海明码

合集下载

海明码原理

海明码原理

海明码原理
海明码原理是记录和传播信息的一种编码方式。

它是由早期的美国科学家珍妮海明创建的,用来满足信息处理领域中的一些需求。

它是一种线性反馈法,允许信息以高效的方式进行编码,以及由编码到译码。

海明码原理基于二进制编码,每一位由0和1两个数字组成。

这种代码可以被用来表示字母、数字和特殊字符,并可以用于传输数据和信息。

例如,单词“hello”可以用七个比特位编码:01101000 01100101 01101100 01101100 01101111。

通过海明码原理,可以将比特串转换成码字,也就是将比特串按照一定的顺序重新排列组合,使得字符或符号可以按照正确的顺序出现。

这种编码方式有很多优势,可以有效防止传输过程中信息的失真,使得接收端可以正确地接收信息。

在传输过程中,可以使用不同的信道,比如电子邮件、短信、函件等,将海明码传输到目的地。

为了保证信息的安全,海明码技术还可以结合加密技术,使信息在传输过程中不易被破解,从而保护信息的安全性。

海明码的发明对信息处理领域产生了重大影响,在计算机科学、信息技术、电子通讯和其他相关领域都有重要的作用。

现在,海明码被广泛应用在有线通讯、无线通讯、数据存储、数据处理等领域,它更加普及,使用范围也更广。

综上所述,海明码原理是一种线性反馈法,是一种基于二进制编
码的编码方式,可以有效地保护信息在传输过程中的安全性。

它已经逐步成为现代信息处理的标准,广泛应用于各个领域,从而极大地改进了人类的生活质量。

海明码的实验报告

海明码的实验报告

海明码的实验报告一、实验目的和背景海明码(Hamming Code)是一种能够检测和纠正单一错误的错误检测和纠正编码方法,它使用了冗余位(Redundancy Bit)来增加数据的可靠性。

本实验的目的是通过编写程序来实现海明码的生成、纠正和检测功能,并验证海明码的可靠性。

二、实验内容与步骤1. 生成海明码:编写程序实现海明码的生成功能,读取输入的原始数据并生成相应的海明码。

2. 引入错误:编写程序在生成的海明码中引入1个错误位。

3. 纠正错误:编写程序实现海明码的错误纠正功能,通过纠正之后的码字与原始数据进行比对,验证纠正效果。

4. 检测错误:编写程序实现海明码的错误检测功能,通过检测错误的海明码数据,输出错误位置。

三、实验过程与结果1. 生成海明码根据海明码的生成规则,我们编写了一个生成海明码的程序。

用户在控制台输入原始数据,程序经过处理后输出相应的海明码。

例如,输入数据为`1101`,生成的海明码为`1101001`。

2. 引入错误在生成的海明码中,我们通过编写程序随机选择一个位置并进行改写,引入1个错误位。

例如,原本生成的海明码为`1101001`,改写后为`1101101`。

3. 纠正错误根据海明码的纠正规则,我们编写了一个纠正错误的程序。

用户输入引入错误后的海明码,程序经过处理后输出经过纠正后的码字。

例如,输入的海明码为`1101101`,经过纠正后输出的码字为`1101001`。

4. 检测错误根据海明码的检测规则,我们编写了一个检测错误的程序。

用户输入海明码,程序经过处理后输出错误位置。

例如,输入的海明码为`1101101`,程序输出错误位置为`5`。

四、实验结果分析通过实验结果可以得出以下结论:1. 海明码的生成功能能够准确地将原始数据转换成相应的海明码。

2. 引入错误后,海明码的纠正功能可以将引入的错误位纠正回原始数据。

3. 海明码的检测功能能够准确地检测出错误位置。

综上所述,海明码具有较高的可靠性,能够有效地检测和纠正单一错误。

海明校验码

海明校验码

• 依次类推,便可确定每组所包含的各位。
例如:欲传递信息为b4b3b2b1(n=4),根据 2k≥n+k+1,可求出配置成海明码需增添检测位 k=3,且它们位置的安排如下:
二进制序号 1 2 3 4 5 6 7
名称
C1 C2 b4 C4 b3 b2 b1
如果按照配偶原则来配置海明码,则
C1 应使1,3,5,7位中的“1”的个数为偶数;
• 故0101的海明码应为:C1 C2 b4 C4 b3 b2 b1,即0100101。
三、海明码的纠错过程
• 海明码的纠错过程,实际上是对传送后的海明 码形成新的检测位Pi(i=1,2,4,8……),根据Pi 的状态,便可直接指出错误的位置。Pi的状态是 由原检测位Ci及其所在小组内“1”的个数确定的。 倘若按配偶原则配置的海明码,其传送后形成 新的检测位Pi应为0,否则说明传送有错,并且 还可以直接指出出错的位置。由于Pi和Ci有其对 应关系,故Pi可由下式确定:
• 设n+k位代码自左至右依次编为第1,2, 3,…...,n+k位,而将k位检测位记为Ci(i=1, 2,4,8……),分别安插在n+k位代码编号的 第1,2,4,8,……2k-1位上。这些检测位的位 置设置,是为了保证它们能分别承担n+k位信息 中,不同数位所组成的“小组”的奇偶检查任 务,使检测位和它所负责检测的小组中1的个数 为奇数或为偶数,具体分配如下:
C2 应使2,3,6,7位中的“1”的个数为偶数;
C4 应使4,5,6,7位中的“1”的个数为偶数;
故 C1应为3位⊕5位⊕7位,即C1=b4⊕b3⊕b1;
C2应为3位⊕6位⊕7位,即C2=b4⊕b2⊕b1;
C4应为5位⊕6位⊕7位,即C4=b3⊕b2⊕b1;

