备战高考化学——化学反应与能量的推断题综合压轴题专题复习附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战高考化学——化学反应与能量的推断题综合压轴题专题复习附答案解析
一、化学反应与能量练习题(含详细答案解析)
1.碳酸锰是制取其他含锰化合物的原料,也可用作脱硫的催化剂等。
一种焙烧氯化铵和菱锰矿粉制备高纯度碳酸锰的工艺流程如图所示
已知①菱锰矿粉的主要成分是MnCO3,还有少量的Fe、Al、Ca、Mg等元素
②常温下,相关金属离子在浓度为0.1mol/L时形成M(OH)n沉淀的pH范围如表
金属离子Al3+Fe3+Fe2+Ca2+Mn2+Mg2+
开始沉淀的pH 3.8 1.5 6.310.68.89.6
沉淀完全的pH 5.2 2.88.312.610.811.6
回答下列问题:
(1)“混合研磨”的作用为_______________________
(2)“焙烧”时发生的主要反应的化学方程式为_________________________________
(3)分析图1、图2,焙烧氯化铵、菱锰矿粉的最佳条件是_____________________________
(4)净化除杂流程如下
①已知几种物质氧化能力的强弱顺序为(NH4)2S2O8>KMnO4>MnO2>Fe3+,则氧化剂X宜选择__________
A.(NH4)2S2O8 B.MnO2 C.KMnO4
②调节pH时,pH可取的范围为_________________
(5)“碳化结晶”过程中不能用碳酸铵代替碳酸氢铵,可能的原因是__________________
【答案】加快反应速率 MnCO3+2NH4Cl=MnCl2+2NH3↑+CO2↑+H2O 温度为500℃,且
m(MnCO3):m(NH4Cl)=1.10 B 5.2≤pH<8.8 CO32-水解程度大于HCO3-,易生成氢氧化物沉淀
【解析】
【分析】
菱锰矿的主要成分为MnCO3,加入氯化铵焙烧发生
MnCO3+2NH4Cl MnCl2+CO2↑+2NH3↑+H2O↑,气体为二氧化碳和氨气、水蒸气,浸出液中含MnCl2、FeCl2、CaCl2、MgCl2、AlCl3等,结合表中离子的沉淀pH及信息可知,浸取液净化除杂时加入少量MnO2氧化亚铁离子为铁离子,加氨水调pH,生成沉淀氢氧化铁和氢氧化铝,加入NH4F,除去Ca2+、Mg2+,净化液加入碳酸氢铵碳化结晶过滤得到碳酸锰,据此分析解题。
【详解】
(1)“混合研磨”可增大反应物的接触面积,加快反应速率;
(2) 根据流程,菱镁矿粉与氯化铵混合研磨后焙烧得到氨气、二氧化碳和Mn2+,主要化学反应方程式为:MnCO3+2NH4Cl MnCl2+2NH3↑+CO2↑+H2O;
(3) 由图可知,锰的浸出率随着焙烧温度、氯化铵与菱镁矿粉的质量之比增大而提高,到500℃、1.10达到最高,再增大锰的浸出率变化不明显,故氯化铵焙烧菱镁矿的最佳条件是焙烧温度500℃,氯化铵与菱镁矿粉的质量之比为1.10;
(4) 净化过程:加入少量MnO2氧化亚铁离子为铁离子,加氨水调pH,生成沉淀氢氧化铁和氢氧化铝,加入NH4F,除去Ca2+、Mg2+;
①最合适的试剂为MnO2,氧化亚铁离子,反应的离子方程式为:
MnO2+2Fe2++4H+=Mn2++2Fe3++2H2O,且不引入新杂质,故答案为B;
②调节溶液pH使Fe3+,A13+沉淀完全,同时不使Mn2+沉淀,根据表中数据可知调节溶液pH范围5.2≤pH<8.8;
(5) 碳化结晶中生成MnCO3的离子方程式为Mn2++HCO3-+NH3═MnCO3↓+NH4+,不用碳酸铵溶液替代NH4HCO3溶液,可能的原因是碳酸铵溶液中的c(OH-)较大,会产生Mn(OH)2沉淀。
【点睛】
考查物质制备流程和方案的分析判断,物质性质的应用,题干信息的分析理解,结合题目
信息对流程的分析是本题的解题关键,需要学生有扎实的基础知识的同时,还要有处理信息应用的能力,注意对化学平衡常数的灵活运用,综合性强。
2.五氧化二钒常用作化学工业中的催化剂,广泛用于冶金、化工生产。
一种以粗钒(主要含有V2O5、V2O4,还有少量Fe3O4、Al2O3、SiO2等)为原料生产五氧化二钒的工艺流程如下:
已知:①部分含钒物质的溶解情况:(VO2)2SO4易溶于水,VOSO4可溶于水,NH4VO3难溶于水。
②部分金属离子[c(M n+)=0.1 mol/L]形成氢氧化物及氢氧化物溶解与pH的关系如下表:
