Thermal characterization of Advanced lithium ion polymer cells LG化学生产三代电池的脉冲放电下的电池

合集下载

碳陶复合材料英文专著

碳陶复合材料英文专著

碳陶复合材料英文专著Carbon-Ceramic Composite MaterialsIntroduction:Carbon-ceramic composite materials are a class of advanced materials that exhibit exceptional mechanical properties, high thermal stability, and excellent electrical conductivity. These materials are widely used in various industries, including aerospace, automotive, electronics, and healthcare, due to their unique combination of properties. This book aims to provide a comprehensive overview of carbon-ceramic composite materials, including their synthesis, characterization, properties, and applications.Chapter 1: Introduction to Carbon-Ceramic Composite Materials - Historical background and development of carbon-ceramic composites- Importance and advantages of carbon-ceramic composites- Different types of carbon-ceramic compositesChapter 2: Synthesis Methods- Fabrication techniques for carbon-ceramic composites- Chemical vapor deposition (CVD) process- Polymer-derived ceramics (PDCs) route- Pyrolysis and carbonization methods- Additive manufacturing techniques for carbon-ceramic compositesChapter 3: Characterization Techniques- Microstructural analysis using scanning electron microscopy(SEM) and transmission electron microscopy (TEM)- X-ray diffraction (XRD) and Raman spectroscopy for phase identification and crystal structure analysis- Thermal analysis techniques, such as thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)- Mechanical testing methods, including tensile, compressive, and flexural strength testsChapter 4: Properties of Carbon-Ceramic Composites- Mechanical properties, such as hardness, toughness, and elastic modulus- Thermal properties, including thermal conductivity and coefficient of thermal expansion- Electrical conductivity and electromagnetic properties- Chemical resistance and corrosion behavior- Wear and friction propertiesChapter 5: Applications of Carbon-Ceramic Composites- Aerospace applications, such as aircraft brakes and thermal protection systems- Automotive applications, including brake discs and clutch plates - Electronics and semiconductor industry applications- Biomedical applications, like orthopedic implants and dental prosthetics- Energy storage and conversion applications, such as fuel cells and batteriesChapter 6: Future Perspectives and Challenges- Emerging trends and future developments in carbon-ceramic composites- Challenges and limitations in the synthesis and processing of these materials- Environmental and sustainability considerations- Potential applications in emerging fields, such as renewable energy and 3D printingConclusion:Carbon-ceramic composites are a fascinating class of materials that possess a wide range of exceptional properties. This book provides a comprehensive overview of the synthesis, characterization, properties, and applications of carbon-ceramic composites, aiming to serve as a valuable reference for researchers, engineers, and students in the field. With increasing interest and advancements in this area, carbon-ceramic composites are expected to find even more extensive applications in the future, contributing to technological advancements in various industries.。