海明码,汉明码,hamming

海明码,汉明码,hamming

海明码,汉明码,hamming code--计算法则最近最海明码很感兴趣,查了些资料,有⼀篇资料极好,所以贴出来,希望供有需求的⼈能有个参考。

1 海明码原理概述 海明码是R. Hamming提出的, ⼀种可以纠正⼀位错的差错控制编码。

了解海明码之前, 先回顾⼀下简单的奇偶校验码的情况。

若信息位为K=n- 1位, 表⽰为a1~an- 1, 加上⼀位偶校验位(冗余位)a0, 构成⼀个n位的码字a0~an- 1, 在接收端校验时, 可按关系式: s=a0+a1+a2+…an- 1来计算, 若S=0, 则⽆错, 若S=1, 则有错。

上式可称为监督关系式, S称为校正因⼦。

在奇偶校验情况下, 只有⼀个监督关系式和⼀个校正因⼦, 其取值只有两种(0或1),分别代表了⽆错和有错的情况, ⽽不能指出差错所在的位置。

不难想象, 若增加冗余位, 也相应地增加监督关系式和校正因⼦, 就能区分更多的情况。

如, 若有两个校正因⼦, 则其取值就有4种可能: 00、01、10或11, 就能区分4种不同情况。

若其中⼀种表⽰⽆错, 另外三种不但可以⽤来指出有错, 还可以⽤来区分错误的情况, 如指出是哪⼀位错等。

⼀般⽽⾔, 信息位为K位, 增加r位冗余位, 构成n=k+ r位码字。

若希望⽤r个监督关系式产⽣的r个校正因⼦来区分⽆错和在码字中的n个不同位置的⼀位错, 则表⽰:或。

2 构造海明码的冗余位和监督关系式的⽅法 按上述设计思路, 为了叙述清楚, 下⾯以信息位K=7来讨论海明码的冗余位和监督关系式的具体构造过程和⽅法。

因为且k=7, 所以≥4, 即⾄少需要4位冗余位(对应产⽣4个校正因⼦和4个监督关系式), 形成24=16种不同取值, ⽤其中11种分别表⽰⽆错和a0~a10中⼀位错的情况。

构造表如表1: 冗余码如下: a0=a8+a9+a10 (1) a1=a5+a6+a7 (2) a2=a4+a6+a7+a9 (3) a3=a4+a5+a7+a8+a10 (4) 监督关系式如下: s0=a0+a8+a9+a10 (5) s1=a1+a5+a6+a7 (6) s2=a2+a4+a6+a7+a9 (7) s3=a3+a4+a5+a7+a8 (8)3 构造校正因⼦和监督关系式时应遵循的原则 上表1中, 构造4个校正因⼦和4个监督关系式的过程中, 为了体现前⾯所述设计思想,应遵循如下原则: 图1中共有11列, 每⼀列应保证各不相同, 即s0 s1 s2 s3 的16种组合中, 取“0000”组合表⽰⽆错, 剩下15种中取其中11种⽤来表⽰a0~a10中某⼀位出错的情况, 所以,下表2有错, 因为a5 和a7 两列均为“0111”。

纠错编码-海明码

纠错编码-海明码

纠错编码-海明码⼀.海明码海明码只能发现双⽐特错误,纠正单⽐特错误⼆.⼯作原理“动⼀发⽽牵全⾝”,因为海明码是⼀个多重校验码,也就是码字中的信息码位同时被多个校验码进⾏校验三.⼯作流程1.确定校验码位数海明不等式2^r>=k+r+1,r为冗余信息位,k为信息位eg:要发送的数据为D=101101则数据的位数k=6满⾜的不等式最⼩r为4也就是D=101101的海明码应该有6+4=10位,其中原始数据6位,校验码4位2.确定校验码和数据的位置还是上⾯的那个例⼦D=101101,假设这4位校验码分别为P1,P2,P3,P4,数据从左往右为D1,D2...D6校验码必须是在2n次⽅位置,如第1、2、4、8、16、32,...位(对应2^0 2^1 2^2 2^3 2^4 2^5……,是从最左边的位数起的),这样⼀来就知道了信息码的分布位置,也就是⾮2n次⽅位置,如第3、5、6、7、9、10、11、12、13,...位(是从最左边的位数起的)即数据位12345678910代码P1P2D1P3D2D3D4P4D5D6实际值1011013.求出校验码的值D=101101⼆进制0001001000110100010101100111100010011010数据位12345678910代码P1P2D1P3D2D3D4P4D5D6实际值0010011101可以看出P1对应的⼆进制第⼀位为1(看⼆进制是⼏位的话就看最后⼀个数据位是⼏位⼆进制格式)可以发现D1,D2,D4,D5对应的⼆进制第⼀位也是1,则P1代码校验的数据为D1,D2,D4,D5令所有要校验的位异或=0(即同0异1)1 0 1 0p1(第1个校验位,也是整个码字的第1位)的校验规则是:从当前位数起,校验1位,然后跳过1位,再校验1位,再跳过1位,....。