回答下列问题:
(l)“研磨”的目的是___,“酸溶”时V2O5发生反应的化学方程式为____ 。
(2)加入NaCIO溶液,含钒元素的粒子发生反应的离子方程式为___。
(3)向三颈烧瓶中加入NaOH溶液时实验装置如图所示,虚线框中最为合适的仪器是___(填标号),调节溶液的pH范围为___,滤渣b为___(写化学式)。
(4)实验显示,沉钒率的高低与温度有关,如图是沉钒率随温度的变化曲线,则沉钒时的加热方法为___。
温度高于80℃,沉钒率下降,其可能原因是____
【答案】增大固体与酸溶液的接触面积,加快反应速率,提高原料的利用率
V2O5+H2SO4=(VO2)2SO4+H2O 2VO2++ClO-+H2O=2VO2++Cl-+2H+ D 4.7≤pH<7.8 Fe(OH)3、
Al(OH) 水浴加热(热水浴) 温度高于80℃,NH4+水解程度增大成为主要因素,由于NH4+浓度减小,沉钒率下降
【解析】
【分析】
粗钒(主要含有V2O5、V2O4,还有少量Fe3O4、Al2O3、SiO2等)经过研磨粉碎,加入硫酸进行酸浸,V2O5、V2O4,还有少量Fe3O4、Al2O3被硫酸溶解形成含有VO2+、VO2+、Fe2+、Fe3+、Al3+的浸出液,由于SiO2不与硫酸反应,经过滤后,得到的滤渣a为SiO2,滤液a为含有VO2+、VO2+、Fe2+、Fe3+、Al3+的滤液,向滤液a中加入具有强氧化性的NaClO溶液,将滤液中的VO2+、Fe2+氧化为VO2+、Fe3+,再加入氢氧化钠溶液,调节溶液pH值,将滤液中的Fe3+、Al3+转化为Fe(OH)3、Al(OH)3沉淀除去,过滤后得到的滤渣b为Fe(OH)3、Al(OH)3、滤液b为主要含有VO2+的滤液,加入饱和氯化铵溶液,使VO2+转化为NH4VO3沉淀,对生成的NH4VO3沉淀高温煅烧,获得V2O5,据此分析解答。
【详解】
(l)“研磨”可将块状固体变为粉末状,目的是增大固体与酸溶液的接触面积,加快反应速率,提高原料的利用率;“酸溶”时V2O5被硫酸溶解形成VO2+,发生反应的化学方程式为
V2O5+H2SO4=(VO2)2SO4+H2O;
(2)根据分析,向滤液a中加入具有强氧化性的NaClO溶液,将滤液中的VO2+、Fe2+氧化为VO2+、Fe3+,含钒元素的粒子发生反应的离子方程式为2VO2++ClO-+H2O=2VO2++Cl-+2H+;(3)加入氢氧化钠溶液,调节溶液pH值,将滤液中的Fe3+、Al3+转化为Fe(OH)3、Al(OH)3沉淀除去,根据部分金属离子[c(M n+)=0.1 mol/L]形成氢氧化物及氢氧化物溶解与pH的关系表格数据可知, pH值为2.8时,Fe(OH)3完全沉淀,pH值为4.7时,Al(OH)3完全沉淀,pH 值为7.8时,Al(OH)3开始溶解,调节溶液的pH范围为4.7≤pH<7.8,滤渣b为Fe(OH)3、Al(OH)3,向三颈烧瓶中加入NaOH溶液时,虚线框中最为合适的仪器是恒压漏斗,能保证仪器内外压强相等,使氢氧化钠溶液顺利流下,答案选D;
(4)由图像可知,当温度为80℃左右钒的沉淀率最高,酒精灯的火焰温度太高,不能直接用酒精灯加热,则在该温度下加热方法应使用水浴加热;沉钒过程中使用的是饱和氯化铵溶液,铵根离子可水解,温度越高水解程度越大,铵盐不稳定,受热易分解生成氨气,温度高于80℃,NH4+水解程度增大成为主要因素,溶液中NH4+浓度减小,使沉钒率下降。
3.利用石灰乳和硝酸工业的尾气(含NO、NO2)反应,既能净化尾气,又能获得应用广泛的Ca(NO2)2,其部分工艺流程如下:
(1)上述工艺中采用气液逆流接触吸收(尾气从吸收塔底部进入,石灰乳从吸收塔顶部喷淋),其目的是______________________________;滤渣可循环利用,滤渣的主要成分是
____________(填化学式)。
(2)该工艺需控制NO和NO2物质的量之比接近1∶1。
若排放的尾气中NO含量升高,则NO和NO2物质的量之比______;若产品Ca(NO2)2中
Ca(NO3)3含量升高,则NO和NO2物质的量之比_______。
(填写序号)
①=1∶1 ②>1∶1 ③<1∶1 ④无法判断
(3)生产中溶液需保持弱碱性,在酸性溶液中Ca(NO2)2会发生分解,产物之一是NO,据此信息,某同学所写的反应离子方程式为2NO2-+2H+=NO2+NO↑+H2O,你同意吗?
