备战高考物理压轴题之电磁感应现象的两类情况(备战高考题型整理,突破提升)及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战高考物理压轴题之电磁感应现象的两类情况(备战高考题型整理,突破提升)
及答案
一、电磁感应现象的两类情况
1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:
(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量
【答案】(1)3245ab U BL gL =;(2)322
44
532m g R Q mgL B L
=- 【解析】 【详解】
(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得
214sin 30(4)2mgL mgL m m v =++o ,2
5
v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332
445
ab U E gL =
= (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得
绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22m
B L v mg R
=,从
ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知
2
143sin 3(4)2m mg L mgL m m v Q θ=+++g ,32244
532m g R Q mgL B L =-
2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电源
电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。
已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。
闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?
(2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于
E
R
,试判断并分析说明原因。
【答案】(1)E v BL =;(2) 2
22
2mE B L
;(3)见解析 【解析】 【分析】 【详解】
(1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。
设导体棒的最终速度v ,则有
E BLv =
解得
E
v BL
=
(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为
2
222
122k mE E mv B L
∆== 所以在整个过程中电源释放的电能为2
22
2mE B L
(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于
E
R
,导体棒在安培力的作用下开始运动做加速运动。
之后导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,当感应电动势与电源电动势相等时,电路中电流为0,因此在导体棒运动过程中,电路中的电流只有在闭合电键瞬间等于
E
R
,之后逐渐减小到0。
3.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水
平面内,PO 和´´P O 构成的平面与水平面成30°。
正方形线框ABCD 边长为L ,其中AB 边
和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。
BC 边和AD 边为绝缘轻杆,质量不计。
线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。
在水平轨道之间,´´
MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。
在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。
锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。
当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。
(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;
(4)若线框AB 边尚未到达´´
M N ,杆EF 就以速度23123B L v mr
=离开M ´N ´右侧磁场区域,求此时线框的速度多大?
【答案】(132gL 2)16BL gL ;(3)23
323B L gL mr ;(4)23
3223B L gL mr
【解析】 【分析】 【详解】
(1)由机械能守恒
2
01sin 302sin 30022
mgL mg L mv +=
︒︒- 可得
032
v gL =
(2)由法拉第电磁感应定律可知
0E BLv =
根据闭合电路欧姆定律可知
032
BLv I r =
根据部分电路欧姆定律
1
2
AB U I r =⋅
可得
AB U =(3)线框进入磁场的过程中,由动量定理
022BIL t mv mv -⋅∆=-
又有
2
32
BL I t r ⋅∆=
代入可得
23
3B L v mr
= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF
1BIL t m v ⋅∆=∆
对线框
22BIL t m v ⋅∆=⋅∆
可得
122v v ∆=∆
整理得到
23
21123B L v v mr
∆=∆=
可得
23
2223B L v v v mr
=-∆=
4.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。
一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。
在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。
以U 型
导轨bc 边初始位置为原点O 建立坐标x 轴。
t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。
经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。
已知2s 内外力F 做功W =14.4J 。
不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。
求:
(1)在2s 内外力F 随时间t 的变化规律; (2)在整个运动过程中,电路消耗的焦耳热Q ;
(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。
【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =0≤x ≤4m );
6.40.6v x =-324m m 3x ⎛
⎫≤< ⎪⎝
⎭;v =0(32m 3x ≥)
【解析】 【分析】 【详解】
(1)根据法拉第电磁感应定律可知:
U BLv kt t ===
得到:
2U
v t BL
=
= 根据速度与时间关系可知:
22m/s a =
对U 型金属导轨根据牛顿第二定律有:
F IBL IBL ma μ--=
带入数据整理可以得到:
2 1.2F t =+
(2)由功能关系,有
f W Q W =+
由于忽略导体棒MN 的重力,所以摩擦力为:
A f F μ=
则可以得到:
f
A Q W
W μμ==
则整理可以得到:
(1)f W Q W Q μ=+=+
得到:
Q=12J
(3)设从开始运动到撤去外力F 这段时间为1
2s t
=,这段时间内做匀加速运动;
①1t t …时,根据位移与速度关系可知:
v ==1t t =时根据匀变速运动规律可知该时刻速度和位移为:
14m/s v = 14m x =
②1t t >时,物体做变速运动,由动量定理得到:
1(1)BL q mv mv μ-+∆=-
整理可以得到:
2211(1)(1)(4)
6.40.6BL q B L x v v v x m mR
μμ+∆+-=-==--
当32
3
x m =
时: 0v =
综合上述,故bc 边速度与位置坐标x 的函数关系如下:
v =0≤x≤4m )
6.40.6v x =-324m m 3x ⎛
⎫≤<
⎪⎝
⎭ 0v =(32
m 3
x ≥)
5.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。
已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。
将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。
导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;
(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;
(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。
【答案】(1)22
22
8Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22
mgR
b B L =
【解析】 【分析】 【详解】
(1)由牛顿第二定律得
3mg mg BIL -=
M 棒将要进入磁场上边界时回路的电功率
22
2
22
82Rm g P I R B L
== (2)N 棒产生的感应电动势
2E IR BLv ==
由动量守恒得
(3)4mg mg t BLIt mv --=
通过N 棒的电荷量
2BLh
It q R
==
根据能量守恒得
21
(3)422
mg mg h mv Q -=⨯+
联立得2222
22412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或22322
2244
448Rm g m g R Q t B L B L =-) (3)对M 棒受力分析
2232B L v
mg mg R
-=
解得22
4mgR
a B L = 由
2'
322BLv mg mg BL
R
-= 解得22
mgR
b B L =
6.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:
(1)物体下落过程的最大速度 v m ;
(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .
【答案】(1)22()mg R r B L + (2) 3244
()
2mghR m g R R r R r B L +-
+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】
【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;
解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr
对导体棒Fr=BIL
对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律E
I R r
=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22
()
v mg R r B L +=
(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=
1
2
mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以
Q R Q R r
=+总 联立解得3244
()
Q 2mghR m g R R r R r B L +=-+
(3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导
体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫
-∆= ⎪+⎝⎭
()T m F m g t v -∆=∆
整理可得22m m B L v
g t t v R r ∆-∆=∆+
即22
m m B L g t x v R r ∆-∆=∆+
全过程叠加求和22
m m m B L gt h v R r
-=+
联方解得2222
()t ()
m R r B L h
B L mg R r +=++
7.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。
接通电路,导体棒PQ 在安培力作用下从静止开始向左运动,最终以速度v 匀速运动,此过程中通过导体棒PQ 的电量为q ,A 上升的高度为h 。
已知电源的电动势为E ,重力加速度为g 。
不计一切摩擦和导轨电阻,求:
(1)当导体棒PQ 匀速运动时,产生的感应电动势的大小E ’; (2)当导体棒PQ 匀速运动时,棒中电流大小I 及方向; (3)A 上升h 高度的过程中,回路中产生的焦耳热Q 。
【答案】(1) E Blv =;(2) mg I Bl =,方向为P 到Q ;(3)2
1()2
qE mgh m M v --+ 【解析】 【分析】 【详解】
(1)当导体棒PQ 最终以速度v 匀速运动,产生的感应电动势的大小
E Blv =
(2)当导体棒PQ 匀速运动时,安培力方向向左,对导体棒有
T mg F ==安
又因为
F BIl =安
联立得
mg
I Bl
=
根据左手定则判断I 的方向为P 到Q 。
(3) 根据能量守恒可知,A 上升h 高度的过程中,电源将其它形式的能量转化为电能,再将电能转化为其他形式能量,则有
()21
2
qE Q m M v mgh =+
++ 则回路中的电热为
()21
2
Q qE mgh m M v =--
+
8.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,
cos370.80︒=.求:
(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;
(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】
根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】
(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =
(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有
sin cos mg BIL mg θμθ=+
BLv
I R
=
解得: 2.0m/s V =.
