桥东区三中2018-2019学年高二上学期第二次月考试卷数学(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥东区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )
A .2
B .1
C .
D .
2. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
3. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则
的值是( )
A .
B .
C .
D .0
4. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0 C .1 D .2 6. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
7. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
8. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )
A .54
B .162
C .54+18
D .162+18
9. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )
A .
B .或36+
C .36﹣
D .或36﹣
10.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13
B .15
C .12
D .11
11.已知双曲线
(a >0,b >0)的右焦点F ,直线x=
与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A .
B .
C .
D .
12.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数
a 的取值范围是( )
A .
B .
C .
D .
二、填空题
13.满足tan (x+
)≥﹣
的x 的集合是 .
14.1785与840的最大约数为 .
15()23k x =-+有两个不等实根,则的取值范围是 . 16.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .
17
.已知函数
为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .
18.给出下列命题: ①存在实数α
,使
②函数是偶函数

是函数
的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sin α<sin β
其中正确命题的序号是 .
三、解答题
19.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,
228b S =(*n N ∈).
(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧

⎨⎬⎩⎭
的前项和n T .
20.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C﹣FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.
21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
22.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x
(1
(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,
(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,
对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为
(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)
23.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC
B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.
1
24.
(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;
(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.
桥东区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】 C
【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,
平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,

,解得

即C (1,﹣1),
∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a , 解得
a=

故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
2. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 3. 【答案】A
【解析】解:取AB 的中点C ,连接OC ,,则AC=
,OA=1
∴sin
=sin ∠AOC=
=
所以:∠AOB=120°


=1×1×cos120°=

故选A .
4. 【答案】B
【解析】解:∵△ABC 是锐角三角形,
∴A+B >,
∴A >
﹣B ,
∴sinA >sin (
﹣B )=cosB ,
∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B
5. 【答案】D
【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1. 下列a 的取值能使“¬p ”是真命题的是a=2. 故选;D .
6.【答案】A
【解析】解:∵等差数列{a n},
∴a6+a8=a4+a10,即16=1+a10,
∴a10=15,
故选:A.
7.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
8.【答案】D
【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,
其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组
成,
故表面积S=3×6×6+3××6×6+×=162+18,
故选:D
9.【答案】D
【解析】
【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.
【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与
三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或

故选D
10.【答案】A
【解析】解:设点P到双曲线的右焦点的距离是x,
∵双曲线上一点P到左焦点的距离为5,
∴|x﹣5|=2×4
∵x>0,∴x=13
故选A.
11.【答案】D
【解析】解:∵函数f(x)=(x﹣3)e x,
∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,
令f′(x)>0,
即(x﹣2)e x>0,
∴x﹣2>0,
解得x>2,
∴函数f(x)的单调递增区间是(2,+∞).
故选:D.
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
12.【答案】A
【解析】解:设AB的中点为C,则
因为,
所以|OC|≥|AC|,
因为|OC|=,|AC|2=1﹣|OC|2,
所以2()2≥1,
所以a≤﹣1或a≥1,
因为<1,所以﹣<a<,
所以实数a的取值范围是,
故选:A.
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
二、填空题
13.【答案】[kπ,+kπ),k∈Z.
【解析】解:由tan (
x+)≥


+k π≤
x+

+k π,
解得k
π
≤x

+k π,
故不等式的解集为[k
π
, +k π),k ∈Z ,
故答案为:[k
π

+k π),k ∈Z ,
【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.
14.【答案】 105 .
【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为105
15.【答案】53,124⎛⎤
⎥⎝
⎦ 【解析】
试题分析:
作出函数y =
()23y k x =-+的图象,
如图所示,
函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
224
k -=
=+,当直线()23y k x =-+
2=,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦
.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.
16.【答案】14.
【解析】解:有框图知S=a⊗b=
∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14
故答案为14
【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.
17.【答案】2.
【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,
∴定义域关于原点对称,
即﹣2a+3a﹣1=0,
∴a=1,
∵函数为奇函数,
∴f(﹣x)==﹣,
即b•2x﹣1=﹣b+2x,
∴b=1.
即a+b=2,
故答案为:2.
18.【答案】②③.
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.
三、解答题
19.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21
n
n +. 【解析】
试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,
由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,
36.d q ⎧
=-⎪⎨⎪=⎩
∴21n a n =-,12n n b -=或1
(52)3
n a n =-,16n n b -=.
(2)若+1n n a a <,由(1)知21n a n =-,
∴111111()(21)(21)22121
n n a a n n n n +==--+-+, ∴111111(1)2335212121
n n
T n n n =-+-++-=-++….
考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用. 20.【答案】
【解析】解:(Ⅰ)如图1,∵弦CD 垂直平分半径OA ,半径为2, ∴CF=DF ,
OF=

∴在Rt △COF 中有∠COF=60°,
CF=DF=,
∵CE 为直径,∴DE ⊥CD ,
∴OF∥DE,DE=2OF=2,
∴,
图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,
又CF⊥AB,CF⊂平面ACB,
∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,
∴.
(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.
证明:分别连接PE,CP,OP,
∵点P为劣弧BC弧的中点,∴,
∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,
∴CP∥AB,且,又∵DE∥AB且DE=,
∴CP∥DE且CP=DE,
∴四边形CDEP为平行四边形,
∴PE∥CD,
又PE⊄面CDO,CD⊂面CDO,
∴PE∥平面CDO.
【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.
21.【答案】
【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.
所以该班在这次数学测试中成绩合格的有29人.
(II )由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x 、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , 若m ,n ∈[50,60)时,只有xy 一种情况, 若m ,n ∈[90,100]时,有ab ,bc ,ac 三种情况, m n [5060[90100]
事件“|m ﹣n|>10”所包含的基本事件个数有6种


【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:
×组距=
频率;即可把所求范围内的频率求出,进而求该范围的人数.
22.【答案】 【解析】解:(1)
根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线
方程,y =cω+d ,

-811
374
≈-2.17, a ^=y -c ^
ω=38-(-2.17)×11=61.87.
∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,
又ωi=x2i,
∴y关于x的回归方程为y=-2.17x2+61.87.
(3)当y=0时,x=61.87
2.17=6187
217
≈5.3.估计最多用5.3千克水.
23.【答案】
【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,
∵D为AB的中点,
∴DO∥BC1,
∵BC1⊄平面A1CD,DO⊂平面A1CD,
∴BC1∥平面A1CD.
解:∵底面△ABC是边长为2等边三角形,D为AB的中点,
四边形BCC
1
B1是正方形,且A1D=,
∴CD⊥AB,CD==,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵,∴,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0,),D(,0,),A1(1,2,),
=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ===.
∴直线A1D与平面CBB1C1所成角的正弦值为.
24.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC. (2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE2=AE2+AD2-2AD·AE cos A.

即x2=(2-y)2+22-2(2-y)·2×1
2
∴x2-y2=4-2y,①
由切割线定理得DE2=DF·DC,
即x2=y(y+2),
∴x2-y2=2y,②
由①②联解得y=1,x=3,∴ED= 3.。

相关文档
最新文档