_________(填“同意”或“不同意“),如不同意,请说明你的理由
________________________________________________。
【答案】使尾气中NO、NO2被充分吸收 Ca(OH)2②③不同意二氧化氮能与水会发生反应,产物中不可能生成二氧化氮
【解析】
【分析】
由流程可知,石灰乳和硝酸工业的尾气(含NO、NO2)反应,生成Ca(NO2)2,过量的石灰乳
以滤渣存在,碱性溶液中尾气处理较好;
(1)使尾气中NO、NO2与石灰乳充分接触;滤渣的主要成分是Ca(OH)2;
(2)若n(NO):n(NO2)>1:1,则一氧化氮过量,若<1:1,则二氧化氮过量;
(3)二氧化氮能与水会发生反应,据此分析解答。
【详解】
由流程可知,石灰乳和硝酸工业的尾气(含NO、NO2)反应,生成Ca(NO2)2,过量的石灰乳
以滤渣存在,
(1)使尾气中NO、NO2与石灰乳充分接触,NO、NO2被充分吸收,滤渣主要成分是
Ca(OH)2;
(2)若n(NO):n(NO2)>1:1,则一氧化氮过量,排放气体中NO含量升高,若n(NO):n(NO2)<1:1,则二氧化氮过量,二氧化氮可与石灰乳反应生成Ca(NO3)2,产品中Ca(NO3)2含量升高;
(3)若离子方程式为2NO2-+2H+=NO2+NO↑+H2O,二氧化氮能与水会发生反应,产物中
不可能生成二氧化氮,则不同意该同学书写的离子反应方程式。
4.化学肥料在农业生产中有重要作用。
农业生产中,大量施用的化肥主要是氮肥、磷肥、钾肥。
(1)普钙是磷肥,它的有效成分是________(写化学式)。
(2)尿素是一种含氮量较高的氮肥,工业生产尿素是将氨气与二氧化碳在加压、加热的条件下反应生成氨基甲酸铵(H2NCOONH4),再使氨基甲酸铵脱水得到尿素。
反应的化学方程式
为______________、______________。
(3)农谚说的“粪和肥,肥料飞”指的是粪尿与草木灰搅和在一起会降低肥效。
请你说明其中的化学原理:________________________。
(4)合成氨是生产氮肥的重要环节。
合成氨生产简易流程示意图如下:
从示意图可知其存在循环操作。
简要说明为什么在化工生产中经常采用循环操作?
