优点是不用对底数是否比 1 大讨论。
题 4、底面边长为 2 的正三棱锥 P ABC 中, E、F、G、H分别是 PA、AC、BC、PB中点,则四
1 a 3。
答案: 1 a 3
点评 :注意数与形的结合,提高解题的效率。
(三)、方法总结与 2010 年高考预测
(Ⅰ)方法总结
1、能够多角度思考问题,灵活选择方法,是快速准确地解数学填空题的关键。
2、数学填空题,绝大多数是计算型 ( 尤其是推理计算型 ) 和概念 ( 性质 ) 判断型的试题,应
答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
2. 特例法:当填空题暗示结论唯一或其值为定值时,可取特例求解。
3. 数形结合法:借助于图形进行直观分析,并辅之以简单计算得出结论。
4. 定义法:即直接运用数学定义、性质等直接计算出结果或直接推出结论。
5. 等价转化:从题目出发,把复杂的、生疏的、抽象的、困难的和未知的问题通过等价
转化为简单的、熟悉的、具体的、容易的或已知的问题来解决。
1
x2 1
1 x2
x2 1 x2
1 1 x2
1 ( 定 值 ), 于 是
f (2)
f ( 1) 1, f (3)
f ( 1) 1, f (4)
f (1)
1,又 f (1)
1

故原式 = 7 。
2
3
4
2
2
2 、 若 关 于 x 的 方 程 1 x 2 k (x 2) 有 两 个 不 等 实 根 ,y 则 实 数 k 的 取 值 范 围