新一代超高温热障涂层研究

新一代超高温热障涂层研究

万方数据新一代超高温热障涂层研究作者:郑蕾, 郭洪波, 郭磊, 彭徽, 宫声凯, 徐惠彬, ZHENG Lei, GUO Hong-bo, GUO Lei, PENG Hui, GONG Sheng-kai, XU Hui-bin作者单位:北京航空航天大学材料科学与工程学院,北京,100191刊名:航空材料学报英文刊名:Journal of Aeronautical Materials年,卷(期):2012,32(6)被引用次数:2次1.GOWARD G W Progress in coatings for gas turbine airfoils 1998(1/2/3)2.CAO X Q;VASSEN R;STOEVER D Ceramic materials for thermal barrier coatings[外文期刊] 2004(01)3.郭洪波;宫声凯;徐惠彬先进航空发动机热障涂层技术研究进展[期刊论文]-中国材料进展 2009(9/10)4.RABIEI A;EVANS A G Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[外文期刊] 2000(15)5.PADTURE N P;GELL M;JORDAN E H Materials science-thermal barrier coatings for gas-turbine engine applications[外文期刊] 2002(5566)6.ZHOU Z H;GUO H B;WANG J Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere 2011(08)7.DAS D K;MURPHY K S;MA S W Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium[外文期刊] 2008(07)8.PENG H;GUO HB;YAO R Improved oxidation resistance and diffusion barrier behaviors of gradient oxide dispersed NiCoCrA1Y coatings on superalloy 2010(05)9.ANGENETE J;STILLER K;BAKCHINOVA E Microstructural and microchemical development of simple and Ptmodified aluminide diffusion coatings during long term oxidation at 1050 degrees C 2004(03)10.GUO H B;GONG S K;KHOR K A Effect of thermal exposure on the microstructure and properties of EBPVD gradient thermal barrier coatings 2003(01)11.郭洪波;宫声凯;徐惠彬梯度热障涂层的设计[期刊论文]-航空学报 2002(05)12.周庆生等离子喷涂技术 1982LER R A Thermal barrier coatings for aircraft engines:History and directions 1997(01)14.NIESSEN K V;GINDRAT M;REFKE A Vapor Phase Deposition Using LPPS Thin Film15.MUEHLBERGER E;PHILIP M LPPS-Thin Film Processes:Overview of Origin and Future Possibilities16.NIESSEN K V;GINDRAT M Vapor phase deposition using a plasma spray process17.HOSPACH A;MAUER G;VA3EN R;ST(O)VER D Columnar Structured Thermal Barrier Coatings (TBCs) by Thin Film Low Pressure Plasma Spraying (LPPS-TFTM)18.徐惠彬;宫声凯;刘福顺航空发动机热障涂层材料体系的研究[期刊论文]-航空学报 2000(01)19.STOVER D;PRACHT G;LEHMANN H New material concepts for the next generation of plasma-sprayed thermal barrier coatings 2004(01)20.徐惠彬;宫声凯;蒋成保特种功能材料中的固态相变及应用[期刊论文]-中国材料进展 2011(13)21.THOMPSON J A;CLYNE T W The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs[外文期刊] 2001(09)22.KRAMER S;YANG J;LEVI CG Thermochemical interaction of thermal barrier coatings with molten CaOMgO-Al2O3-SiO2 (CMAS) deposits[外文期刊] 2006(10)23.WU J;GUO H B;ABBAS M Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS depositsinfiltrati on using impedance spectroscopy 2012(01)24.PENG H;WANG L;GUO L Degradation of EBPVD thermal barrier coatings caused by CMAS deposits25.ZHU D M;MILLER R A Development of advanced low conductivity thermal barrier coatings 2004(01)26.冀晓鹃;宫声凯;徐惠彬添加稀土元素对热障涂层YSZ陶瓷晶格畸变的影响[期刊论文]-航空学报 2007(01)27.冀晓鹃稀土氧化物掺杂改性热障涂层用YSZ陶瓷材料研究 200728.ZHANG Y L;GUO L;GUO H B Influence of Gd2O3 and Yb2O3 co-doping on phase stability,thermophysical properties and sintering of 8YSZ29.WEI Q L;GUO H B;GONG S K Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[外文期刊] 2008(16)30.