这样就可得出p1校验码位可以校验的码字位包括:第1位(p2(第2个校验位,也是整个码字的第2位)的校验规则是:从当前位数起,连续校验2位,然后跳过2位,再连续校验2位,再跳过2位,……。

海明码

海明码

r 1 = I 0 + I 2 + I 3 + I 5 + I6 = 1 + 0 + 1 + 0 + 0 = 0
r2 = I1 + I2 + I3 = 0 +0 +1 = 1 r3 = I4 + I5 + I6 = 0 + 0 + 0 = 0
• 海明码为0011001000: r0 r1 I0 r2 I1 I2 I3 r3 I4 I5 I6
2.1 海明码
• 海明码是一种可以纠正一比特错误的编码。
• 基本设计思想:
–编码:在k比特信息上附加r比特的校验位,构成n=k+r 比特的码字,其中每个校验比特和某几个特定的信息比 特构成偶校验的关系。 –检验:接收端检验r个偶校验关系,即将每个校验比特 和与它关联的信息比特相加(异或),相加结果称为校 正因子。若r个校正因子全为0,认为没有错误;否则, 校正因子指出发生错误的比特位。
如何检测与纠正错误?
• 码字(codeword):由m比特的数据(消息)加上r比特的 冗余(校验位)构成。 • 有效编码集:由2m个(符合编码规则的)有效码字组成。 • 检错:当收到的码字为无效码字时,称检测出错误。 • 海明距离(Hamming Distance):两个码字的对应位上取 值不同的位数。 • 纠错:将收到的无效码字纠正到距其最近的有效码字。 • 检错码与纠错码的能力都是有限的。
校验比特的位数
• 为利用 r 个校正因子区分无差错和码字中n 个不同位置的一比特错(共n+1种情况), 校验比特的位数 r 应满足: 2r ≥ n + 1 = k + r + 1 • 比如:7-4海明码,11-7海明码。

八、海明码

八、海明码

计算机网络

海明码
海明码的构造及校验方法
例:海明码中信息位为7位,接收端 收到的码字为11110111011,请问此 码字是否出错,并求发送端发送的信息 位。
计算机网络

海明码
海明码的构造及校验方法
解:因为k=7,n=11,所以r=4 信息位与冗余位的位置如下: I7 I6 I5 11 10 9 1 1 1 1
计算机网络 八 海明码
海明码的构造及校验方法
将各位代入以上各式可得: s=s3s2s1s0=0100 因此该码字出错,错误的位置在第4 位。即r2错,于是得到正确的码字为: 11110110011 发送端发送的信息位为:1110110
计算机网络 八 海明码
课程小结
本节主要内容:
1、海明码的特点
2、海明码的原理
计算机网络 八
r3 I4 I3 I2 r2 I1 r1 r0 8 7 6 5 4 3 2 1 0 1 1 1
海明码
0 1 1
海明码的构造及校验方法
从而得校正因子如下:
s3=r3+I7+I6+I5
s2=r2+I4+I3+I2 s1=r1+I7+I6+I4+I3+I1 s0=r0+I7+I5+I4+I2+I1
计算机网络

海明码
海明码的构造及校验方法
于是,接收端使用以下关系式对这三个 偶校验关系进行验证:
s2=r2+I4+I3+I2 s1=r1+I4+I3+I1 s0=r0+I4+I2+I1 其中s2,s1,s0称为校正因子。

海明码详解

海明码详解

海明码详解①海明校验的基本思想将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。

实质上,海明校验是一种多重校验。

②海明校验的特点它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。

一.校验位的位数校验位的位数与有效信息的长度有关设:N--为校验码的位数 K--是有效信息位 r--校验位(分成r组作奇偶校验,能产生r位检错信息)海明码应满足 N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4二.分组原则`在海明码中,位号数(1、2、3、……、n)为2的权值的那些位,即:1(20)、2(21)、 4(22)、8(23)、…2r-1位,作为奇偶校验位并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。

例如: N=11 K=7 r=4 相应海明码可示意为位号 1 2 3 4 5 6 7 8 9 10 11P占位P1 P2 × P3 × × × P4 × × ×其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:第i位由校验位位号之和等于i的那些校验位所校验如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验海明码的位号为5,它被P1P3(位号分别为 1,4)所校验归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。

如表2·6 、表2·7所示:三.编码、查错、纠错原理以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3 海明序号 1 2 3 4 5 6 7海明码 P1 P2 b1 P3 b2 b3 b4根据表2-8可以看到(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。

计算机基础:海明码是什么?

计算机基础:海明码是什么?

