苏科七年级苏科初一数学下册期末测试题及答案(共五套)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科七年级苏科初一数学下册期末测试题及答案(共五套)
一、选择题
1.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2
323(2)a a a a a
--=-- C .245(4)5a a a a --=--
D .22()()a b a b a b -=+-
2.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( ) A .2-
B .0
C .1
D .2
3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( ) A .18
1016x y x y +=⎧⎨
=⎩
B .18
21016x y x y +=⎧⎨
⨯=⎩
C .18
10216x y x y +=⎧⎨
=⨯⎩
D .18
1610x y x y +=⎧⎨
=⎩
4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、
BCD ∠,则P ∠的度教是( )
A .
1
902
α- B .1902
α︒
+
C .12
α
D .15402
α︒
-
5.下列运算结果正确的是( ) A .32a a a ÷=
B .()
2
2
5a a =
C .236a a a =
D .()3
326a a =
6.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 7.下列各式中,计算结果为x 2﹣1的是( )
A .()2
1x - B .()(1)1x x -+- C .()(1)1x x +- D .()()12x x -+ 8.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )
A .ab 2
B .a +b 2
C .a 2b 3
D .a 2+b 3
9.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场
比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8
312
x y x y +=⎧⎨
-=⎩
B .8
312
x y x y -=⎧⎨
-=⎩
C .18
312
x y x y +=⎧⎨
+=⎩
D .8
312
x y x y -=⎧⎨
+=⎩
10.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6 B .3 C .2 D .10 11.一个多边形的每个内角都等于140°,则这个多边形的边数是( ) A .7
B .8
C .9
D .10 12.下列运算正确的是( )
A .236x x x ⋅=
B .224(2)4x x -=-
C .326()x x =
D .55x x x ÷=
二、填空题
13.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.
14.()a b -+(__________) =22a b -. 15.分解因式:m 2﹣9=_____.
16.若x +3y -4=0,则2x •8y =_________.
17.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.
18.已知2m+5n ﹣3=0,则4m ×32n 的值为____
19.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.
20.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.
21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.
22.已知30m -=,7m n +=,则2m mn +=___________.
23.下列各数中: 3.14-,327-,π,2,1
7
-
,是无理数的有______个. 24.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.
三、解答题
25.分解因式 (1)321025a a a ++; (2)(1)(2)6t t ++- . 26.计算: (1)02
2019(
)32020
-- (2)4655x x x x ⋅+⋅ 27.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 2
28.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).
(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .
(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 . 29.计算: (1)(y 3)3÷y 6; (2)2
021()
(3)2
π--+-.
30.将下列各式因式分解 (1)xy 2-4xy (2)x 4-8x 2y 2+16y 4
31.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.
(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;
(3)画出△ABC的高CE所在直线,标出垂足E:
(4)在(1)的条件下,线段AA1和CC1的关系是
32.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)
(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.
裁法一裁法二裁法三
A型板材块数120
B型板材块数3m n
则上表中,m=___________,n=__________;
(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;
(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在
几何图形中标上有关数量) 33.(类比学习)
小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:
1516240
1 6 8080 0
2
22
132
2222 0
x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2). (初步应用)
小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:
22262
(2)6
2 0
x x x x x x x x +++++-++☆☆☆
得出□=___________,☆=_________. (深入研究)
小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.
34.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2
574xy x xy
-+-+的值,其中x =2,y =﹣
1.
35.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量
36.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.
…… ……
(1)请直接写出(a +b )4=__________; (2)利用上面的规律计算: ①24+4×23+6×22+4×2+1=__________;
②36-6×35+15×34-20×33+15×32-6×3+1=________.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【分析】
根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断. 【详解】
A 、C 不是几个式子相乘的形式,错误;
B 中,3
2a a
--不是整式,错误; D 是正确的 故选:D . 【点睛】
本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.
2.A
解析:A 【分析】
先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可. 【详解】
解:(
)
2
32
()2(2)2x a x x x a x ax --+-=+, ∵不含2x 项, ∴(2)0a -+=, 解得2a =-. 故选:A . 【点睛】
本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.
3.B
解析:B 【分析】
根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可. 【详解】
解:设用x 张制作盒身,y 张制作盒底,根据题意得:18
21016x y x y +=⎧⎨⨯=⎩