张红菊多元稀土氧化物掺杂二氧化锆基热障涂层的制备及热循环性能研究 201031.VASSEN R;CAO XQ;TIETZ F Zirconates as new materials for thermal barrier coatings[外文期刊] 2000(08)32.LIU B;WANG J Y;ZHOU Y C Theoretical elastic stiffness,structure stability and thermal conductivity of La2Zr2O7 pyrochlore[外文期刊] 2007(09)33.WAN C L;QU Z X;DU A B Influence of B site substituent Ti on the structure and thermophysical properties of A (2) B (2) O (7)-type pyrochlore Gd2Zr2O7[外文期刊] 2009(16)34.WUENSCH B J;EBERMAN K W Order-disorder phenomena in A (2) B (2) O (7) pyrochlore oxides 2000(07)35.XU Z H;HE L M;MU R D Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition[外文期刊] 2009(1/2)36.XU Z H;HE L M;Zhong X H Thermal barrier coating of lanthanum-zirconium-cerium composite oxide made by electron beam-physical vapor deposition[外文期刊] 2009(1/2)37.刘燕祎;徐强;潘伟固相反应Gd2Zr2O7陶瓷的形成机理研究 2005(增1)38.LIU Z G;OUYANG J H;WANG B H Thermal expansion and-thermal conductivity of SmxZr1-xO2-x/2 (0.1≤x ≤0.5) ceramics[外文期刊] 2009(02)39.QU Z X;WAN C L;PAN W Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7[外文期刊] 2007(20)40.RAO K K;BANU T;VITHAL M Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol-gel method 2002(2-3)41.SURESH G;SEENIVASAN G;KRISHNAIAH M V Investigation of the termal conductivity of selected compounds of lanthanum,samarium and europium[外文期刊] 1998(1/2)42.LEHMANN H;PITZER D;PRACHT G Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system[外文期刊] 2003(08)43.周宏明;易丹青热障涂层用Nd2O3-CeO2-ZrO2陶瓷粉末制备及其性能研究[期刊论文]-无机材料学报 2008(02)44.MA W;GONG S K;XU H B On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions 2006(08)45.MA W;GONG S K;XU H B The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD[外文期刊] 2006(16/17)46.MAW;GONG S K;LI H F Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[外文期刊] 2008(12)47.GUO L;GUO H B;MA G H Ruddlesden-popper structured BaLa2Ti3O10,a highly anisotropic material for thermal barrier coatings 201248.OLSEN A;ROTH R S Crystal structure determination of BaNd2Ti3O10 using high-resolution electron microscopy 198549.GUO H B;ZHANG H J;MA G H Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials 200950.FRIEDRICH C;GADOW R;SCHIRMER T Lanthanum hexaluminate-a new mate-rial for atmospheric plasma spraying of advanced thermal barrier coatings[外文期刊] 2001(04)51.BANSAL N P;ZHU D M Thermal properties of oxides with magnetoplumbite structure for advanced thermal barriercoatings 2008(12)52.XIE X Y;GUO H B;GONG S K Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings 2010(06)53.XIE X Y;GUO H B;GONG S K Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame 2011(17/18)54.XIE X Y;GUO H B;GONG S K Lanthanum-titanium-aluminum oxide:A novel thermal barrier coating material for applications at 1300 degrees C 2011(09)55.NICKEL H;CLEMENS D;QUADAKKERS W J Development of NiCrAlY alloys for corrosion-resistant coatings and thermal barrier coatings of gas turbine components[外文期刊] 1999(04)56.SCHNITT-THORNS K G;HEATER M Improved oxide resistance of thermal barrier coatings 199957.TOLPYGO V K;CLARKE D R Surface rumpling of a (Ni,Pt)Al bond coat induced by cyclic oxidation[外文期刊] 2000(13)58.HAYNES J A;PINT B A;MORE K L Influence of sulfur,platinum,and hafnium on the oxidation behavior of CVD NiAl bond coatings 2002(5/6)59.TRYON B;MURPHY K S;YANG J Y Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems[外文期刊] 2007(02)60.SUN L D;GUO H B;LI H F Hf modified NiAl bond coat for thermal barrier coating application 200761.