材料力学扭转第5节 圆轴扭转时的变形

合集下载

材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总

材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总
Me Tb Ta
( 4)
例题 6-6
5. 实心铜杆横截面上任意点的切应力为 Ta Ga M e 0 ra ρa I pa Ga I pa Gb I pb 空心钢杆横截面上任意 点的切应力为
b
Tb Gb M e I pb Ga I pa Gb I pb
2
1 dV (dxdydz ) 2 dV dW v dV dxdydz 1 v 2





一、密圈螺旋弹簧
——螺旋角
F
O

d
d ——簧丝横截面的直径 D ——弹簧圈的平均直径
O D
密圈螺旋弹簧 ——螺旋角<5°时的圆柱形弹簧
§4.5
密圈螺旋弹簧的计算
O F
例题 6-6
Me Tb Ta
解: 1. 实心铜杆和空心钢杆横截面上的扭矩分别为Ta 和Tb(图b),但只有一个独立平衡方程 Ta+Tb= Me (1) 故为一次超静定问题。
例题 6-6
Me Tb Ta
2. 位移相容条件为实心杆和空心杆的B截面相对 于A截面的扭转角相等。在图b中都用表示(设 A端固定)。 Ba Bb ( 2)
a
b
ra
ra
a rb
切应力沿半径的变化 情况如图c所示。
ra
rb
(c)
§5-8非圆截面等直杆扭转的概念
圆截面杆扭转时的应力和变形公式,均建立在平 面假设 的基础上。对于非圆截面杆,受扭时横截面不 再保持为平面,杆的横截面已由原来的平面变成了曲 面。这一现象称为截面翘曲。因此,圆轴扭转时的应 力、变形公式对非圆截面杆均不适用。
(2)

材料力学-扭转

材料力学-扭转

扭转角( 扭转角(ϕ):任意两截面绕轴线相对转动的角度。又称为角 位移。通常用ϕ表示。ϕB − A表示B截面相对A截面转过的角度。 剪应变( 剪应变(γ): 剪应变又叫角应变或切应变,它是两个相互垂直方 向上的微小线段在变形后夹角的改变量(以弧度表示, 角度减小时为正) O ϕ B m
A m
γ
第二节 杆受扭时的内力计算
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面: 实心圆截面:
2
I p = ∫ ρ d A = ∫ ρ (2 πρ d ρ )
2
ρ
d O

A
d 2 0
= 2 π(
ρ
4
d /2
4
)
0
πd = 32
4
d A = 2 πρ d ρ
πd 3 Wp = = d / 2 16 Ip
空心圆截面: 空心圆截面:
T T = ρ max = IP IP T = WP
ρ max
Ip—截面的极惯性矩, 截面的极惯性矩,单位: 单位:m 4 , mm 4 Ip 3 3 WP —抗扭截面模量, WP = 抗扭截面模量,单位:m , mm .
ρ max
整个圆轴上——等直杆: 等直杆: τ max
Tmax = WP
三、公式的使用条件: 公式的使用条件: 1、等直的圆轴, 等直的圆轴, 2、弹性范围内工作。 弹性范围内工作。
Tmax Wp
πD 3 实心, 16 T max W = 2)设计截面尺寸: 设计截面尺寸:WP ≥ 3 P [τ ] πD (1 − α 4 ) 空心. 16 ≤ ⇒ m 3)确定外荷载: 确定外荷载: Tmax WP ⋅ [τ ]

扭转刚度(材料力学)

扭转刚度(材料力学)

最大切应力:
max
T Wt
扭转截面系数
单位长度扭转角:
j T
GIt 相当极惯性矩
短边中点的切应力: max
其中 Wt b3 It b4
、、 ——与 m h 相关的因数 b
对于B的扭转角jCB。
M2 Ⅰ
M1