(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有
2
1sin cos 2
mgs mv mgs Q θμθ⋅=
+⋅+ 解得:0.10J Q =
9.如图所示,粗糙斜面的倾角37θ︒=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,
磁场的磁感应强度按2
1(T)B t π
=-
的规律变化,开始时线框静止在斜面上,T 在线框运动
前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,2
10m/s g =,
370.6sin ︒=, 370.8cos ︒=.
(1)求线框静止时,回路中的电流I ;
(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;
(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的
过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)
【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】
(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为
2
14V 22B D E n n t t π∆Φ∆⎛⎫==⨯⨯= ⎪∆∆⎝⎭
设小灯泡电阻为R ,由
2
20E P I R R R R ⎛⎫== ⎪+⎝⎭
可得
2R =Ω
解得
2A 1A 2
P I R =
== (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得
2sin 1cos mg n t ID mg θμθπ⎛
⎫=-+ ⎪⎝⎭
解得
0.45t s π=
产生的热量为
2.J 83Q Pt ==
(3)线框刚好开始运动时
210.45T 0.1T B ππ⎛⎫
=-⨯= ⎪⎝⎭
根据闭合电路的欧姆定律可得
00
0B
n
s
E t I R R R R -∆==
++
根据电荷量的计算公式可得
0.16C nBS
q I t R R =⋅∆=
=+
10.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:
(1)棒进入磁场前,回路中的电动势E 大小;
(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.
【答案】(1)0.04 V ; (2)0.04 N , I =22Bv t
R
;
【解析】 【分析】 【详解】
⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E =
=0.04V
⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V
根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m =
=0.2A
根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==
(其中,1s≤t≤
+1s )
即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】
注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.
11.磁场在xOy 平面内的分布如图所示,其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L 0,整个磁场以速度v 沿x 轴正方向匀速运动。
若在磁场所在区间内放置一由n 匝线圈组成的矩形线框abcd ,线框的bc =L B 、ab =L 、L B 略大于L 0,总电阻为R ,线框始终保持静止。
求: (1)线框中产生的总电动势大小和导线中的电流大小; (2)线框所受安培力的大小和方向。
【答案】(1)2nB 0Lv ;02nB Lv R (2)22204n B L v
R
,方向沿x 轴正方向
【解析】 【详解】
(1)线框相对于磁场向左做切割磁感线的匀速运动,切割磁感线的速度大小为v ,任意时刻线框ab 边切割磁感线产生的感应电动势大小为
E 1=nB 0Lv ,
cd 边切割磁感线产生的感应电动势大小为
E 2=nB 0Lv ,
ab 边和cd 边所处的磁场方向总是相反的,故ab 边和cd 边中产生的感应电动势方向总是相同的,所以总的感应电动势大小
E =2nB 0Lv ,
由闭合电路欧姆定律得导线中的电流大小
02nB Lv
I R
=
(2)线框所受安培力的大小
2220042n B L v
F nB LI R
==
, 由左手定则判断,线框所受安培力的方向始终沿x 轴正方向。
12.为了提高自行车夜间行驶的安全性,小明同学设计了一种闪烁装置.如图所示,自行车后轮由半径
的金属内圈、半径
的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为的小灯泡.在支架上装有磁铁,形成了磁感应强度、方向垂直纸面向外的扇形匀强
磁场,其内半径为、外半径为、张角
.后轮以角速度
,相对转轴转
动.若不计其它电阻,忽略磁场的边缘效应.
(1)当金属条进入扇形磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条进入扇形磁场时,画出闪烁装置的电路图;
(3)从金属条进入扇形磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差随时间变化的图象;
【答案】(1),电流方向由到;(2)见解析;(3)见解析
【解析】
【分析】
【详解】
(1)金属条ab在匀强磁场中转动切割,由得:感应电动势为
,根据右手定则判断可知电流方向由到;
(2)边切割充当电源,其余为外电路,且并联,其等效电路如图所示
(3)设电路的总电阻为,根据电路图可知,
两端电势差:
设离开磁场区域的时刻,下一根金属条进入磁场的时刻,则:,,设轮子转一圈的时间为,则,在内,金属条有四次进出,后三次与第一次相同,由上面的分析可以画出如下图象:
【点睛】
本题考查了电磁感应和恒定电路的知识,设计问题从容易入手,层层递进,较好地把握了试题的难度和区分度.