______。
【答案】Ca(H2PO4)2·H2O 2NH3+CO2H2NCOONH4 H2NCOONH4H2NCONH2+H2O 粪尿最终转化为铵盐,而草木灰的有效成分为K2CO3,K2CO3受潮后水解为KOH,显碱性,NH4+与OH-可发生反应生成NH3逸出而降低肥效从原因来讲,许多化学反应是可逆反应,转化率低;从结果来说,循环操作的主要目的在于充分利用原料、降低成本;从工艺设计来说,循环操作有利于连续化生产、减少工序;从环保角度来说,实现全封闭生产,控制废弃物排放
【解析】
【分析】
(1)普钙的有效成分是磷酸二氢钙;
(2)氨气和二氧化碳在加压、加热条件下反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水;
(3)农谚说的“粪和肥,肥料飞”指的是粪尿与草木灰搅和在一起会降低肥效,粪尿最终转化为铵盐,而草木灰的有效成分为K2CO3,K2CO3受潮后水解为KOH,显碱性,NH4+与OH-可发生反应生成NH3逸出而降低肥效;
(4)可从生产成本(原料的利用率)、生产原理、生产工艺以及环保等角度综合分析化工生产过程中设计循环操作的目的、作用。
【详解】
(1)普钙的成分为Ca(H2PO4)2·H2O与CaSO4,其有效成分为Ca(H2PO4)2·H2O。
故答案为:Ca(H2PO4)2·H2O;
(2)由题中信息,氨气和二氧化碳在加压、加热条件下反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,利用原子守恒可直接写出反应的方程式:2NH3+
CO2H2NCOONH4,H2NCOONH4H2NCONH2+H2O。
故答案为:2NH3+
CO2H2NCOONH4,H2NCOONH4H2NCONH2+H2O;
(3)农谚说的“粪和肥,肥料飞”指的是粪尿与草木灰搅和在一起会降低肥效,粪尿最终转化为铵盐,而草木灰的有效成分为K2CO3,K2CO3受潮后水解为KOH,显碱性,NH4+与OH-可发生反应生成NH3逸出而降低肥效;故答案为:粪尿最终转化为铵盐,而草木灰的有效成分为K2CO3,K2CO3受潮后水解为KOH,显碱性,NH4+与OH-可发生反应生成NH3逸出而降低肥效;
(4)从反应特点来说,许多化学反应是可逆反应,转化率低;从能源利用及经济方法来说,循环操作的主要目的在于充分地利用原料、降低成本;从工艺流程来说,循环操作有利于连续化生产、减少工序;从环保角度来说,实现全封闭生产,控制废弃物的排放;
故答案为:从反应特点来说,许多化学反应是可逆反应,转化率低;从能源利用及经济方法来说,循环操作的主要目的在于充分地利用原料、降低成本;从工艺流程来说,循环操作有利于连续化生产、减少工序;从环保角度来说,实现全封闭生产,控制废弃物的排放。
【点睛】
本题考查化学反应方程式的书写、化工生产等知识点,注意(3)中运用盐水解知识进行解释。
难点(4)可从生产成本(原料的利用率)、生产原理、生产工艺以及环保等角度综合分析化工生产过程中设计循环操作的目的、作用。
5.(1)选择适宜的材料和试剂设计一个原电池,完成下列反应:Zn+CuSO4=ZnSO4+Cu。
①画出装置图:___。
②电极材料和电解质溶液各是什么___。
?
③写出电极反应式:负极:___;正极:___。
(2)用锌片、铜片连接后浸入稀硫酸溶液中,构成了原电池,工作一段时间,锌片的质量减少了3.25克,铜表面析出了氢气___L(标准状况下)。
导线中通过___mol电子。
【答案】负极:锌片、正极:铜片;CuSO4溶液 Zn–2e-=Zn2+
Cu2++2e-=Cu 1.12L 0.1
【解析】
【分析】
(1)利用反应Zn+CuSO4=ZnSO4+Cu设计原电池,根据反应可知,Zn为负极,则正极可以是活泼性不如Zn的金属如铜等,也可以是碳棒,电解质溶液应为CuSO4,根据原电池原理写出电极反应式。
(2)根据锌和氢气之间转移电子数目相等计算。
【详解】
(1)①利用反应Zn+CuSO4=ZnSO4+Cu设计原电池,根据反应可知,Zn为负极,则正极可以是活泼性不如Zn的金属如铜等,也可以是碳棒,电解质溶液应为CuSO4,设计的原电池
装置为:;
②根据以上设计可知,负极为锌片,正极为铜片,电解质溶液为CuSO4溶液;
③原电池中负极活泼金属失电子发生氧化反应,电极反应为:Zn–2e-=Zn2+,正极为溶液中的阳离子得到电子发生还原反应,CuSO4溶液中的阳离子有Cu2+和H+,放电能力Cu2+大于H+,正极反应为:,Cu2++2e-=Cu;