M3
d
B
lAB
A
lAC
C
解: 1)求扭矩 BA段 AC段
T1 955N m T2 637N m
M2 Ⅰ
M1

M3
d
B
lAB
A
lAC
C
2)求扭转角
j AB
T1l AB GIp
955103 300 80103 π 704
1.52103 rad
32
jCA
变模量G=80GPa 。轴的横截面上最大扭矩为Tmax=
9.56 kN•m ,轴的许可单位长度扭转角[j' ]=0.3 /m 。
试选择轴的直径。
解:1、按强度条件确定外直径D
max
Tmax Wp
Tmax
πD3 1 4
[ ]
16
D 3
π
16Tmax
1 4 [
]
3
16 9.56 106 π 1 0.54 40
等直非圆杆自由扭转时的应力和变形
Ⅰ、等直非圆形截面杆扭转时的变形特点
横向线变 横截面发生翘曲
成曲线
不再保持为平面
平面假设不再 成立,可能产 生附加正应力
非圆杆两种类型的扭转
1、等直杆两端受外力偶作用,端面可自由翘曲时 ——自由扭转(纯扭转) 此时相邻两横截面的翘曲程度完全相同,无附加 正应力产生

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

3
在不同扭矩作用下,杆的变形表现出非线性特征, 这表明我们需要考虑非线性效应对杆刚度的影响。
研究不足与展望
01
虽然我们得到了杆在扭矩作用下的变形公式,但该公式是在一定假设条件下得 到的,可能存在一定的误差。未来可以通过更精确的实验和数值模拟方法来验 证和修正该公式。
02
目前的研究主要集中在等直圆杆的扭转问题上,对于其他形状的杆或复杂结构 的研究尚不够充分。未来可以进一步拓展研究范围,探究不同形状和结构的杆 在扭矩作用下的变形和刚度问题。
刚度条件的数学表达
刚度条件的数学表
达式
根据材料力学和弹性力学的基本 理论,等直圆杆扭转时的刚度条 件可以用数学表达式表示。
刚度常数
在数学表达式中,涉及到一些与 杆件材料、截面尺寸等有关的常 数,这些常数称为刚度常数。
刚度常数的意义
刚度常数是衡量杆件刚度的具体 数值,可以通过试验和计算获得, 是杆件设计和选用的重要依据。
ERA
刚度条件的定义与意义
刚度条件定义
在等直圆杆扭转时,杆件抵抗扭转变 形的能力称为刚度条件。
刚度条件的物理意义
刚度条件的意义
在工程实际中,刚度条件是设计、制 造和选用杆件的重要依据,满足刚度 条件的杆件才能保证结构的稳定性和 安全性。
它反映了杆件在承受扭矩作用时,抵 抗扭转变形的能力,是衡量杆件扭转 变形能力的重要参数。
BIG DATA EMPOWERS TO CREATE A NEW ERA
3-5等直圆杆扭转时的变形
与刚度条件
• 等直圆杆扭转时的基本概念 • 等直圆杆扭转时的变形分析 • 等直圆杆扭转时的刚度条件 • 等直圆杆扭转时的工程应用 • 结论与展望
目录
CONTENTS

材料力学:第5章:扭转

材料力学:第5章:扭转




d

dx d
在外表面上

d dx
d r dx
2. 物理关系 根据剪切胡克定律, 当剪应力不超过材料 的剪切比例极限时
G
剪应力方向垂直于半径
d G dx
3.静力学关系
dA
dA T
A

o
dA
d G dx dA T A d 2 G dA T dx A
2
I p dA 极惯性矩
d T 则 dx G I p
A
令 I p dA
2 A
d G T T G G Ip Ip dx
d T dx G I p
W = m 2 n
(1) = (2) 得 N×1000× 60 = m 2 n
(2)
N m 9549 n
N ─ kW n ─ rpm m ─ N m N ─ PS n ─ rpm m ─ N m
N m 7024 n
§5-2 扭矩和扭矩图
Ip
极惯性矩:
32 4 4 4 (D d ) D 4 (1 ) 空心圆: I p 32 32 抗扭截面模量: 3 d 实心圆: Wt 16 3 D 4 (1 ) 空心圆: Wt 16
实心圆: I p
d
4
二、圆轴扭转时的变形
d T d x GI p T d dx GI p
d
T dx GI p l
Tl 若T const,则 GIp
Nl l EA
圆轴扭转时的强度条件和刚度条件
强度条件:
刚度条件:

材料力学 扭转(2)