故选:B .
【点睛】
此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.
4.A
解析:A 【分析】
根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数. 【详解】
∵五边形的内角和等于540°,∠A+∠B+∠E=α, ∴∠BCD+∠CDE=540°-α,
∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,
∴∠PDC+∠PCD=
12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=1
2
α-90°.
故选:A . 【点睛】
此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.
5.A
解析:A 【分析】
根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】
解:32a a a ÷=,A 正确,
()
2
24a a =,B 错误,
235a a a =,C 错误,
()
3
328a a =,D 错误,
故选:A . 【点睛】
此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.
6.B
解析:B 【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
7.C
解析:C
【分析】
运用多项式乘法法则对各个算式进行计算,再确定答案.
【详解】
解:A.原式=x2﹣2x+1,
B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;
C.(x+1)(x﹣1)=x2﹣1;
D.原式=x2+2x﹣x﹣2=x2+x﹣2;
∴计算结果为x2﹣1的是C.
故选:C.
【点睛】
此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.
8.A
解析:A
【分析】
将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.
【详解】
解:∵4m=a,8n=b,
∴22m+6n=22m×26n
=(22)m•(23)2n
=4m•82n
=4m•(8n)2
=ab2,
故选:A.
【点睛】
本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.
9.A
解析:A
【分析】
设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】
解:设这个队胜x场,负y场,
根据题意,得
8 312 x y
x y
+=


-=


故选:A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
10.A
解析:A
【分析】
根据三角形三边关系即可确定第三边的范围,进而可得答案.
【详解】
解:设第三边为x,则3<x<9,
纵观各选项,符合条件的整数只有6.
故选:A.
【点睛】
本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
11.D
解析:D
【分析】
一个外角的度数是:180°-140°=40°,
则多边形的边数为:360°÷40°=9;
故选C.
【详解】
12.C
解析:C
【解析】
解:A.x2⋅x3=x5,故A错误;
B.(-2x2)2 =4 x4,故B错误;
C.( x3 )2=x6,正确;
D.x5÷x =x4,故D错误.
故选C.
二、填空题
13.60
【解析】
【分析】
先由AB ∥CD ,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E 的度数.
【详解】
∵AB ∥CD ,
∴∠C 与它的同位角相等,
根据三角形的外角等于
解析:60
【解析】
【分析】
先由AB ∥CD ,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A +∠E 的度数.
【详解】
∵AB ∥CD ,
∴∠C 与它的同位角相等,
根据三角形的外角等于与它不相邻的两内角之和,
所以∠A +∠E =∠C =60度.
故答案为60.
【点睛】
本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
14.【分析】
根据平方差公式即可求出答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.
解析:a b --
【分析】
根据平方差公式即可求出答案.
【详解】
解:()2
222()()a b a b a b a b -+--==---,
故答案为:a b --.
【点睛】
本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.15.(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为
解析:(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为:(m+3)(m﹣3).
【点睛】
此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.
16.16
【分析】
根据幂的运算公式变形,再代入x+3y=4即可求解.
【详解】
∵x+3y-4=0
∴x+3y=4
∴2x•8y=2x•(23)y=2x+3y=24=16.
故答案为:16.
【点睛】
解析:16
【分析】
根据幂的运算公式变形,再代入x+3y=4即可求解.
【详解】
∵x+3y-4=0
∴x+3y=4
∴2x•8y=2x•(23)y=2x+3y=24=16.
故答案为:16.
【点睛】
此题主要考查幂的运算,解题的关键是熟知幂的运算公式.
17.10°或50°或130°
【分析】
分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.
【详解】
解:①如图1,当CE⊥BC时,
解析:10°或50°或130°
【分析】
分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.
【详解】
解:①如图1,当CE⊥BC时,
∵∠A=60°,∠ACB=40°,
∴∠ABC=80°,
∵BM平分∠ABC,
∴∠CBE=1
2
∠ABC=40°,
∴∠BEC=90°-40°=50°;
②如图2,当CE⊥AB时,
∵∠ABE=1
2
∠ABC=40°,
∴∠BEC=90°+40°=130°;
③如图3,当CE⊥AC时,
∵∠CBE=40°,∠ACB=40°,
∴∠BEC=180°-90°-40°-40°=10°;
综上所述:∠BEC的度数为10°,50°,130°,
故答案为:10°,50°,130°.
【点睛】
本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.
18.8
【解析】
试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.
本题解析:
∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5
解析:8
【解析】
试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.
本题解析:
∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.
19. 3
【分析】
利用完全平方公式的结构特征判断即可求出k的值.
【详解】
∵关于字母x的二次三项式x2+2kx+9是完全平方式,
∴k=±3,
故答案为:3.
【点睛】
此题考查了完全平方式,熟练
解析: 3
【分析】
利用完全平方公式的结构特征判断即可求出k的值.
【详解】
∵关于字母x的二次三项式x2+2kx+9是完全平方式,
∴k=±3,
故答案为:±3.
【点睛】
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
20.4
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.
【详解】
解:设购买x个A品牌足球,
解析:4
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.
【详解】
解:设购买x个A品牌足球,y个B品牌足球,
依题意,得:60x+75y=1500,
解得:y=20−4
5 x.
∵x,y均为正整数,∴x是5的倍数,