(2)用锌片、铜片连接后浸入稀硫酸溶液中构成的原电池中,负极:Zn–2e-=Zn2+,正极:
2H++2e-=H2↑,由电极反应n(H2)=n(Zn)=
3.25g
0.05mol 65g/mol
,
V(H2)=0.05mol⨯22.4L/mol=1.12L,n(e-)=2 n(Zn)=2⨯0.05mol=0.1mol。
【点睛】
原电池中负极材料一般为活泼金属,失去电子发生氧化反应,负极由于消耗而减少,正极一般是溶液中的阳离子得到电子发生还原反应,放电能力强的阳离子发生反应,正极上的现象一般为产生气体或质量增加。
6.理论上讲,任何自发的氧化还原反应都可以设计成原电池。
某同学利用“Cu+2Ag+=
2Ag+Cu2+”反应设制一个化学电池,如图所示,已知该电池在外电路中,电流从a极流向b 极。
请回答下列问题:
(1)b极是电池的_____________极,材料是_____________,写出该电极的反应式
_____________。
(2)a可以为_____________A、铜B、银C、铁D、石墨
(3)c溶液是_____________A、CuSO4溶液B、AgNO3溶液C、酒精溶液
(4)若该反应过程中有0.2mol电子发生转移,则生成Ag为_____________克。
【答案】负 Cu Cu–2e-=Cu2+ BD B 21.6
【解析】
【分析】
有题干信息可知,原电池中,电流从a极流向b极,则a为正极,得到电子,发生还原反应,b为负极,失去电子,发生氧化反应,据此分析解答问题。
【详解】
(1)根据上述分析知,b是电池的负极,失去电子,反应Cu+2Ag+=2Ag+Cu2+中Cu失去电子,故Cu作负极,发生的电极反应为Cu–2e-=Cu2+,故答案为:负;Cu;Cu–2e-=Cu2+;(2)a是电池的正极,电极材料可以是比铜更稳定的Ag,也可以是惰性的石墨,故答案为:BD;
(3)电解质溶液c是含有Ag+的溶液,故答案为:B;
(4)根据得失电子守恒可得,反应过程中转移1mol电子,生成2molAg,质量为
108×2=21.6g,故答案为:21.6。
7.在化学反应中,只有极少数能量比平均能量高得多的反应物分子发生碰撞时才可能发生化学反应,这些分子被称为活化分子。
使普通分子变成活化分子所需提供的最低限度的能量叫活化能,其单位通常用kJ•mol-1表示。
请认真观察图1,然后回答问题。
(1)图中所示反应是________ (填“吸热”或“放热”)反应。
(2)已知拆开1mol H﹣H键、1mol I﹣I、1mol H﹣I键分别需要吸收的能量为436kJ、
151kJ、299kJ。
则由1mol氢气和1mol 碘反应生成HI会________ (填“放出”或“吸收”)
________ kJ的热量。
在化学反应过程中,是将________ 转化为________ 。
(3)某实验小组同学进行如图2的实验,以探究化学反应中的能量变化。
实验表明:①中的温度降低,由此判断氢氧化钡晶体与氯化铵晶体反应是________ (填“吸热”或“放热”)反应;实验②中,该小组同学在烧杯中加入5mL 1.0mol/L盐酸,再放入用砂纸打磨过的铝条,该反应是________ (填“吸热”或“放热”)反应。
【答案】放热放出 11 化学能热能吸热放热
【解析】
【分析】
【详解】
(1)依据图象分析反应物的能量大于生成物的能量,反应放热;
(2)在反应H2+I2⇌2HI中,断裂1molH-H键,1molI-I键共吸收的能量为:
1×436kJ+151kJ=587kJ,生成2molHI,共形成2molH-I键,放出的能量为:2×299kJ=598kJ,吸收的能量少,放出的能量多,所以该反应为放热反应,放出的热量为:598kJ-
587kJ=11kJ,在化学反应过程中,将化学能转化为热能;
(3)①中的温度降低说明该反应是吸热反应;活泼金属置换酸中氢的反应为放热反应。
8.氮的氧化物是造成大气污染的主要物质。
研究氮氧化物的反应机理对于消除环境污染有重要意义。
NO在空气中存在如下反应:2NO(g)+O 2(g)2NO2(g) △H,上述反应分两步完成,其反应历程如图所示:
回答下列问题:
(1)写出反应I的热化学方程式___。
(2)反应I和反应Ⅱ中,一个是快反应,会快速建立平衡状态,而另一个是慢反应。
决定2NO(g)+O 2(g)2NO2(g)反应速率的是___(填“反应I”或“反应Ⅱ”);对该反应体系升高温度,发现总反应速率反而变慢,其原因可能是___(反应未使用催化剂)。