材料力学 扭转(2)
2. 刚度校核
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n

圆轴扭转时的变形和刚度计算

圆轴扭转时的变形和刚度计算
=6.44×10-4m4
轴的最大切应力为 τmax=Tma /Wp=2.86×103N·m/1.43×104m
=20×106Pa=20MPa<[τ]=60MPa 可见强度满足要求。
4) 刚度校核。轴的单位长度最大扭转角为 θmax=Tmax/GIp×180/π
=2.86×103N·m/8.0×1010Pa×6.44×106m4×180/3.14 =0.318°/m<[θ]=1.1°/m 可见刚度也满足要求。材Βιβλιοθήκη 力学圆轴扭转时的变形和刚度计算
1.1圆轴扭转时的变形 圆轴扭转时的变形通常是用两个横截面绕轴线转动的相对扭转角 φ来度量的。在上节中已得到式(3-5),即 dφ/dx=T/GIp
式中:dφ——相距为dx的两横截面间的扭转角。 上式也可写成 dφ=T/GIpdx
因此,相距为l的两横截面间的扭转角为 φ=∫ l dφ=∫(T l /GIp)dx (3-12 若该段轴为同一材料制成的等直圆轴,并且各横截面上扭矩T的 数值相同,则上式中的T、G、Ip均为常量,积分后得
得 D≥(16T/π[τ])1/3
=(16×39.6×103/π×88.2×106)1/3m
=0.131m=131mm
2) 按刚度条件设计轴的直径。由刚度条件式(3-16),即 θmax=Tmax/GIp×180/π
=32×180Tmax/Gπ2D4≤ [θ 得
D=(32×180T/Gπ2[θ])1/4 =(32×180×39.6×103/79×109×π2×0.5)1/4m =0.156m=156mm 故取D=160mm,显然轴能同时满足强度条件和刚度条件。
【例3-6】一钢制传动圆轴。材料的切变模量G=79×103MPa, 许用切应力[τ]=88.2MPa,单位长度许用扭转角[θ] =0.5°/m,承受的扭矩为T=39.6kN·m。试根据强度条件和 刚度条件设计圆轴的直径D。

材料力学扭转(共56张PPT)

材料力学扭转(共56张PPT)

例题: :空心轴和实心轴材料相同,面积相同, α= 0.5。试比较空心轴和实心轴的强度和刚度情况。
解: 1〕确定两轴尺寸关系
面积相同 (1)校核空心轴及实心轴的强度〔不考虑键槽的影响〕;
扭转角单位:弧度〔rad〕 在B、C轮处分别负载N2=75kW,N3=75kW。
D1 d1
D d 2 2可G、I见P扭—在矩—载计抗荷算扭相1、2刚同符度的号。条规件定下和,扭空矩2心图轴绘的制重量仅为实2心轴的31% 。
1、扭转杆件的内力〔截面法〕
m
m
左段:
mx 0, T m 0
T m
右段:
m x
0,
mT 0
T m
m
Tx
T
m
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法那么判断。
+
T
T
-
3、内力图〔扭矩图〕
扭矩图作法:同轴力图:
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。主动轮 2输入的功率为60kW,从动轮1、3、4、5依次输出的功率为18kW、 12kW、22kW和8kW。试作出该轴的扭矩图。
二、 扭转杆的变形计算
1、扭转变形:〔相对扭转角〕
d T
dx GI P
扭转变形与内力计算式
d T dx
GIP
T dx
L GIP
1) 扭矩不变的等直轴
Tl GI p
扭转角单位:弧度〔rad〕 GIP——抗扭刚度。
2)各段扭矩为不同值的阶梯轴
Tili GI pi
3)变截面轴
T (x) dx l GI p (x)
2)、设计截面尺寸:
T
Ip

第5章 扭转 材料力学

第5章  扭转 材料力学

dz
′ o

dy
x
dx
z
扭转
5.3.3剪切胡克定律
Gg
……剪切胡克定律
(线弹性范围适用)

