写给数据挖掘新人的基础知识介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

写给数据挖掘新人的基础知识介绍
四年前我一次听说数据挖掘这个词,三年前我学习了数据挖掘理论知识,两年前我做了几个与数据挖掘有关的项目,一年前我成为一名数据挖掘工程师,今天我把数据挖掘入门资料整理了一下,希望能够对新人有帮助。

一、python
推荐粗读《Head First Python》一书,该书浅显易懂,有C语言基础的人只需一天就能读完,并能够使用python进行简单编程。

“Head First”系列的数都很适合初学者,我还读过《Head First
设计模式》和《Head First Statistics》,感觉都不错。

不过后两本,我读得比较细也比较慢,毕竟当时是首次接触设计模式和统计学相关知识,书中很多东西对我而言都是全新的。

而当我读《Head First Python》时,我已经掌握了C、C++、java等多种编程语言,所以再看python就觉得比较简单了。

学任何一种编程语言,一定要动手练习。

python的集成开发环境有很多,我个人比较青睐PyCharm。

用python做数据挖掘的人一般都会用到pandas数据分析包。

推荐阅读《pandas:powerful Python data analysis toolkit》文档,其中《10 Minutes to pandas》这一节能让你轻松上手pandas。

读了这一节你会知道怎么用一句话得到数据的一些基本统计量(每一列特征的均值、标准差、最大最小值、四分位点等),怎么简单地实现多条件的过滤,怎么将两张表按key连接,怎么将数据可视化。

除了这篇文档,我还想推荐一本书《利用Python进行数据分析》,这本
书和之前文档的主要内容差不多。

可以书和文档交叉看,加深印象。

与文档相比,书增加了数据应用等内容。

与书相比,文档增加了与R、SQL对比等内容。

即使是主题相同的章节,例如绘图,文档和书将知识组织起来的方式以及侧重点也有所不同。

个人认为,文档和书都值得一看。

二、统计学
虽然我也粗读过统计学的几本书,但从易懂性来说,都没有学校老师给的ppt好,或者说自己看书比较困难,但是听老师讲课就很容易懂。

所以,我建议有条件的同学能够选修统计学这门课,没条件的同学可以去网上找一些相关视频,配套书籍可以选择茆诗松的《概率论与数理统计》。

另外,《Head First Statistics》一书可以用来预热。

学了统计学,你至少应该知道基本的抽样方法、偏差与方差的区别、怎样进行数据预处理、怎样整理和显示数据、数据分布的描述统计量有哪些、假设检验是用来做什么的、置信区间的概念、R-squared 的含义等等。

你需要了解各种图的作用和适用场景,常用图包括条形图、饼图、直方图、折线图、箱线图、散点图、雷达图等。

你需要了解各种统计量的含义,常见统计量包括均值、方差、中位数、四分位数、加权平均数、偏态、峰态等。

你需要了解一些重要的分布,比如正态分布、chi-square分布、t分布、F分布等。

三、机器学习和数据挖掘
机器学习资料首推吴恩达的《斯坦福大学公开课:机器学习课程》
视频。

这20集视频确实是好视频,但对初学者来说难度偏大。

我有了一点机器学习方面的基础后,再去看该视频,还花了2.5倍的时间才基本看懂。

每当我跟不上视频时,就会暂停或者回退,再仔细看看课件,所以看完视频花掉的时间是视频原时长的2.5倍。

另外,周志华的《机器学习》和李航的《统计学习方法》可以作为机器学习入门书籍,经典教材《Pattern Recognition and Machine Learning》可以作为机器学习进阶书籍,而《机器学习实战》一书能手把手地教你怎么实现机器学习模型的底层算法(书中包含了大量的程序清单)。

相关文档
最新文档