计算机基础:海明码是什么?海明码:奇偶校验码的⼀种扩充。

只能检验和恢复⼀位。

例如:求1011 的海明码?答案:1010101其中:红⾊所在位数 1,2,4,8,... 为计算出的验证码,⿊⾊的信息为原信息码:1011。

计算⽅法:1.先计算需要⼏位海明码?1011 是四位 ,它有四种只错⼀位的情况,(0011,1111,1001,1010)再加上x位海明码的错⼀位情况。

再加上⼀种全部位都正确的情况。

所以海明码需要 x+4+1 中可能。

所以需要海明码x位可以表⽰出 x+4+1 中可能。

即: x+4+1 <=2**x (2**x 表⽰2的x⽅),计算得到3,海明码最少是3,当然4,5,6位都可以,就像⽤101 校验和0101 00101 000101 00000000101 都能校验⼀样,只是⽐较浪费。

所以计算出了海明码的位数为3。

(其实也就是往原编码内填充1,2,4,8,16,这些地⽅,填完为⽌。

)2. 开始计算。

1011 中间插⼊三位验证码位数7654321信息101x1x x在第7位:7=2**2+2**1+2**0=4+2+16 对应位置为0,不算在内。

5=2**2 +2**0 = 4 +13=2**1+2**0 =2+1这样得到(2**0) 出现三次,所以在最低位为1 ,(出现偶数次就是0,奇数次就是1,)(原计算⽅法是⽤异或计算 1 xor 1 =0 , 1xor 0 =1 , 0 xor 0=0 ,这⾥结果都⼀样)(2**1)出现两次,所以第⼆位是0,(2**2)出现两次,所以第三位是0,所以就得到位数7654321信息10101013.验证和举例我们传输这个得到的海明码,和⼀个错误的海明码:正确的验证 1010101 :1.得到海明码(1,2,4 位,如果更长的话就是8,16,32。

位)001。

2.信息码为剩下的 1011,同步骤⼆:计算得到001,3.和上⾯的到的海明码001 异或(001 xor 001 ) =000,正确错误的验证 1110101 :1.得到海明码 001。

海明码

海明码

1.海明码的概念海明码是一种可以纠正一位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2^r>=n+1 或2^r>=k+r+1海明码的编码效率为:R=k/(k+r)式中k为信息位位数r为增加冗余位位数[font class="Apple-style-span" style="font-weight: bold;"id="bks_cu2htj1g"]2.[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"][font]海明码的原理[/font]在数据中间加入几个校验码,将玛距均匀拉大,将数据的每个二进制位分配在几个奇偶校验组里,当某一位出错,会引起几个校验位的值发生变化。

海明不等式:校验码个数为K,2的K次幂个信息,1个信息用来指出“没有错误”,其余2K-1个指出错误发生在那一位,但也可能是校验位错误,故有N<=2的K次-1-K能被校验。

海明码的编码规则:1.每个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每一位(Hi)是由多个/1个校验值进行校验的,被校验玛的位置玛是所有校验这位的校验位位置玛之和。

一个例题:4个数据位d0,d1,d2,d3, 3个校验位r0,r1,r2,对应的位置为:d3 d2 d1 r2 d0 r1 r0 ======b7 b6 b5 b4 b3 b2 b1校验位的取值,就是他所能校验的数据位的异或b1为b3,b5,b7的异或,b2为b3,b6,b7 b4为b5,b6,b7 [/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"]海明玛传送到接受方后,将上三式的右边(b1,b2,b4)的逻辑表达式分别异或上左边的值就得到了校验方程,如果上题采用偶校验G1=b1 b3 b5 b7的异或G2=b2 b3 b6 b7的异或G3=b4 b5 b6 b7的异或若G1G2G3为001是第四位错若为011是第六位错[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal;"] [/font]3.海明码的生成与接收特注:以下的+均代表异或方法一:1)海明码的生成。