G为材料的切变弹性模量 另轴扭转时横截面上的应力
5.4.1 变形几何关系
Me MT
扭转
a
g
b O2 g
Me
g
dx a
MT
dx
dj
b
5.4.2物理关系(剪切虎克定律)
扭转
扭转实验前
扭转实验后
平面假设成立
结论
相邻截面绕轴线作相对转动 横截面上各点的切应力的方 向必与圆周线相切。
Me
扭转
r0
dA
x
M T τdA r0
A
得: τ 5.3.2 切应力互等 定律

y
M 2 r02t
切应力互等定律

纯剪切:单元体面各面上只有 切应力而无正应力的应力状态
MT 2 M C 114.6 N m
3.作扭矩图
MT
max
MT 2 114.6 N m
例5-1 图示传动轴,其转速n=300r/min,主动轮A输 入功率PA=120kW,从动轮B,C,D输出功率分别 为PB=30kW,PC=40 kW,PD=50 kW。试画出该轴 的扭矩图。
W 60 P 1000 60000 P
1分钟m作功
W ' M M (2n 1) 2nM
W W'
P M 9550 n
(N m)
扭转
B、C、D输出功率分别为PB=PC=15kW,PD=20kW,轴的转速 n=300r/min,计算各轮上所受的外力偶矩。

材料力学-圆杆扭转时的变形及刚度条件

材料力学-圆杆扭转时的变形及刚度条件

扭转剪应力公式是圆轴在弹性范围内导出的,其适用条件是:
1. 必须是圆轴,否则横截面将不再保持平面,变形协调公式
将不再成立。
d
dx
2. 材料必须满足胡克定律,而且必须在弹性范围内加载,只有
这样,剪应力和剪应变的正比关系才成立:
G
d
dx
二者结合才会得到剪应力沿半径方向线性分布的结
何斌
Page 28
材料力学
第4章 圆轴扭转
连接件强度计算的工程意义
两个或多个构件相连 —— 1. 用 钉子、铆钉等联结 2. 焊接 3. 其它
联接件体系(联接件、被联接构件)的受力特点: 力在一条轴线上传递中有所偏离(与拉压情况不同)
问题:1. 力传递的偏离引起什么新的力学现象? 2. 如何计算联接件、被联接构件的强度?
何斌
Page 12
材料力学
例 题1
第4章 圆轴扭转
θ M x θ =1.5 =1.5 π rad / m
GIp
2m 2 180
I
=π D4 p 32
1-α 4
,α= d D
轴所能承受的最大扭矩为
M x
θ
GI
=1.5 p2
π 180
rad/m G
π D4 32
1-α 4
1.5π
受扭圆轴的相对扭转角
圆杆受扭矩作用时,dx微段的两截面绕轴线相对转动 的角度称为相对扭转角
d M x dx
GIP沿轴线方向积分,得到源自d M x dxl
l GIp
何斌
Page 6
材料力学
第4章 圆轴扭转
圆杆扭转时的变形及刚度条件
受扭圆轴的相对扭转角
对于两端承受集中扭矩的等截面圆轴,两端面的相

第四章:扭转

第四章:扭转

2 2
64.22
45.02
0.611
A1
d12
58.62
小 结 在最大切应力相同的情况下,空心轴所用的材料是实心轴的
61.1%,自重也减轻了 38.9%。其原因是:圆轴扭转时,横截面上应力
呈线性分布,越接近截面中心,应力越小,此处的材料就没有充分发挥 作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到 了充分利用,而且也减轻了构件的自重。但空心轴的制造要困难些,故 应综合考虑。
解:1)用截面法求各段扭矩 AB 段:
1
2
T1 MA 900 N m
BC 段:
T
T2 M c 600 N m
600Nm
画出扭矩图如图所示
900Nm
第五节:圆轴扭转时的变形
AB 截面 极惯性矩
I P1
πd14 32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
πd
4 2
32
第一节:扭转的概念
扭转:是杆的又一种基本变形形式。其受力特点是:构件两 端受到两个作用面与杆的轴线垂直的、大小相等的、转向相 反的力偶矩作用,使杆件的横截面绕轴线发生相对转动。
扭转角:任意两横截面间的相对角位移。如图所示的 φ 角。
轴:工程中以扭转为主要变形的构件。如钻探机的钻杆,电 动机的主轴及机器的传动轴等。
叠加原理
CA CB BA
AB 段:
BA =
T1l1 GI P1
×
1800
=-0.8110
BC 段:
CB =
T2l2 GI P2
×
1800
=0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0