孙立东Hf改性NiAl黏结层热障涂层高温氧化行为 200762.GUO H B;CUI Y J;PENG H Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed beta-NiAl coatings for Hf-containing superalloy 2010(04)63.WU H L;GUO H B;GONG S G First-principles study on the site preference of Dy in B2 NiAl 2010(1/2)64.GUO H B;ZHANG T;WANG S X Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 degrees C 2011(06)65.GUO H B;LID Q;PENG H High-temperature oxidation and hot-corrosion behaviour of EB-PVD betaNiAlDy coatings2011(03)66.LI D Q;WANG L;PENG H Cyclic oxidation behavior of β-NiAIDy alloys containing varying aluminum content at 1200℃67.BARRETT C A Effect of 0.1 at.% zirconium on the cyclic oxidation resistance of β-NiAl 1988(5/6)68.HAMADI S;BACOS M P;POULAIN M Oxidation resistance of a Zr-doped NiAl coating thermoehemically deposited on a nickel-based superalloy 2009(6/7)69.JEDLINSKI L;MROWEC S The influence of implanted yttrium on the oxidation behaviour of β-NiAI 198770.PINT B A;HOBBS L W The oxidation behavior of Y2O3-dispersed β-NiAl[外文期刊] 2004(3/4)71.LI D Q;GUO H B;WANG D Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 ℃72.WANG Y;GUO H B;LI H F Manufacturing and microstructure RuAl/NiAl diffusion barrier coating for Ni-based crystal superalloy substrate 200773.BAI B;GUO H B;PENG H Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy 2011(09)74.STRANGMAN T;RAYBOULD D;JAMEEL A Damage mechanisms,life prediction,and development of EB-PVD thermal barrier coatings for turbine airfoils 2007(4/5/6/7)75.MERCER C;FAULHABER S;EVANS A G A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration[外文期刊] 2005(04)76.BOROM M P;JOHNSON C A;PELUSO LA Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings 1996(1-3)77.STOTTF H;DE WET D J;TAYLOR D J Degradation of thermal-barrier coatings at very high temperatures 1994(10)78.LI L;HITCHMAN N;KNAPP J Failure of thermal barrier coatings subjected to CMAS attack[外文期刊] 2010(1-2)79.WITZ G;SHKLOVER V;STEURER W High-temperature interaction of Yttria stabilized Zirconia coatings with CaO-MgO-Al2O3-SiO2 (CMAS) deposits 200980.KRAMER S;YANG J;LEVI C G Thermochemical interaction of thermal barrier coatings with molten CaOMgO-Al2O3-SiO2(CMAS) deposits[外文期刊] 2006(10)81.KRAMER S;FAULHABER S;CHAMBERS M Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesiumalumino-silicate (CMAS) penetration 2008(1/2)82.EVANS A G;HUTCHINSON J W The mechanics of coating delamination in thermal gradients[外文期刊] 2007(18)83.WELLMAN R;WHITMAN G;NICHOLLS J R CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage 2010(01)84.WU J;GUO H B;GAO Y Z Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits 2011(10)85.DEXLER J M;GLEDHILL A D;SHINODA S Jet engine coatings for resisting volcanic ash damage 2011(21)86.KRAMER S;JYANG J;JOHNSON C A Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[外文期刊] 2008(02)87.RAI A K;Rabi S;BHATTACHARYA R S CMASresistant thermal barrier coatings (TBC) 2010(05)88.BACOS M P;DORVAUX J M;LANDAIS S10 years-activities at onera on advanced thermal barrier coatings 201189.MOHAN P;YAO B;PATTERSON T Electrophoretically deposited alunina as protective overlay for thermal barrier coatings against CMAS degradation 2009(6/7)90.LI Z M;PENG H,MAY Microstruture stability of EBPVD thermal barrier coatings exposed to environmental depositsat elevated temperature1.孟晓明.叶卫平.程旭东.闵捷.向泓宇.张朴悬浮液等离子喷涂制备的热障涂层微观结构和性能[期刊论文]-材料科学与工艺2013(3)2.韩萌.黄继华.陈树海热障涂层应力与失效机理若干关键问题的研究进展与评述[期刊论文]-航空材料学报 2013(5)引用本文格式:郑蕾.郭洪波.郭磊.彭徽.宫声凯.徐惠彬.ZHENG Lei.GUO Hong-bo.GUO Lei.PENG Hui.GONG Sheng-kai.XU Hui-bin 新一代超高温热障涂层研究[期刊论文]-航空材料学报 2012(6)。