海明码——精选推荐

海明码——精选推荐

海明码海明码(Hamming Code)是在电信领域的一种线性检测码,以发明者理查德·卫斯里·海明的名字命名。

海明码在传输的消息流中插入验证码,当计算机存储或移动数据时,可能会产生数据位错误,以侦测并更正单一比特错误。

由于海明编码简单,它们被广泛应用于内存(RAM)电路。

1940年,海明于贝尔实验室(Bell Labs)工作,运用贝尔V型(Bell Model V)电脑,一个周期时间为几秒钟的机电继电器计算机。

输入终端是依靠打孔卡(Punched Card),这不免会产生读取错误。

在平日,特殊代码将发现错误并闪灯(flash lights),使得操作者能够纠正这个错误。

在周末和下班期间,在没有操作者的情况下,机器只会简单地转移到下一个工作。

海明在周末工作,他对于不可靠的读卡机发生错误后,总是必须重新开始项目变得愈来愈沮丧。

在接下来的几年中,他为了解决错误检测的问题,着手开发功能强大的检测算法。

直到1950年,他发表了著名的海明码。

与其他的错误校验码类似,海明码也利用了奇偶校验位的概念,通过在数据位后面增加一些比特,可以验证数据的有效性。

利用一个以上的校验位,海明码不仅可以验证数据是否有效,还能在数据出错的情况下指明错误位置。

在接受端通过纠错译码自动纠正传输中的差错来实现码纠错功能,称为前向纠错FEC。

在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。

通过在传输码列中加入冗余位(也称纠错位)可以实现前向纠错,但这种方法比简单重传协议的成本要高。

海明码利用奇偶块机制降低了前向纠错的成本。

如果一条信息中包含更多用于纠错的位,且通过妥善安排这些纠错位使得不同的出错位产生不同的错误结果,那么我们就可以找出出错位了。

在一个7位的信息中,单个位出错有7种可能,因此3个错误控制位就足以确定是否出错及哪一位出错了。

海明码SECDED(single error correction, double error detection)版本另外加入一个检测比特,可以侦测两个或以下同时发生的比特错误,并能够更正单一比特的错误。

海明码校验公式

海明码校验公式

海明码校验公式海明码校验公式,这可真是个让人又爱又恨的家伙!咱们先来说说海明码到底是啥。

想象一下,你给朋友寄了封信,可又担心路上这信会不会被弄破了、弄乱了。

海明码就像是给这封信加的一个特殊标记,能让接收的人一下子就知道这信有没有出问题。

那海明码校验公式呢,就是算出这个特殊标记的办法。

比如说,咱们要传一个数据,像“10110”这样的。

这时候,就得用海明码校验公式来搞点“小动作”啦。

咱们先得确定需要多少个校验位。

这就好比你要给一个箱子打包,得先知道要多少绳子才够。

假设数据位有 m 位,校验位有 r 位,那满足 2^r >= m + r + 1 这个式子,就能算出 r 的值。

比如说,数据位是 5 位,那 2^r >= 5 + r + 1 ,算一算,r 至少得 3 。

然后呢,把这些校验位放在特定的位置上。

这就像把宝贝放在特定的抽屉里,可不能乱放。

比如第 1 个校验位在 1 号位,第 2 个在 2 号位,第 3 个在 4 号位,依次类推。

再接下来,就是根据公式计算校验位的值。

这一步就有点像做数学题啦,得认真仔细。

我记得有一次给学生们讲这个的时候,有个小家伙一脸懵地看着我,说:“老师,这也太难懂啦!”我笑着跟他说:“别着急,咱们一步步来。

”我带着他们一步一步地计算,看着他们从一开始的迷茫,到后来渐渐明白,那种成就感真是没得说。

海明码校验公式虽然有点复杂,但只要咱们耐心点儿,多练几遍,就能掌握它。

就像学骑自行车,一开始可能摇摇晃晃,但多练几次,就能稳稳当当地上路啦。

总之,海明码校验公式虽然看着有点吓人,但只要咱们用心去学,它也能被咱们拿下!希望大家都能跟这个家伙成为好朋友,让数据传输更可靠,更准确!。

海明码的概念

海明码的概念

海明码的概念
海明码是一种用于检测和纠正数据传输错误的编码方法。

它由理查德·海明在1948年提出,广泛应用于数字通信和数据存储领域。

海明码通过在原始数据中添加一定数量的冗余位来实现错误检测和纠正。

冗余位的数量取决于数据的长度和容忍的错误数量。

冗余位的添加和校验过程可以使用布尔代数和模2算术来实现。

在传输过程中,发送方会对数据进行编码,然后将编码后的数据发送给接收方。

接收方会对接收到的数据进行解码,并根据冗余位进行错误检测和纠正。

如果接收到的数据与发送方发送的数据不完全一致,接收方可以根据冗余位的校验结果来确定错误的位置并进行纠正。

海明码具有较强的错误检测和纠正能力,可以检测和纠正多个位的错误。

它被广泛应用于存储介质、数字通信、计算机内存等领域,可以有效提高数据传输和存储的可靠性。

计算机组成原理--海明码的编码和校验方法(易懂)

计算机组成原理--海明码的编码和校验方法(易懂)

计算机组成原理--海明码的编码和校验⽅法(易懂)海明码(也叫汉明码)具有⼀位纠错能⼒。

本⽂以1010110这个⼆进制数为例解释海明码的编码和校验⽅法。

编码 确定校验码的位数x 设数据有n位,校验码有x位。

则校验码⼀共有2x种取值⽅式。

其中需要⼀种取值⽅式表⽰数据正确,剩下2x-1种取值⽅式表⽰有⼀位数据出错。

因为编码后的⼆进制串有n+x位,因此x应该满⾜2x-1 ≥ n+x 使不等式成⽴的x的最⼩值就是校验码的位数。

在本例中,n=7,解得x=4。

确定校验码的位置 校验码在⼆进制串中的位置为2的整数幂。

剩下的位置为数据。

如图所⽰。

位置1234567891011内容x1x21x3010x4110 求出校验位的值 以求x2的值为例。

为了直观,将表格中的位置⽤⼆进制表⽰。

位置00010010001101000101011001111000100110101011内容x1x21x3010x4110 为了求出x2,要使所有位置的第⼆位是1的数据(即形如**1*的位置的数据)的异或值为0。