材料力学扭转详细讲解和题目非常好

材料力学扭转详细讲解和题目非常好

材料力学 扭转扭转的概念扭转是杆件变形的一种基本形式。

在工程实际中以扭转为主要变形的杆件也是比较多的,例如图6-1所示汽车方向盘的操纵杆,两端分别受到驾驶员作用于方向盘上的外力偶和转向器的反力偶的作用;图6-2所示为水轮机与发电机的连接主轴,两端分别受到由水作用于叶片的主动力偶和发电机的反力偶的作用;图6-3所示为机器中的传动轴,它也同样受主动力偶和反力偶的作用,使轴发生扭转变形。

图6—1 图6—2 图6—3这些实例的共同特点是:在杆件的两端作用两个大小相等、方向相反、且作用平面与杆件轴线垂直的力偶,使杆件的任意两个截面都发生绕杆件轴线的相对转动。

这种形式的变形称为扭转变形(见图6-4)。

以扭转变形为主的直杆件称为轴。

若杆件的截面为圆形的轴称为圆轴。

图6—4扭矩和扭矩图6.2.1 外力偶矩作用在轴上的外力偶矩,可以通过将外力向轴线简化得到,但是,在多数情况下,则是通过轴所传递的功率和轴的转速求得。

它们的关系式为 nP M 9550= (6-1) 其中:M ——外力偶矩(N ·m );P ——轴所传递的功率(KW );n ——轴的转速(r /min )。

外力偶的方向可根据下列原则确定:输入的力偶矩若为主动力矩则与轴的转动方向相同;输入的力偶矩若为被动力矩则与轴的转动方向相反。

6.2.2 扭矩圆轴在外力偶的作用下,其横截面上将产生连续分布内力。

根据截面法,这一分布内力应组成一作用在横截面内的合力偶,从而与作用在垂直于轴线平面内的外力偶相平衡。

由分布内力组成的合力偶的力偶矩,称为扭矩,用n M 表示。

扭矩的量纲和外力偶矩的量纲相同,均为N·m 或kN·m。

当作用在轴上的外力偶矩确定之后,应用截面法可以很方便地求得轴上的各横截面内的扭矩。

如图6-5(a )所示的杆,在其两端有一对大小相等、转向相反,其矩为M 的外力偶作用。

为求杆任一截面m-m 的扭矩,可假想地将杆沿截面m-m 切开分成两段,考察其中任一部分的平衡,例如图6-5(b )中所示的左端。

材料力学圆形扭转知识点总结

材料力学圆形扭转知识点总结

材料力学圆形扭转知识点总结材料力学是研究物体受力和变形的学科,而圆形扭转是材料力学中的重要内容之一。

本文将对圆形扭转的知识点进行总结和介绍。

1. 扭转概述扭转是指沿一个固定轴线施加一个力矩使物体发生旋转。

在材料力学中,圆形扭转是指柱状材料沿轴向受到一个偶力矩而发生形变的过程。

2. 扭转角和扭转变形扭转角是指材料在扭转过程中单位长度所扭转的角度。

扭转变形表示材料的单位长度所发生的变形,主要包括剪切应力和剪切应变。

3. 圆柱体扭转方程在圆形扭转中,我们可以通过圆柱体的几何形状和物体的力学性质来建立扭转方程。

圆柱体扭转方程可以用来描述扭转角、剪切应力和剪切应变之间的关系。

4. 扭转刚度和扭转弹性模量扭转刚度是指单位长度的材料所承受的扭矩与扭转角度之间的比值。

扭转弹性模量是材料在扭转过程中所表现出的抗扭刚度大小的指标。

5. 扭转应力和扭转应力分布扭转应力是指扭转过程中由力矩引起的单位面积上的应力。

在圆形扭转中,扭转应力的分布与材料的截面形状和外力矩的大小有关。

6. 主要扭转方程主要扭转方程是指圆形扭转中计算剪切应力、剪切应变和扭转角的方程。

根据不同的材料和几何形状,有多种扭转方程可供选用。

7. 圆形扭转的工程应用圆形扭转在工程领域中具有广泛的应用。

例如,在轴承、传动轴和液压机械等领域中,圆形扭转的知识可以帮助工程师设计和分析各种机械零件。

8. 实验测量和分析对于圆形扭转现象的研究,实验测量和分析是必不可少的部分。

通过设计和进行合适的实验,可以获取材料的扭转性质,并对材料的力学行为进行深入研究与分析。

