华安县高中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华安县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 2. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
3. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
4. 已知函数
,函数
,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )
A .
B .
C .
D .
5. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在
面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )
A .
B .
C .
D .
6. 如图框内的输出结果是( )
A .2401
B .2500
C .2601
D .2704
7. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .13
8. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )
A .i ≤5?
B .i ≤4?
C .i ≥4?
D .i ≥5?
9. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底
数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x

{g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )
A .h ()
B .h ()
C .h ()
D .h ()
10.将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D ) 8
π
11.已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;
②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;


⑤.
A.①③B.①③④ C.②④D.②⑤
12.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.5
二、填空题
13.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.14.(若集合A⊊{2,3,7},且A中至多有1个奇数,则这样的集合共有个.
15.已知复数,则1+z50+z100=.
16.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.
17.已知双曲线的一条渐近线方程为y=x,则实数m等于.
18.阅读右侧程序框图,输出的结果i的值为.
三、解答题
19.已知奇函数f(x)=(c∈R).
(Ⅰ)求c的值;
(Ⅱ)当x∈[2,+∞)时,求f(x)的最小值.
20.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=(1)求证{b n}为等比数列.
(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.
21.已知函数f(x)=|x﹣a|.
(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).
22.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;
(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .
23.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
24.已知角α的终边在直线y=
x 上,求sin α,cos α,tan α的值.
华安县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
2. 【答案】A
【解析】解:∵条件p :x 2
+x ﹣2>0,
∴条件q :x <﹣2或x >1 ∵q 是p 的充分不必要条件 ∴a ≥1 故选A .
3. 【答案】D
【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;
是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .
【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.
4. 【答案】 D
【解析】解:∵g (x )=﹣f (2﹣x ),
∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),
由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,
设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,
则h (x )=f (x )+f (2﹣x )=2+x+x 2,
若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,
则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0,
则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2
﹣5x+8.
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+)2+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.5.【答案】D
【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,
则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,
如图当E与C重合时,AK==,
取O为AD′的中点,得到△OAK是正三角形.
故∠K0A=,∴∠K0D'=,
其所对的弧长为=,
故选:D.
6.【答案】B
【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,
故选:B.
【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.
7.【答案】D
【解析】
考点:等差数列.
8.【答案】B
【解析】解:模拟执行程序框图,可得
i=1,sum=0,s=0
满足条件,i=2,sum=1,s=
满足条件,i=3,sum=2,s=+
满足条件,i=4,sum=3,s=++
满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.
由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.
故选:B.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
9. 【答案】B
【解析】解:(h (x ))′=x x
[x ′lnx+x (lnx )′] =x x (lnx+1),
令h (x )′>0,解得:x >,令h (x )′<0,解得:0<x <,
∴h (x )在(0,)递减,在(,+∞)递增,
∴h ()最小, 故选:B .
【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.
10.【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿
x 轴向左平移
8
π
个单位后,得到一个偶函数
sin 2sin 28
4
[()]()y x x π
π
ϕϕ=+
+=+
+的图象,可得
42
ππ
ϕ+=
,求得ϕ的最小值为 4
π
,故选B .
11.【答案】 D
【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数, 并且是,递减的速度是先快后慢.所以f (x )的图象如图所示. f (x )<0恒成立,没有依据,故①不正确;
②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边, 故④不正确,⑤正确,综上,正确的结论为②⑤. 故选D .
12.【答案】D
【解析】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,
∴cosA=,
又a=7,c=6,
根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,
解得:b=5或b=﹣(舍去),
则b=5.
故选D
二、填空题
13.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
14.【答案】6
【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.
故答案为:6
【点评】本题考查集合的子集问题,属基础知识的考查.
15.【答案】i.
【解析】解:复数,
所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;
故答案为:i.
【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.
16.【答案】.
【解析】解:∵sinα+cosα=,<α<,
∴sin2α+2sinαcosα+cos2α=,
∴2sinαcosα=﹣1=,
且sinα>cosα,
∴sinα﹣cosα=
==.
故答案为:.
17.【答案】4.
【解析】解:∵双曲线的渐近线方程为y=x,
又已知一条渐近线方程为y=x,∴=2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.
18.【答案】7.
【解析】解:模拟执行程序框图,可得
S=1,i=3
不满足条件S≥100,S=8,i=5
不满足条件S≥100,S=256,i=7
满足条件S≥100,退出循环,输出i的值为7.
故答案为:7.
【点评】本题主要考查了程序框图和算法,正确得到每次循环S,i的值是解题的关键,属于基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵f(x)是奇函数,∴f(﹣x)=﹣f(x),
∴=﹣=,
比较系数得:c=﹣c,∴c=0,
∴f(x)==x+;
(Ⅱ)∵f(x)=x+,∴f′(x)=1﹣,
当x∈[2,+∞)时,1﹣>0,
∴函数f(x)在[2,+∞)上单调递增,
∴f(x)min=f(2)=.
【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题.
20.【答案】
【解析】(1)证明:设{a n}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,
∴a22=a1a4.
即(a1+d)2=a1(a1+3d),∴d=0或d=a1.
当d=0时,a n=a1,b n==,∴=1,∴{b n}为等比数列;
当d=a1时,a n=na1,b n==,∴=,∴{b n}为等比数列.
综上可知{b n}为等比数列.
(2)解:当d=0时,S3==,所以a1=;
当d=a1时,S3==,故a1=3=d.
【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.
21.【答案】
【解析】解:(1)∵f(x)≤m,
∴|x﹣a|≤m,
即a﹣m≤x≤a+m,
∵f(x)≤m的解集为{x|﹣1≤x≤5},
∴,解得a=2,m=3.
(2)当a=2时,函数f (x )=|x ﹣2|,
则不等式f (x )+t ≥f (x+2)等价为|x ﹣2|+t ≥|x|. 当x ≥2时,x ﹣2+t ≥x ,即t ≥2与条件0≤t <2矛盾.
当0≤x <2时,2﹣x+t ≥x ,即0
,成立.
当x <0时,2﹣x+t ≥﹣x ,即t ≥﹣2恒成立.
综上不等式的解集为(﹣∞,
].
【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.
22.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,
∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分
(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1

∴T n =1•20+2•2+…+n •2n ﹣1,
2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,
错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n
=
﹣n •2n
=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .
则所求和为12n
n - 6分
23.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
值与最值,进而分析推证不等式的成立求出参数的取值范围。

(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦.
当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a a
f a e
-=
≤,()04f a =≤.
设()a a g a e =
,则()1'a
a
g a e -=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
24.【答案】
【解析】解:直线y=x ,
当角α的终边在第一象限时,在α的终边上取点(1,
),
则sin α=
,cos α=,tan α=

当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),
则sin α=﹣
,cos α=﹣,tan α=

【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.。

相关文档
最新文档