5
16
x
y
=


=

,
10
12
x
y
=


=

,
15
8
x
y
=


=

,
20
4
x
y
=


=

∴共有4种购买方案.
故答案为:4.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.21.5
【分析】
设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A,B的边长分别为a,b.
由图甲得:,
由图乙得:,化简得,
∴,
∵a+b>0,
解析:5
【分析】
设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A ,B 的边长分别为a ,b .
由图甲得:2
()1a b -=,
由图乙得:22()()12+--=a b a b ,化简得6ab =,
∴22()()412425+=-+=+=a b a b ab ,
∵a +b >0,
∴a +b =5,
故答案为:5.
【点睛】
本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 22.21
【分析】
由得,再将因式分解可得, 然后将、代入求解即可.
【详解】
解:∵,
∴,
又∵
∴,
故答案为:.
【点睛】
此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21
【分析】
由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.
【详解】
解:∵30m -=,
∴3m =,
又∵7m n +=
∴2
()3721m mn m m n +=+=⨯=,
故答案为:21.
此题考查了主要考查了代数式求值,利用整体代入法求解更加简单.
23.【分析】
根据无理数的定义判断即可.
【详解】
解:在,,,,五个数中,无理数有,,两个.
故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.
解析:2
【分析】
根据无理数的定义判断即可.
【详解】
解:在 3.14-,π,17
-
五个数中,无理数有π,两个. 故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 24.【分析】
根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.
【详解】
∵无论取何值,方程都有一个固定的解,
∴a 值可任意取两个值,
解析:41x y =⎧⎨=⎩
【分析】
根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.
【详解】
∵无论a 取何值,方程都有一个固定的解,
∴a 值可任意取两个值,
可取a=0,方程为23110x y +-=,
取a=1,方程为5210x y +-=,
联立两个方程解得4,1x y ==,
将4,1x y ==代入(32)(23)11100a x a y a +----=,得
(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,
所以这个固定解是41x y =⎧⎨=⎩
, 故答案为:41x y =⎧⎨=⎩
. 【点睛】
此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.
三、解答题
25.(1)()2
5a a +;(2)()()41t t +-. 【分析】
(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;
(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.
【详解】
解:(1)()()2
3221025=10255a a a a a a a a ++++=+; (2)()()22
(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】
本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.
26.(1)
89
;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;
(2)根据同底数幂的乘法法则和合并同类项即可计算.
【详解】
(1)原式=1-19=89
; (2)原式=x 10+x 10=2x 10.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.
27.(1)(43)(4-3)x y x y +;(2)22
()(-y)x y x +.
【分析】
(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.
【详解】
(1)原式2243))((x y =-
(43)(43)x y x y =+-;
(2)原式2222)()(2x y xy =-+
2222(2)(2)x y x y xy y x ++=+-
22()()x y x y =+-.
【点睛】
本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.
28.(1)见解析;(2)平行且相等; 9 .
【分析】
(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论
【详解】
(1)如图所示△DEF 即为所求;
(2)∵△DEF 由△ABC 平移而成,
∴AD ∥BE ,AD =BE ;
线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S
=⨯=
故答案为:平行且相等;9
【点睛】
本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.
29.(1)y 3;(2)12.
【分析】
(1)先计算幂的乘方,然后计算同底数幂除法;
(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.
【详解】
解:(1)原式=y 9÷y 6=y 3;
(2)原式=4﹣1+9=12.
【点睛】
本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.