即x2^1^1^0^1^0 = 0。

因此x2 = 1。

同理可得x1 = 0, x3 = 1, x4 = 0。

位置00010010001101000101011001111000100110101011内容01110100110 因此1010110的海明码为01110100110。

校验 假设位置为1011的数据由0变成了1,校验过程为: 将所有位置形如***1, **1*, *1**, 1***的数据分别异或。

***1: 0^1^0^0^1^1 = 1 **1*: 1^1^1^0^1^1 = 1 *1**: 1^0^1^0 = 0 1***: 0^1^1^1 = 1 以上四组中,如果⼀组异或值为1,说明该组中有数据出错了。

***1 **1* 1***的异或都为1,说明出错数据的位置为1011。

海明码简单分析确定校验位个数海明码的码组长度需要符合:2^r – 1 (r代表校验位个数)为什么是这个公式呢?因为:只有这样才能保证校验位⾜够覆盖整个需要校验的码组。

可以一位纠错检错检错,不能两位检错的海明码校验码设计

可以一位纠错检错检错,不能两位检错的海明码校验码设计

可以一位纠错检错检错,不能两位检错的海明码校验码设计
(原创版)
目录
1.海明码校验码设计的基本概念
2.海明码的校验原理
3.一位纠错检错检错方法的实现
4.不能两位检错的限制
5.海明码在校验码设计中的应用
正文
海明码是一种广泛应用于数据传输和存储的错误检测和纠正码,它可以检测到数据中的错误并在必要时进行纠正。

海明码的设计基于校验码的原理,即通过附加的校验位来检测数据中的错误。

海明码的校验原理是通过校验位与数据位之间的异或运算来检测错误。

当数据传输或存储过程中出现错误时,校验位会与数据位产生错误的异或结果,从而可以检测到错误的存在。

如果错误位数小于等于校验码的校验能力,那么错误可以被纠正。

一位纠错检错检错方法是海明码校验码设计中的一种实现方式。

这种方法的优点是简单易实现,缺点是校验能力较低,只能检测到单个错误位。

在实际应用中,为了提高校验能力,需要增加校验位的数量,但这会增加计算复杂度和存储空间。

在海明码的设计中,有一个重要的限制是不能两位检错。

这是因为在两位检错的情况下,校验码的校验能力会大大降低,无法有效地检测和纠正错误。

因此,海明码的校验设计通常采用一位纠错检错检错方法。

海明码在校验码设计中的应用非常广泛,它不仅可以用于数据传输和存储中的错误检测和纠正,还可以应用于密码学和安全领域。

海明码的设
计和实现需要根据具体的应用场景和需求来选择合适的校验能力和校验方法。

总的来说,海明码校验码设计是一种重要的错误检测和纠正技术,它可以有效地保护数据的正确性和完整性。

海明码

海明码

海明码由R Hamming 在1950年提出的,它是一种可以纠正一位差错的编码。

用到的基础内容:1、二进制异或运算⊕2、奇偶校验3、码字4、海明距离码字:一个帧包括d个数据位,R个校验位,N=d+R,则此N比特单元称为N位码字海明距离(Hamming distance):两个码字之间不同的比特的位数目。

也叫码距。

在奇偶校验情况下,只有一个监督关系式,一个校正因子,其取值只有两种(0或1),分别代表了无错和有错两种情况,而不能指出差错所在的位置。

所以人们想要增加冗余位,就相应地增加监督关系式和校正因子,就能区分更复杂的情况。

例如:若有两个(2位)校正因子,则其取值就有4钟可能:00、01、10或11,就能区分4种不同情况。

若其中一种表示无错,另外三种不但可以用来指出有错,还可用来区分错误的情况,如指出具体的码字是哪一位错等。

一般而言,数据位为D位,增加R位冗余位,构成N=D+R 位码字。

若希望用R个监督关系式产生的R个校正因子来区分无错和在码字中的N个不同位置的一位错,则要求:2R≧N+1或者2R≧D+R+1下面取信息位为6位时4位的纠错情况。

1、确定R的位数由2R≧D+R+1得R=4构成10位码字。

a9 a8 a7 a6 a5 a4 a3 a2 a1 a0其中:a9 a8 a7 a6 a5 a4位数据位a3 a2 a1 a0位冗余位,用于指出码字出错的错误位置。

a3 a2 a1 a0分别由4位数据位中的某几位异或计算而得到其值规定该码字纠错位编码规则为下表:码字传送后接收方接收码字为:D1 D2 D3 D4 D5 D6 D7 D8 D9 D10如此。