13.某电子天平原理如图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量.已知线圈匝数为n,线圈电阻为R,重力加速度为g.问:
(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出?
(2)供电电流I是从C端还是从D端流入?求重物质量与电流的关系;
(3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少?
【答案】(1)感应电流从C端流出(2)
2nBL
m I
g
=(3)
2nBL P
m
g R
=
【解析】
【分析】
【详解】
(1)根据右手定则,线圈向下切割磁感线,电流应从D端流入,从C端流出
(2)根据左手定则可知,若想使弹簧恢复形变,安培力必须向上,根据左手定则可知电
流应从D 端流入,根据受力平衡2mg nBI L =⋅① 解得2nBL
m I g
=
② (3)根据最大功率2P I R =得P I R
=③ ②③联立解得:02nBL P
m g R
=
14.如图所示,有一光滑、不计电阻且足够长的平行金属导轨,间距L =0.5m ,导轨所在的平面与水平面的倾角为37°,导轨空间内存在垂直导轨平面的匀强磁场。
现将一质量m =0.2kg 、电阻R =2Ω的金属杆水平靠在导轨处,与导轨接触良好。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)
(1)若磁感应强度随时间变化满足B =4+0.5t (T ),金属杆由距导轨顶部1m 处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度。
(2)若磁感应强度随时间变化满足2
2
0.10.1B t =
+ (T ),t =0时刻金属杆从离导轨顶端
s 0=1m 处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5m 所用的时间。
(3)若匀强磁场大小为定值,对金属杆施加一个平行于导轨向下的外力F ,其大小为F =(v +0.8)N ,其中v 为金属杆运动的速度,使金属杆以恒定的加速度a =10m/s 2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B 的大小。
【答案】(1)30.4s ; (25; (3)2T 。
【解析】 【详解】
(1)设金属杆长为L ,距离导轨顶部为x ,经过t s 后,金属杆有沿着导轨向上的加速度,此时安培力等于重力沿导轨的分力,则:
F A =mgsinθ,
A E
F BIL B
L R
== , 其中:
0.25V BLx
E t
=
=V V ,
所以:
40.5E
t L mgsin R
θ+()= ,
解得:
t =30.4s 。
(2)由金属杆与导轨组成的闭合电路中,磁通量保持不变,经过t s 的位移为s ,则:
B 1Ls 0=B 2L (s+s 0),
金属杆做初速度为零的匀加速直线运动,
s =5m ,
代入数据解得:t =
(3)对金属杆由牛顿第二定律:
A mgsin F F ma θ+﹣= ,
其中:
22A F BIL B L v
R
== 解得:
22B mgsin L v
F R
ma θ+-=,
代入数据得:
2
2128
B v +-()= ,
所以,
2108
B -= ,
解得:B = 。
15.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m ,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻;质量为m =0.2kg 、阻值r =0.5Ω的匀质金属棒ab 放在两导轨上,距离导轨最上端为L 2=4m ,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.(g =10m /s 2)
(1)保持ab棒静止,在0~4s内,通过金属棒ab的电流多大?方向如何?
(2)为了保持ab棒静止,需要在棒的中点施加了一平行于导轨平面的外力F,求当t=2s 时,外力F的大小和方向;
(3)5s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2.4m,求金属棒此时的速度及下滑到该位置的过程中在电阻R 上产生的焦耳热.
【答案】(1)0.5A(2)0.75N(3)1.5J
【解析】
【分析】
【详解】
(1)在0~4s内,由法拉第电磁感应定律:
由闭合电路欧姆定律:
(2)当t=2s时,ab棒受到沿斜面向上的安培力
对ab棒受力分析,由平衡条件:
解得:
方向沿导轨斜面向上.
(3)ab棒沿导轨下滑切割磁感线产生感应电动势,有:
产生的感应电流
棒下滑至受到稳定时,棒两端电压也恒定,此时ab棒受力平衡,
有:
解得:
由动能定理得:
得:
故。