journal of advanced ceramics字数要求

journal of advanced ceramics字数要求

journal of advanced ceramics字数要求Journal of Advanced Ceramics: Advancements in Ceramic Materials and ApplicationsIntroduction:The Journal of Advanced Ceramics is a prestigious publication that focuses on the latest advancements in ceramic materials and their applications. This article aims to provide a comprehensive overview of the key topics covered in the journal, highlighting the significant contributions made by researchers in the field of advanced ceramics.I. Ceramic Material Development:1.1 Composition Design:- Researchers focus on developing novel ceramic compositions by manipulating the chemical composition of materials.- The composition design aims to enhance specific properties such as mechanical strength, thermal conductivity, and electrical conductivity.1.2 Microstructure Engineering:- Microstructure engineering involves controlling the arrangement of atoms and grains within ceramic materials.- This technique enables researchers to tailor the material's properties, such as porosity, grain size, and phase distribution.1.3 Synthesis Techniques:- Various synthesis techniques, including sol-gel, solid-state reaction, and chemical vapor deposition, are explored to fabricate advanced ceramic materials.- Researchers optimize these techniques to achieve high purity, uniformity, and desired microstructures.II. Characterization and Evaluation:2.1 Structural Analysis:- Advanced characterization techniques such as X-ray diffraction, scanning electron microscopy, and transmission electron microscopy are used to analyze the crystal structure and morphology of ceramic materials.- These analyses provide insights into the material's properties, defects, and interfaces.2.2 Mechanical Properties:- Researchers investigate the mechanical behavior of ceramics, including their strength, toughness, and fracture resistance.- Mechanical testing methods, such as indentation, compression, and flexural tests, are employed to evaluate these properties.2.3 Thermal and Electrical Properties:- The thermal and electrical properties of ceramics are crucial for their applications in various industries.- Researchers study the thermal conductivity, coefficient of thermal expansion, electrical resistivity, and dielectric properties of ceramic materials.III. Applications of Advanced Ceramics:3.1 Electronics and Optoelectronics:- Advanced ceramics find extensive applications in electronic devices, such as semiconductors, capacitors, and sensors.- Their excellent electrical and optical properties make them ideal for optoelectronic components like LEDs, lasers, and photovoltaic devices.3.2 Energy and Environment:- Ceramic materials play a vital role in energy storage and conversion systems, such as fuel cells, batteries, and photovoltaic cells.- Their chemical stability and high-temperature resistance make them suitable for environmental applications like catalysis and gas sensing.3.3 Biomedical and Healthcare:- Advanced ceramics are widely used in biomedical implants, dental applications, and drug delivery systems.- Their biocompatibility, wear resistance, and ability to mimic bone structure make them ideal for these applications.IV. Emerging Trends and Future Directions:4.1 Nanoceramics:- Nanotechnology has opened new avenues for the development of nanoceramic materials with enhanced properties.- Researchers explore the synthesis, characterization, and applications of nanoceramics in various fields.4.2 Advanced Processing Techniques:- Advanced processing techniques, such as additive manufacturing and spark plasma sintering, are revolutionizing the fabrication of ceramic components.- These techniques enable the production of complex shapes, improved mechanical properties, and reduced processing time.4.3 Multifunctional Ceramics:- Researchers are focusing on developing multifunctional ceramics that possess multiple properties, such as electrical, thermal, and mechanical functionalities.- These materials have the potential to revolutionize various industries, including electronics, energy, and healthcare.Conclusion:In conclusion, the Journal of Advanced Ceramics covers a wide range of topics related to ceramic materials and their applications. From composition design and microstructure engineering to characterization techniques and emerging trends, the journal provides valuable insights into the advancements made in this field. The applications of advanced ceramics in electronics, energy, and healthcare highlight their immense potential for technological advancements. The continuous research and development in the field of advanced ceramics promise a future with even more innovative and functional ceramic materials.。