【答案】2NO(g)⇌N2O2(g) △H=-(E3-E4) kJ/ mol 反应Ⅱ决定总反应速率的是反应Ⅱ,升高温度后反应I平衡逆向移动,造成N2O2浓度减小,温度升高对反应Ⅱ的影响弱于N2O2浓度减小的影响,N2O2浓度减小导致反应Ⅱ速率变慢
【解析】
【分析】
(1)根据图像分析反应I为2NO(g)⇌N2O2(g)的焓变,写出热化学方程式;
(2)根据图像可知,反应I的活化能<反应Ⅱ的活化能,反应I为快反应,反应Ⅱ为慢反应,决定该反应速率的是慢反应;决定正反应速率的是反应Ⅱ,结合升高温度对反应I和Ⅱ的影响分析可能的原因。
【详解】
(1)根据图像可知,反应I的化学方程式为:2NO(g)⇌N2O2(g) △H=(E4-E3)kJ/mol=-(E3-E4) kJ/ mol,故答案为:2NO(g)⇌N2O2(g) △H=-(E3-E4) kJ/ mol;
(2)根据图像可知,反应I的活化能<反应Ⅱ的活化能,反应I为快反应,反应Ⅱ为慢反应,决定2NO(g)+O2(g)⇌2NO2(g)反应速率的是慢反应Ⅱ;对该反应体系升高温度,发现总反应速率变慢,可能的原因是:决定总反应速率的是反应Ⅱ,升高温度后反应I平衡逆向移动,造成N2O2浓度减小,温度升高对反应Ⅱ的影响弱于N2O2浓度减小的影响,N2O2浓度减小导致反应Ⅱ速率变慢,故答案为:反应Ⅱ;决定总反应速率的是反应Ⅱ,升高温度后反应I平衡逆向移动,造成N2O2浓度减小,温度升高对反应Ⅱ的影响弱于N2O2浓度减小的影响,N2O2浓度减小导致反应Ⅱ速率变慢。
9.请运用原电池原理设计实验,验证 Cu2+、Fe3+氧化性的强弱。
请写出电极反应式。
(1)负极 __________________________
(2)正极 __________________________________
(3)并在方框内画出实验装置图,要求用烧杯和盐桥,并标出外电路中电子流向。
________________________________
【答案】Cu−2e−=Cu2+2Fe3++2e−=2Fe2+
【解析】
【分析】
Fe3+氧化性比Cu2+强,可发生2Fe3++Cu=2Fe2++Cu2+,反应中Cu被氧化,为原电池的负极,则正极可为碳棒或不如Cu活泼的金属,电解质溶液为氯化铁溶液,正极发生还原反应,负极发生氧化反应,以此解答该题。
【详解】
Fe3+氧化性比Cu2+强,可发生2Fe3++Cu=2Fe2++Cu2+,
(1)Cu被氧化,为原电池的负极,负极反应为Cu−2e−=Cu2+;
(2)正极Fe3+被还原,电极方程式为2Fe3++2e−=2Fe2+;
(3)正极可为碳棒,电解质溶液为氯化铁,则原电池装置图可设计为,电子
从铜极流向碳极。
【点睛】
设计原电池时,根据具体的氧化还原反应,即2Fe3++Cu=2Fe2++Cu2+,然后拆成两个半反应,化合价升高的发生氧化反应,作负极,化合价降低的发生还原反应,作正极,原电池的本质就是自发进行的氧化还原反应,由于反应在一个烧杯中效率不高,所以可以设计为氧化还原反应分别在两极发生。
10.在一密闭容器中发生反应N2+3H2ƒ2NH3,△H<0;达到平衡后,只改变某一个条件时,反应速率与反应时间的关系如图所示,回答下列问题:
(1)处于平衡状态的时间段是______(填选项);
A.t0~t1B.t1~t2C.t2~t3
D.t3~t4 E.t4~t5 F.t5~t6
(2)t1、t3、t4时刻分别改变的一个条件是(填选项);
A.增大压强 B.减小压强 C.升高温度
D.降低温度 E.加催化剂 F充入氮气
t1时刻__________;t4时刻__________;
(3)依据(2)中的结论,下列时间段中,氨的百分含量最高的是________(填选项);
A.t0~t1 B.t2~t3 C.t3~t4 D.t5~t6
(4)如果在t6时刻,从反应体系中分离出部分氨,t7时刻反应达到平衡状态,请在图中画出反应速率的变化曲线_________;
(5)一定条件下,合成氨反应达到平衡时,测得混合气体中氨气的体积分数为20%,则反应后与反应前的混合气体体积之比为____________________。
【答案】ACDF C B A 5:6
【解析】
【分析】
(1)根据图示结合v正=v逆,判断是否处于平衡状态;
(2)由图可知,t1正逆反应速率均增大,且逆反应速率大于正反应速率;t4时正逆反应速率均减小,且逆反应速率大于正反应速率;
(3)由图可知,t1平衡逆向移动,t3不移动,t4平衡逆向移动,根据移动结果分析;(4)分离出生成物,逆反应速率瞬间减小,平衡正向移动;
(5)设反应前加入a mol N2,b mol H2,达平衡时生成2x mol NH3,根据三段式和氨气的体积分数计算.