总结:圆形扭转是材料力学的重要内容之一,它涉及到材料的扭转角、扭转变形、扭转刚度、扭转弹性模量、扭转应力和扭转应力分布等知识点。

通过对圆柱体扭转方程和主要扭转方程的研究与应用,可以帮助工程师设计和分析各种机械零件。

实验测量和分析对于深入了解圆形扭转现象和材料的力学行为也起着重要作用。

对圆形扭转的深入了解有助于我们在工程实践中更好地应用材料力学的知识。

7.4扭转时的变形与刚度计算

7.4扭转时的变形与刚度计算
7.4 圆轴扭转时的变形与刚度计算
一、扭转时的变形计算
1、 :扭转变形时两截面的相对扭转角 、 ϕ 扭转变形时两截面的相对扭转角
(扭转变形大小的度量) 扭转变形大小的度量 扭转变形大小的度量
2、扭转角的计算 、
Tl ϕ= GP I
单位: 单位
弧度 (rad)
TL 180 = × (度) GI P π
IP1 =
πD
4 1
32
=
π ×(40mm)
32
4
= 2.51×105 mm4
IP2 =
πD 4 2
= 2.36×106 mm4 32
0.8×106 N.m m 1800 T 1800 = × θ1 = 1 × 3 5 4 80×10 M ×25.1×10 m Pa m π GIP1 π
= 0.00228
校核轴的强度:
T 0.8×10 N.m m 1 = = 63.69M a τ1 = P 3 3 W 1 12.56×10 m m p
6
﹤[τ]=65MPa
T 1.5×10 N.m m 2 τ2 = = = 22.28M a P 3 3 W 2 67.31×10 m m p
6
故轴的强度足够
3.校核轴的刚度 校核轴的刚度: 校核轴的刚度
M1
d1
M2
d2
M3
A
0.8m
B
C
1.0m
图示阶梯轴.已知 已知:M 例3. 图示阶梯轴 已知 1=0.8KN·m, M2=2.3KN·m,M3= 1.5KN·m,AB段的直径 1=40mm,BC段的直径 2=70mm. , 段的直径 段的直径D 段的直径D 段的直径 材料的剪切弹性模量G= 材料的剪切弹性模量 =80GPa,[τ]=65MPa,[θ]=2°/m;试校 ° 试校 核该轴的强度和刚度. 核该轴的强度和刚度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BA

T1l1 GI P1

180


0.8110
CB

T2l2 GI P 2

180


0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
例4-4 如图,已知ABC轴结构尺寸为 lAB 1.6m, lBC 1.4m。材料切变模量 G 80GPa,轴上作用有外 力矩 M A 900 N·m,M B 1500 N·m,M C 600 N·m,试
求截面C的相对截面A的转角。
解: 1)用截面法求
各段扭矩
1
2
AB 段:
一、圆轴扭转时的扭转变形
• 扭转角:圆轴扭转时,两横
A

BO
截面相对转过的角度称为这
两截面的相对扭转角。
M
M
d

T (x) GIP
dx


l d

T (x)
l GIP
dx
若在圆轴的 l 长度内,T、G、
IP 均为常数,则圆轴两端截面的 相对扭转角为:
Tl
GIP
• 抗扭刚度:式中的 GIP 称为圆轴的抗扭刚度,它反 映了圆轴抵抗扭转变形的能力。
T1 MA 900 N m
BC 段:
T
600Nm
T2 M c 600 N m
画出扭矩图如图所示
900Nm
AB 截面 极惯性矩
I P1

d14
32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2

d
4AB 段: BC 段:
相关文档
最新文档