石蜡相变材料在建筑领域的研究与应用进展

石蜡相变材料在建筑领域的研究与应用进展

㊀第9期㊀㊀收稿日期:2021-02-04㊀㊀作者简介:李娜(1982 ),女,山东滨州人,工程师,主要从事建筑设计及建筑节能研究工作㊂石蜡相变材料在建筑领域的研究与应用进展李娜1,于恩强2,3(1.滨州市建筑设计研究院有限公司,山东滨州㊀256600;2.中国石油大学(华东)化学工程学院,山东青岛㊀266580;3.广东大港石油科技有限公司,广东珠海㊀519000)摘要:综述了近十年来以石蜡作为主材的相变材料的技术研究进展,对石蜡相变材料的改性㊁封装工艺以及在建筑节能领域的应用情况进行了总结,并对石蜡相变材料在建筑节能领域的应用与发展方向进行了展望,旨在为化工新材料研发及其在建筑节能领域的应用提供一定参考㊂关键词:石蜡;相变材料;节能建筑中图分类号:TE626.8㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1008-021X(2021)09-0057-02ProgressinResearchesandApplicationsofParaffinPhaseChangeMaterialsinArchitectureLiNa1,YuEnqiang2,3(1.BinzhouArchitecturalDesignInstituteCo.,Ltd.,Binzhou㊀256600,China;2.CollegeofChemicalEngineering,ChinaUniversityofPetroleum(EastChina),Qingdao㊀266580,China;3.GuangdongDagangPetro-technologyCo.,Ltd.,Zhuhai㊀519000,China)Abstract:Theresearchprogressofparaffinbasedphasechangematerialsinrecenttenyearsisreviewedinthispaper,themodificationofparaffinphasechangematerials,packagingtechnologyandtheapplicationsinthefieldofbuildingenergysavingaresummarized,andtheapplicationanddevelopmentdirectionofparaffinphasechangematerialsinthefieldofbuildingenergysavingareprospected,aimingtoprovidesomereferencefortheresearchanddevelopmentofnewchemicalmaterialsandtheirapplicationsinthefieldofbuildingenergysaving.Keywords:paraffin;phasechangematerials;energysavingbuildings㊀㊀物质在一定的能量作用下会发生相态转变,称为相变㊂相变过程会伴随能量的吸收和释放,当物质材料具有较大的相变潜热时,可以在一定的范围内维持温度稳定,从而实现储能或者调温的作用,具有这种特性的物质通常称为相变材料(Phasechangematerials,PCMs)㊂我国拥有辽阔的国土面积,覆盖热带㊁亚热带㊁温带和寒带,部分地区昼夜温差较大,建筑节能的改进空间很大,国家鼓励建筑节能技术的创新与应用㊂将PCMs应用于节能建筑的建设,发挥PCMs的能量调控功能,可以明显降低建筑物的能耗,提升居住环境的舒适性㊂根据材料划分,PCMs可分为无机PCMs㊁有机PCMs㊂无机PCMs通常是水合盐,具有相变潜热大,成本低廉的特点,同时也存在着易过冷和相分离的问题,部分材料还具有一定的腐蚀性㊂有机PCMs包括石蜡㊁脂肪酸等有机化合物,通常没有上述问题,且价格低廉,原料易得㊂其中,石蜡是有机PCMs中的代表性物质,得到了广泛应用㊂石蜡的相变温度为0 80ħ㊁相变焓高达150 250J/g,尽管存在着导热系数低㊁易泄漏的缺陷,但是通过一定的改性以及封装工艺对石蜡进行处理,上述问题基本得到解决,因此,相变石蜡在节能建筑中具有很好的推广价值㊂本文总结了近十余年以来基于石蜡的PCMs开发以及应用研究进展,重点就石蜡的改性㊁封装以及在建筑节能领域的应用进行了分析,以期为本领域相关的研发工作提供参考㊂1㊀基于石蜡的PCMs技术开发1.1㊀基于石蜡的PCMs改性石蜡PCMs的短板在于导热性能较低,为了提高石蜡PCMs的导热性能,国内外研究者普遍采用了添加高导热率颗粒的方式对石蜡进行改性,如膨胀石墨㊁碳纳米管㊁石墨烯㊁金属粉末[1]等,其中碳材料是主要的研究方向㊂Xia等[2]以膨胀石墨和石蜡制备了复合相变材料,研究结果表明,加入10%的膨胀石墨,可使石蜡复合相变材料的导热系数提高10倍以上,储热/回收时间比纯石蜡分别缩短了48.9%和66.5%㊂Karkri等[3]研究了合成石墨SFG75与石蜡复合的改性效果,研究结果表明,随着SFG75的添加量从0 