【详解】
(1)根据图示可知,t0~t1、t2~t3、t3~t4、t5~t6时间段内,v正、v逆相等,反应处于平衡状态,故答案为:ACDF;
(2)由N2(g)+3H2(g)⇌2NH3(g)△H<0,可知,该反应为放热反应,且为气体体积减小的反应,则由图可知,t1正逆反应速率均增大,且逆反应速率大于正反应速率,改变条件应为升高温度;t4时正逆反应速率均减小,且逆反应速率大于正反应速率,改变条件应为减小压强,
故答案为:C;B;
(3)由图可知,t1平衡逆向移动,t3不移动,t4平衡逆向移动,均使氨气的含量减少,则t0~t1氨气的含量最大,故答案为:A;
(4)t6时刻移出部分氨气,逆反应速率瞬间减小,正反应速率该瞬间不变,平衡正向移动,逆反应速率增大,正反应速率减小,直至平衡,故答案为:
;
(5)设反应前加入a mol N2,b mol H2,达平衡时生成2x mol NH3,则有
()()()
223+N g 3H 2NH g a b 0x 3x 2x
a-x b-3x 2x
g ƒ起始转化平衡 则反应后气体总的物质的量=(a+b-2x )mol ,
2x =0.2a+b-2x ,解得:a+b=12x ,故反应后与反应前的混合气体体积之比=a+b-2x 12x-2x 5==a+b 12x 6
,故答案为:5:6。
11.按要求回答下列问题:
(1)甲烷燃料电池是常见的燃料电池之一,该电池在正极通入氧气,在负极通入甲烷,电解质溶液通常是KOH 溶液,请写出该电池的负极反应式___。
(2)常温下,将等浓度的Na 2S 2O 3溶液与硫酸溶液混合,2min 后溶液中明显出现浑浊,请写出相关反应的化学方程式:___;若将此混合溶液置于50℃的水浴中,则出现浑浊的时间将___(填“增加”、“减少”或“不变”)。
【答案】CH 4-8e -+10OH -=CO 32-+7H 2O Na 2S 2O 3+H 2SO 4=Na 2SO 4+S ↓+SO 2↓+H 2O 减少
【解析】
【分析】
(1)甲烷燃料电池正极通入氧气,负极通入甲烷,电解质溶液是KOH 溶液,则发生反应为CH 4+2O 2=CO 2+2H 2O ,CO 2+2KOH=K 2CO 3+H 2O ,总反应的化学方程式为:
CH 4+2O 2+2KOH=K 2CO 3+H 2O ,该电池的负极反应为:CH 4失电子,转化为CO 32-和H 2O 。
(2)将等浓度的Na 2S 2O 3溶液与硫酸溶液混合,相关反应为:
Na 2S 2O 3+H 2SO 4→Na 2SO 4+S ↓+SO 2↑+H 2O ;若将此混合溶液置于50℃的水浴中,则温度升高,出现浑浊的时间将减少。
【详解】
(1)甲烷燃料电池正极通入氧气,负极通入甲烷,电解质溶液是KOH 溶液,则发生反应为CH 4+2O 2=CO 2+2H 2O ,CO 2+2KOH=K 2CO 3+H 2O ,总反应的化学方程式为:
CH 4+2O 2+2KOH=K 2CO 3+H 2O ,该电池的负极反应式为CH 4-8e -+10OH -=CO 32-+7H 2O 。
答案为:CH 4-8e -+10OH -=CO 32-+7H 2O ;
(2)将等浓度的Na 2S 2O 3溶液与硫酸溶液混合,相关反应的化学方程式为:
Na 2S 2O 3+H 2SO 4=Na 2SO 4+S ↓+SO 2↓+H 2O ;若将此混合溶液置于50℃的水浴中,则温度升高,出现浑浊的时间将减少。
答案为:Na 2S 2O 3+H 2SO 4=Na 2SO 4+S ↓+SO 2↓+H 2O ;减少。
【点睛】
燃料电池中,两电极通入的物质相同,电解质不同时,电极反应式可能不同。
在书写电极反应式时需注意,在碱性电解质中,负极CH 4的反应产物不是CO 2和水,而是K 2CO 3和水,这是我们解题时的易错点。
12.某些共价键的键能数据如表(单位:kJ •mol -1):
(1)把1mol Cl2分解为气态原子时,需要___(填“吸收”或“放出”)243kJ能量。
(2)由表中所列化学键形成的单质分子中,最稳定的是___;形成的化合物分子中最不稳定的是___。
(3)发射火箭时用气态肼(N2H4)作燃料,二氧化氮作氧化剂,两者反应生成氮气和气态水。