30.(1)()4xy y -;(2)()
()22
22x y x y -+. 【分析】
(1)提出公因式xy 即可得出答案;
(2)先利用完全平方公式,然后再利用平方差公式分解即可.
【详解】
解:(1)()244xy xy xy y -=-; (2)()()()()()2222
22
42246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.
31.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等
【分析】
(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;
(2)根据三角形中线的定义画出图形即可;
(3)根据三角形高的定义画出图形即可;
(4)根据平移的性质即可得出结论.
【详解】
解:(1)如图,△A 1B 1C 1即为所作图形;
(2)如图,线段AD 即为所作图形;
(3)如图,直线CE 即为所作图形;
(4)∵△A 1B 1C 1是由△ABC 平移得到,
∴A 和A 1,C 和C 1是对应点,
∴AA 1和CC 1的关系是:平行且相等.
【点睛】
本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.
32.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详
见解析
【分析】
(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;
(2)看图即可得出所求的式子;
(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.
【详解】
(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;
∴m=1,n=5.
故答案为:1,5;
(2)如下图:
发现的等式为:(a+2b)2=a2+4ab+4b2;
故答案为:(a+2b)2=a2+4ab+4b2.
(3)按题意画图如下:
∵构成的长方形面积等于所给图片的面积之和,
∴2a2+5ab+3b2=(a+b)(2a+3b).
【点睛】
本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.
33.[初步应用]5,3;[深入研究]x3+2x2-x-2=(x+2)(x+1)(x-1);详见解析;
【分析】
[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.
[深入研究]列出竖式可得x3+2x2-x-2÷(x+2),即可将多项式x3+2x2-x-2因式分解.
【详解】
[初步应用]∵多项式x2+□x+6能被x+2整除,
-=☆,
∴2☆-6=0,2
∴☆= 3,□=5,
故答案为:5,3;
[深入研究]∵23232
1
222
2 2
2 0
x x x x x x x x x -++--+----, ∴()()
()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】
本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.
34.﹣5x 2﹣4xy +18,6.
【分析】
将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.
【详解】
原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )
=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy
=﹣5x 2﹣4xy +18,
当x =2,y =﹣1时,原式=﹣20+8+18=6.
【点睛】
本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.
35.(1)证明过程见解析;(2)12
N AEM NFD ∠=∠-∠,理由见解析;(3)13
∠N+∠PMH=180°. 【分析】
(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;
(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12
N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13
∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB
∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y
∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=1
3
∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×1
3
∠FNP=180°-∠PMH
1
3
∠FNP=180°-∠PMH
即1
3
∠N+∠PMH=180°
故答案为1
3
∠N+∠PMH=180°
【点睛】
本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质
得到角之间的关系.
36.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64
【分析】
(1)根据杨辉三角的数表规律解答即可;
(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.
【详解】
解:(1)()4432234464a b a a b a b ab b +=++++;
故答案为:++++432234a 4a b 6a b 4ab b ;
(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;
故答案为:81;
②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;
故答案为:64.
【点睛】
本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。

相关文档
最新文档