那么要生成海明码的具体算法怎么做呢?假设要计算D=101101这组二进制的海明码,按下面的步骤:1、自然是先确定校验码的位数R。

这里R=4,由前面的介绍可知。

2、确定检验码的位置。

这里设4位校验为P1、P2、P3、P4,信息位由左到右为:D1 D2 D3 D4 D5 D6编码后共6+4=10位,计为M1、M2、M4、…、M10校验码Pi取(i取0、1、2、3)在编码中的位置为2i对应如下表:3、确定数据的位置,对应填入就可以了4、求出冗余校验位的值数据位的位值可以由校验位的位值相加(+)计算得出:D1(3=2+1)= P2 + P1D2(5=4+1)= P3 + P1D3(6=4+2)= P3 + P2D4(7=4+2+1)= P3 + P2 + P1D5(9=8+1)= P4 + P1D6(10=9+1)= P4 + P2然后用异或⊕计算相关的校验位的值P1与D1、D2、D4、D5相关P1=D1⊕D2⊕D4⊕D5=1⊕0⊕1⊕0,P1=0P2与D1、D3、D4、D6 相关P2= D1⊕D3⊕D4⊕D6=1⊕1⊕1⊕1,P2=0P3与D2、D3、D4相关P3= D2⊕D3⊕D4=0⊕1⊕1,P3=0P4与D5、D6相关P4= D5⊕D6 =0⊕1,P4=1于是结果为:用海明编码的D1、D2、…、D6的码字M1、M2、M4、…、M10为:001 001 110 1小结:编写海明码的过程:1、确定校验位R的位数2、确定校验R各个位在码字中的位置3、确定数据位的位置4、计算校验R的各个位的值如果接收的数据出错要如何纠错呢?请接着往下看。

海明码

海明码

1.海明码概念:海明码是一种多重(复式)奇偶检错系统。

它将信息用逻辑形式编码,以便能够检错和纠错。

用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。

每一个这种奇偶位被编在传输码字的特定位置上。

实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。

它必须满足以下瓜葛式:2^r=n+1或2^r=k+r+1。

海明码的编码效率为:R=k/(k+r)(式中k为信息位位数,r为增长冗余位位数)1.>表名称的词诠释:码字:表示一个帧包孕的k个数据位,r个校验位,n=k+r,则此n比特单元称为n位码字。

码距:两个码字之间差别的比特位数量。

例如,000与010的码距为1;000与110的码距为2;000与111的码距为3。

2.海明码的步骤:1.>0确定最小的校验位数k,将它们记成D1、D2、…、Dk,每个校验位符合不同的奇偶测试规定。

2.>原有信息和k个校验位一起编成长为m+k位的新码字。

选择k校验位(0或1)以满足必要的奇偶条件。

3.>对所接收的信息作所需的k个奇偶检查。

4.>如果所有的奇偶检查结果均为正确的,则认为信息无错误。

如果发现有一个或多个错了,则错误的位由这些检查的结果来唯一地确定。

3海明码的编码规则1.>每一个校验位Ri被分配在海明码的第2的i次的位置上,2.>海明玛的每中央电视台位(Hi)是由多个/一个校验值进行校验的,被校验码的位置码是所有校验这位的校验位位置码之和。

4海明码的特点1.>如果两个码字之间的码距为d,则需要d个比特就可以把一个码字转换成另外一个码字2.>为了检查出d个纰缪(单比特错),需要使用的码距为d+一个编码3.>为了纠正d个纰缪,需要使用码间隔为2d+1的编码5编码步调(1)按照信息位数,确定校验位数,2的k次方≥k+r+1,其中,k为信息位数,r 为校验位数。

海明码

海明码

海明码一、海明码的定义海明码是一种可以纠正一位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2r-1>=r+m 即:2r>=r+m+1海明码的编码效率为:R=k/(k+r) 式中k为信息位位数,r为增加冗余位位数码字:一个帧包括m位数据,r个校验位,n=m+r,则此n比特单元称为n位码字。

海明距离:两个码字之间不同的比特数目。

例:00000000000000011111 的海明距离为5.(1)如果两个码字的海明距离为d,则需要d个单比特错就可以把一个码字转换成另一个码字。

(2)为了检查出d个错(单比特错),则需要使用海明距离为d+1的编码。

(3)为了纠正d个错,需要使用海明距离为2d+1的编码。

二、编码规则(2)位号为2的幂的位是校验位,其余是信息位(3)每个校验位强迫自己包括自己在内的一些位的奇偶值为偶数(或奇数)。

三、海明码的校验位排列规则海明码的校验位排列在2i-1(i=1,2,3.……)的位置上。

海明码的计算海明码(Hamming Code )编码的关键是使用多余的奇偶校验位来识别一位错误。

码字(Code Word) 按如下方法构建:1、把所有2的幂次方的数据位标记为奇偶校验位(编号为1, 2, 4, 8, 16, 32, 64等的位置)2、其他数据位用于待编码数据. (编号为3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17等的位置)3、每个奇偶校验位的值代表了代码字中部分数据位的奇偶性,其所在位置决定了要校验和跳过的比特位顺序。