数学填空题解题技巧常用方法与答题思路

数学填空题解题技巧常用方法与答题思路

数学填空题解题技巧常用方法与答题思路数学填空题是高中数学考试中常见的题型之一,要求我们根据给定的条件,填写合适的数值或表达式,完成题目。

为了提高解题效率和准确度,我们需要掌握一些常用的解题技巧和思路。

本文将介绍数学填空题的解题方法,以帮助读者更好地应对考试。

一、常用方法与技巧1. 查漏补缺法有时候,题目给出的条件并不足以直接求解填空,这时我们可以通过查漏补缺法,从其他已知条件中联想,找到解题的线索。

例如,在解方程填空题时,如果只给出了一元一次方程的表达式,我们可以通过观察找到一些特殊值代入,然后通过计算得到其他项的值,从而求解填空。

2. 利用等式性质在填空题中,往往会给出一些等式或不等式的条件,我们可以利用这些等式性质来进行填空。

例如,在解三角函数填空题时,可以利用正弦、余弦等函数的周期性和对称性质来求解。

3. 利用特殊性质有些题目中会出现一些特殊的性质,我们可以利用这些性质来简化计算或者推导填空的解。

例如,在解几何填空题时,可以利用几何图形的对称性或者相似性质来求解。

4. 利用逆向思维有时候,我们可以利用逆向思维来解决填空题。

即从答案出发,反推回去寻找答案对应的条件。

例如,在解数列填空题时,可以从给出的答案逆推回去,得到数列的等差或者等比公式。

二、答题思路1. 仔细审题在解答数学填空题之前,我们必须仔细审题,理清题目的要求和条件。

特别需要注意的是,填空题通常会给出一些隐含条件,我们要善于发现这些条件,并且合理利用。

2. 分析解题条件在解答填空题时,我们要分析给出的条件,看是否可以通过已知条件直接求解填空。

如果无法直接求解,可以尝试利用已知条件与其他数学知识之间的联系,进行间接求解。

3. 使用合适的方法和技巧根据题目的不同特点,我们可以选择合适的解题方法和技巧进行求解。

比如,在解代数式填空题时,我们可以利用因式分解、配方法等技巧解题;在解几何填空题时,可以运用几何性质、相似三角形等方法。

4. 检查解答在填写答案之后,一定要仔细检查算式的正确性和合理性,确保填空的结果符合题目要求和已知条件。

高考数学填空题的答题技巧

高考数学填空题的答题技巧

高考数学填空题的答题技巧关于高考数学填空题的答题技巧学霸说数学是更容易拉开差距的学科之一,数学往往在很大程度上决定了考生的学习能力。

而同学们经常抱怨,数学考试卷上的填空题是重灾区。

填空题虽然分数小,但是几道题加起来分值就很大。

做不好填空题,那么,同学们也很难拿到高分。

相对于后面难度较大的解答题,填空题是更易拿分的,要想取得数学考试的胜利,一定要攻克数学填空题。

下面是店铺整理的学霸支招:高考数学填空题答题技巧。

数学填空题注重基础知识学霸说数学填空题和后面大题的考察重点是不同的。

学霸认为,填空题侧重考查的是基础知识。

数学基础知识是老师在课堂上强调最多的内容,所以,在做数学填空题之前,一定要全面的复习好这些数学重点知识,对于数学盲点和易错点,一定要反复练习。

数学填空题注重括号内的条件常常有很多数学题目并不是不会做,而是没看清或者没看到括号内的提示语,而导致失误。

学霸认为这是更可惜的情况。

数学填空题后面的`提示语是绝对不可忽略的条件,有时候,它还作为题目更重要的暗示出现,成为解答填空题的突破口。

由于提示语在括号内,学霸强调很多同学选择忽略,这时候,一定要算一算,去不去掉括号对数学题目的答案有没有影响。

如果有改变答案的影响,那么还是谨慎为好。

数学填空题合理分配时间数学填空题不需要详细的解答过程,只需要用更简洁的方案就可以得出数学答案。

学霸提醒,同学们如若采用解答题的方法,通过大量反复的数学计算得出结论。

那么,做数学填空题的效果已经大打折扣,违背了数学填空题考察的目的。

此外,对于数学填空题,根据整体的题目难度,要合理分配好每道题所用的时间,更好更到边做边检查。

在难题上不要花费过多的时间,主要精力放在解决中等难度的题目上。

长学霸相信通过以上的解题策略,能够使得同学们对于数学填空题有更深的了解。

希望同学们在数学的填空题上争取到更多的分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题20填空题解题方法
1.如下图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为________.
【答案】93
【解析】由三视图可知,该几何体是斜四棱柱,四棱柱底面是矩形,长3,宽3,四棱柱的高h =22-12=3,∴体积V =3×3×3=9 3.
2.已知△ABC 的三个顶点在以O 为球心的球面上,且∠BAC =90°,AB =AC =2,球心O 到平面ABC 的距离为1,则球O 的表面积为________.
【答案】12π【解析】由已知得:BC =22,球O 的半径R =
22+1=3,故其表面积S =4πR 2
=4π·(3)2=12π.
3.已知椭圆x 24+y 23
=1,A 、C 分别是椭圆的上、下顶点,B 是左顶点,F 为左焦点,直线AB 与FC 相交于点D ,则∠BDF 的余弦值是________.
【答案】
714【解析】
4.设0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是________(填序号).①a 1b 1+a 2b 2
②a 1a 2+b 1b 2③a 1b 2+a 2b 1
④12【答案】①
【解析】取a 1=13,b 1=14,则a 1b 1+a 2b 2=112+12=712>12,a 1a 2+b 1b 2=59144<12
,a 1b 2+a 2b 1=512<12
,故最大的是a 1b 1+a 2b 2.5.已知函数y =f (x ),对任意的两个不相等的实数x 1,x 2,都有f (x 1+x 2)=f (x 1)·f (x 2)成立,且f (0)≠0,则f (-2014)·f (-2013)·…·f (2013)·f (2014)的值是________.
【答案】1
【解析】f (x )为抽象函数,只知满足条件f (x 1+x 2)=f (x 1)·f (x 2),且f (0)≠0,故可取满足此条件的特殊函数来求解.
令f (x )=2x ,则对任意的两个不相等的实数x 1,x 2,都有f (x 1+x 2)=f (x 1)·f (x 2)成立,f (0)=20=1,f (-2014)·f (2014)=f (0)=1,f (-2013)·f (2013)=f (0)=1,…,所以f (-2014)·f (-2013)·…·f (2013)·f (2014)=1.
6.△ABC 的外接圆的圆心为O ,两条边上的高相交于点H ,若OH →=m (OA →+OB →+OC →),