已知32gN2H4(g)完全发生上述反应放出568kJ的热量,热化学方程式是:____。
【答案】吸收 N2 HI 2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g)△H=﹣1136kJ•mol ﹣1
【解析】
【分析】
(1)化学键断裂要吸收能量;
(2)键能越大越稳定,否则越不稳定,结合表中数据分析;
(3)根据n=m
n
计算32g N2H4的物质的量,再根据热化学方程式书写原则书写热化学方程
式。
【详解】
(1)化学键断裂要吸收能量,由表中数据可知把1mol Cl2分解为气态原子时,需要吸收243kJ 的能量;
(2)因键能越大越稳定,单质中最稳定的是H2,最不稳定的是I2,形成的化合物分子中,最稳定的是HCl,最不稳定的是HI;
(3)32g N2H4(g)的物质的量为
32g
32g/mol
=1mol,与二氧化氮反应生成氮气与气态水放出568kJ
的热量,热化学方程式是:2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g) △H=-1136kJ•mol-1。
13.(1)如图所示,甲、乙之间的隔板K和活塞F都可左右移动,甲中充入2mol A和1mol B,乙中充入2mol C和1mol He,此时K停在0处。
在一定条件下发生可逆反应:2A(g)B(g)
ƒ2C(g);反应达到平衡后,再恢复至原温度。
回答下列问题:
①可根据________现象来判断甲、乙中反应都已达到平衡。
②达到平衡时,隔板K最终停留在0刻度左侧a处,则a的取值范围是_________。
(2)若一开始就将K、F固定,其它条件均同(1),则达到平衡时:
①甲、乙中C 的物质的量的关系是甲__________乙(填“>”、“<”或“=” )。
②如果测得甲中A 的转化率为b ,则乙中C 的转化率为____________。
【答案】K 、F 不再移动 02a << = 1b -
【解析】
【分析】
(1)①当物质的量不发生变化时达到平衡状态,此时隔板K 和活塞F 不再移动; ②根据可逆反应的特征进行分析;
(2)①体积固定,恒温、恒压容器中,两边达到的平衡状态相同,乙中的He 对平衡无影响;
②根据转化率的概念进行计算。
【详解】
(1)①当物质的量不发生变化时达到平衡状态,此时隔板K 和活塞F 不再移动,因此当隔板K 和活塞F 不再移动时,可判断甲、乙中反应都已达到平衡;
②甲中气体若不转化,则气体的物质的量最大为3mol ,即停留在“0”刻度处,若甲中的A 、B 气体全部转化为C ,则气体物质的量变为2mol ,则隔板K 应停留在“2”的位置,所以02a <<;
(2)①假设甲中投入2mol A 和1mol B ,乙中投入2mol C 达平衡时两容器内是等效的,即平衡时C 的物质的量相等,然后再向乙容器中投入1mol He ,由于是恒容容器,且He 不参与反应,故乙平衡不移动,则甲、乙两容器中的C 的物质的量仍相等;
②若甲中A 的转化率为b ,则平衡时生成C 的物质的量为2b ,由于甲、乙完全等效,则乙容器中C 的物质的量也为2b ,即C 的转化率22b 2
1b -==-。
14.在一定温度、压强下,向密闭容器中投入一定量N 2和H 2,发生反应:N 2+3H 2垐?噲?2NH 3 △H<0。
(1)反应开始阶段,v(正)________(填“>”“<”或“=”)v(逆),随后v(正)逐渐______(填“增大”或“减小”,下同),v(逆)逐渐________,反应达到平衡时,V(正)_______(填“>”“<”或“=”)v(逆)。
(2)达到平衡后,若正反应速率用v(N 2)表示,逆反应速率用v’(H 2)表示,则V(N 2)=____v'(H 2)。
(3)下列措施中不能加快反应速率的是___________(填字母)。
A .其他条件不变时,压缩容器体积
B .其他条件不变时,升高反应体系温度
C .使用合适的催化剂
D .保持容器体积不变,充入一定量的氦气
(4)写出合成氨反应N 2+3H 2垐?噲?2NH 3的平衡常数表达式:
_____________________________。
【答案】> 减小 增大 = 13 D K=()()()2
3322·c NH c N c H 【解析】。