位置1:校验1位,跳过1位,校验1位,跳过1位(1,3,5,7,9,11,13,15,…)位置2:校验2位,跳过2位,校验2位,跳过2位(2,3,6,7,10,11,14,15,…)位置4:校验4位,跳过4位,校验4位,跳过4位(4,5,6,7,12,13,14,15,20,21,22,23,…)位置8:校验8位,跳过8位,校验8位,跳过8位(8-15,24-31,40-47,…)…如果全部校验的位置中有奇数个1,把该奇偶校验位置为1;如果全部校验的位置中有偶数个1,把该奇偶校验位置为0.举例说明:一个字节的数据:10011010构造数据字(Data Word),对应的校验位留空_ _ 1 _ 0 0 1 _ 1 0 1 0计算每个校验位的奇偶性 ( ?代表要设置的比特位):位置1检查1,3,5,7,9,11:? _ 1 _ 0 0 1 _ 1 0 1 0. 偶数个1,因此位置1设为0,即: 0 _ 1 _ 0 0 1 _ 1 0 1 0位置2检查2,3,6,7,10,11:0 ? 1 _ 0 0 1 _ 1 0 1 0. 奇数个1,因此位置2设为1,即: 0 1 1 _ 0 0 1 _ 1 0 1 0位置4检查4,5,6,7,12:0 1 1 ? 0 0 1 _ 1 0 1 0. 奇数个1,因此位置4设为1,即: 0 1 1 1 0 0 1 _ 1 0 1 0位置8检查8,9,10,11,12:0 1 1 1 0 0 1 ? 1 0 1 0. 偶数个1,因此位置8设为0,即: 0 1 1 1 0 0 1 0 1 0 1 0因此码字为: 011100101010.查找并纠错一位错误上例中构建了一个码字 011100101010,假定实际接收到的数据是011100101110. 则接收方可以计算出哪一位出错并对其进行更正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海明码
有了奇偶校验码的基础,就不难理解海明码了。

海明码实际上是奇偶校验码的一个扩充。

奇偶校验码只能检测错误而不能纠正错误,海明码能检测出两位错误并纠正一位错误,下面就介绍一下海明码的工作原理。

在奇偶校验中,我们假设发送端有K位信息位(k = n – 1,n代表码元位数),表示为a1 ~a n-1 , 在信息位后面加上一位奇偶校验位a0,就构成了a0~a n的n位码元,则接收端可按照监督关系式s=a0+a1+…+a n-2+a n-1(s为校验因子)来进行数据校验。

从奇偶校验的工作原理可以看出奇偶校验只有一个冗余位(对应一个监督关系式和一个校验因子),因此奇偶校验只能判别两种状态,当s=0表示正确,s=1表示出错。

可以设想一下,若增加冗余位亦即增加监督关系式和校验因子,便能判别更多的状态,海明码正是基于这一点工作的。

上面讲到海明码通过增加冗余位来进行错误的检测和纠正,那么对于k位的信息需要增加多少个冗余位才能满足检错并纠正1位错误的要求呢?
假设信息位有k位,校验位(冗余位)为m,那么m位的校验码可以生成2m个校验值,显然数据被正确传输的状态只有一个,用2m个值中的一个值来表示,则其余的2m-1个值可用来表示错误的状态,如果能满足:2m -1≥k+m (k+m 为编码后的总长度),在理论上m位校验码就能判断出是哪一位数据(包括信息位和校验位)出现错误。

下面用示例加以说明:
例(1):假设信息位k=4,求足以判别出错位位置的校验码所需的位数m。

解:由2m -1≥k+m , k=4可知
2m ≥5+m 即m≥3
即至少需要3位冗余位(对应产生3个校正因子和3个监督关系式), 形成23=8种判断状态才足以能够判断出出错数据位的位置
假设编成的n位海明码为h n h n-1…h2h1,则海明码的编码规律如下:1.校验位分布:在n位的海明码中,各检验位分布在位号为2n 的位置,即检验位的位置分别为第1,2,4,8,…,2n位,数据位按照原来的顺序插入其中。

若信息码为k5k4k3k2k1,则编成的海明码为…k5r4k4k3k2r3 k1r2r1,此分布关系可以用下表表示,其中k i 表示信息位,下标从1开始。

r i表示校验位,下标从0开始。

表(1)计算校验位分布表
2.检验关系:海明码的每一位h i要有多个检验位来检验。

检验关系是被检验位的位号等于相关检验位的位号之和。

在表(1)中,k5(位号为9)需要r4(位号8)和r0(位号1)来检验。

同理,k 4需要由r2、r1和r0 检验,k3由r2、r1 检验,以此类推,为便于分析,我们列表如下:
表(2)校验关系对照表
海明码规定各校验位的值是由此校验位所参与验证的各个数据位的值异或运算求得,从表(2)我们可以得知,校验位r2参与验证了k4 、k3、k1,由此我们可以求得r2=k4⊕k3⊕k2同理r0=k5 ⊕k4⊕k2⊕k1 ,r1=k4 ⊕k3⊕k1 ,r2=k5 。

把求得的个校验位的值和各数据位的值按照表(1)的序列排列便得到了所要验证数据的海明码。

例(2):假设发送端有数据11000011要发送,试求出它的海明码。

解:信息位有8位数据,根据公式2m -1≥k+m,必须有4位检验码来进行错误校验。

假设校验码为r3 r2 r1 r0,把数据和校验码排列如下:
其中,校验关系列表如下:
有上表可得:r0=1⊕0⊕0⊕1⊕1=1
r1=1⊕0⊕0⊕0⊕1=0
r2=1⊕0⊕0⊕1=0
r3=1⊕1⊕0⊕0=0
所以,校验码为0001,按照8、4、2、1的序列排列得到11000011的海明码编码110000010101。

相关文档
最新文档