则实数m =________.
【答案】1
【解析】如图在Rt △ABC 中,外接圆圆心O 为斜边AB 的中点,垂心H 即为C 点,由已知OH →=m (OA →+OB →+OC →)=mOC →,则m =1.
7.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.
【答案】43
8.已知椭圆C :x 29+y 24
=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A 、B ,线段MN 的中点在C 上,则|AN |+|BN |=________.
【答案】12
【解析】如图.
设MN 与椭圆的交点为D ,由中位线定理.
|AN |+|BN |=2(|DF 1|+|DF 2|)
由椭圆的定义知|DF 1|+|DF 2|=2a =6.
∴|AN |+|BN |=12.
9.向量OB →=(1,0),OA →=(3+cos θ,1+sin θ),则OA →与OB →夹角的取值范围是________.
【答案】0,π3
]
【解析】
10.不等式4-x 2-kx +1≤0的解集非空,则k 的取值范围为________.
【答案】(-∞,-12]∪12
,+∞)【解析】由4-x 2-kx +1≤0,得4-x 2≤kx -1,设f (x )=4-x 2,g (x )=kx -1,显然函数f (x )和g (x )的定义域都为-2,2].令y =4-x 2,两边平方得x 2+y 2=4,故函数f (x )的图象是以原点O 为圆心,2为半径的圆在x 轴上及其上方的部分.
而函数g (x )的图象是直线l :y =kx -1在-2,2]内的部分,该直线过点C (0,-1),斜率为k .
如图,作出函数f (x ),g (x )的图象,不等式的解集非空,即直线l 和半圆有公共点,可知k 的几何意义就是半圆上的点与点C (0,-1)连线的斜率.
由图可知A (-2,0),B (2,0),故k AC =0--1
-2-0=-12,k BC =0--12-0=12
.要使直线和半圆有公共点,则k ≥12或k ≤-12
.所以k 的取值范围为(-∞,-12]∪12
,+∞).11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ac =b 2-a 2,A =π6
,则B =________.【答案】π3【解析】12.a =ln 12012-12012,b =ln 12013-12013,c =ln 12014-12014
,则a 、b 、c 的大小关系为________.【答案】a >b >c
【解析】令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x
.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.
∵1>12012>12013>12014
>0,∴a >b >c .13.如图,已知球O 的球面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.
【答案】6π
【解析】如图,以DA 、AB 、BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=
22+22+22=2R ,
所以R =62,故球O 的体积V =4πR 33=6π.
14.设(x -3)2+(y -3)2=6,则y x
的最大值为________.【答案】3+22
【解析】设y x
=k ,则可转化为直线kx -y =0与圆(x -3)2+(y -3)2=6有公共点时k 的取值范围,用代数法(Δ≥0)或几何法(d ≤r )解决.
15.已知P (x ,y )是椭圆x 216+y 29
=1上的一个动点,则x +y 的最大值是________.【答案】5
16.已知a 、b 是正实数,且满足ab =a +b +3,则a +b 的取值范围是________.
【答案】6,+∞)
【解析】∵a 、b 是正实数且ab =a +b +3,故a 、b 可视为一元二次方程x 2-mx +m +3=0的两个根,其中a +b =m ,ab =m +3,要使方程有两个正根,应有
Δ=m 2-4m -12≥0,
m >0,
m +3>0.
解得m ≥6,
即a +b ≥6,故a +b 的取值范围是6,+∞).
17.已知x >0,比较x 与ln(1+x )的大小,结果为________.
【答案】x >ln(1+x )
【解析】解法一:令x =1,则有1>ln2,
∴x >ln(1+x ).
解法二:令f (x )=x -ln(x +1).
∵x >0,f ′(x )=1-11+x =x 1+x >0,又因为函数f (x )在x =0处连续,
∴f (x )在0,+∞)上是增函数.
从而当x >0时,
f (x )=x -ln(1+x )>f (0)=0.
∴x >ln(1+x ).
解法三:在同一坐标系中画出函数y =x 与y =ln(1+x )的图象,可见x >0时,x >ln(1+x ).
18.在三棱锥O -ABC 中,三条棱OA 、OB 、OC 两两互相垂直,且OA =OB =OC ,M 是AB 的中点,则OM 与平面ABC 所成角的正切值为________.【答案】2
【解析】
19.sin 2(α-30°)+sin 2(α+30°)-sin 2α的值等于________.
【答案】1
2
【解析】问此式的“值”等于多少?隐含此结果与α无关,于是不妨对α进行特殊化处理.不
妨取α=0°,则sin 2(α-30°)+sin 2(α+30°)-sin 2α=14+14-0=12
.20.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5
等于________.【答案】1
【解析】依题意,可取一个特殊的等差数列:13,11,9,7,5,3,1,-1,-3,其中a 5=5,
a 3=9满足条件.可求得S 9=S 5=45,故S 9S 5
=1.
21.函数f (x )x -x 2+2x x >0x +1x ≤0的零点个数为________个.
【答案】3
【解析】依题意,在x >0时可以画出y =ln x 与y =x 2-2x 的图象,可知两个函数的图象有两个交点,当x ≤0时,函数f (x )=2x +1与x 轴只有一个交点,所以函数f (x )有3个零点.
22.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n
的最小值为________.
【答案】21 2
【解析】。

相关文档
最新文档