40%逐渐增加,复合相变材料的导热系数呈非线性增加,在SFG75添加量达到40%时,复合相变材料的导热系数提高了7.75倍㊂任学明等[4]以25#石蜡和碳纳米管(CNTs)为原料通过真空浸渍法得到CNTs掺杂的复合相变材料,表征结果表明,CNTs在小比例掺杂的情况下,复合PCMs的导热系数随着掺杂量的提高而提高,在0.8%的掺杂量下,导热系数可以提高1倍㊂郭美茹等[5]以石蜡和石墨烯为原料制备得到复合相变材料,测定结果表明,复合相变材料的热导率随着石墨烯的添加量增加而增加,当添加量达到2%时,与纯石蜡相比,热导率提高了1.3倍,相变潜热提高了8.8%㊂1.2㊀基于石蜡的PCMs封装由于石蜡PCMs在发生相变时是在固液态转变的,容易发生泄漏,采用一定的封装技术对石蜡进行处理也是技术研究的热点,采用微胶囊法和吸附法可以有效地解决石蜡PCMs泄露的问题㊂Aludin等[6]将不同质量分数的石蜡和聚己内酯(PCL)溶于氯仿中,然后用乙醇溶液沉淀纯化后得到复合材料㊂通过泄露测试发现,PCL可以明显改善石蜡的泄露问题,在PCL加入量达到60%时,复合相变材料中的石蜡基本不发生泄露㊂张秋香等[7]以纳米SiO2改性的甲基丙烯酸甲酯-丙烯酸共聚物作为壁㊃75㊃李娜,等:石蜡相变材料在建筑领域的研究与应用进展山㊀东㊀化㊀工材对石蜡进行包覆,制得石蜡微胶囊相变储能材料(Phasechangeenergystoragemicrocapsule,PCESM),研究结果表明,PCESM的相变潜热达134.79J/g,添加3%纳米SiO2后的石蜡分解温度比未改性前提高了40K,壁材分解温度提高了50K,石蜡渗漏率仅2.96%㊂Silakhori等[8]采用聚苯胺为壁材,石蜡为芯材,通过原位聚合技术制备了PCESM,并对其性能进行了研究㊂研究结果表明,经1000次热循环后,PCESM的化学特性和结构轮廓仍能够保持不变,有效防止了石蜡的泄露,且具有很好的热稳定性㊂Kong等[9]通过真空吸附法将相变石蜡加入膨胀珍珠岩中,得到复合PCMs,再采用二氧化硅和有机丙烯酸酯的混合物进行浸渍和表面涂膜得到PCESM,表征评价结果表明,石蜡的最佳吸附比为52.5%,表面涂膜工艺能有效地解决真空浸渍法制备的复合相变材料的渗漏问题,PCESM具有良好的热性能㊁稳定性和耐久性㊂此外,国内研究者还通过不同的多孔无机吸附材料如水泥[10]㊁膨胀蛭石[11]㊁二氧化钛[12]㊁膨胀珍珠岩[13]等多孔材料开展了吸附石蜡的的研究,均取得了不错的效果㊂2㊀石蜡PCMs在建筑上的典型应用石蜡相变材料在建筑节能㊁电子设备控温㊁纺织品㊁太阳能和工业余热回收领域都有着广泛的应用㊂由于我国建筑行业巨大的体量以及在节能环保领域飞速发展的需求,建筑行业仍是石蜡相变材料的主要应用方向㊂石蜡相变材料由于具有合适的相变温度㊁相变潜热值,且具有良好的耐候性,是很有应用潜力的新型材料㊂国外研究者Kuznik等[14]对含60%微胶囊石蜡的PCM共聚物的复合墙板的数值模拟研究结果表明,石蜡复合相变材料在夏季可以显著降低室内温度,且复合墙板的最佳厚度为1cm㊂Alawadhi等[15]选取具有锥形孔的混凝土板并向孔中分别添加相变材料正十八烷㊁正二十烷和SUNTECHP116石蜡进行对比研究,实验结果表明,使用相变材料的屋顶比不用相变材料的屋顶的热通量要低39%,三种材料中又以正二十烷的表现最优㊂Castell等[16]构建了多个建筑隔间并在内部放置热泵以研究RT-27石蜡相变材料的节能效果,结果表明,在设定了隔间温度的条件下,使用RT-27+聚氨酯相变材料的隔间的能耗要比普通隔间(只使用聚氨酯)低15%,温度峰值低1ħ,证实了加入相变材料可以有效降低房间的能耗,且温度波动更小,热舒适度得到提升㊂国内研究者Zhu等[17]以石蜡㊁膨胀石墨和高密度聚乙烯进行配伍制备了双层复合相变材料墙板并分析其在湖北武汉冬夏季的节能效果㊂研究表明,双层PCMs墙的办公楼能耗分别在冬季和夏季降低17.8%和6.4%㊂该结构可以显著减少全年的能量消耗,冬季的节能效果尤为明显㊂闫全英等[18]使用48#石蜡与液体石蜡调配成PCMs材料,研究了不同调配比下的应用范围,研究结果表明,液体石蜡调配比高时,混合物的相变温度低,适合被动式相变墙体使用,液体石蜡调配比低时,混合物的相变温度高,适合主动式相变墙板使用㊂牛润萍等[19]对比研究了由40%聚乙烯与60%的石蜡封装而成的石蜡相变蓄热地板和干式地埋管地板两种供暖系统的节能效果,结果表明,相变蓄热地板能够显著降低室内温度波动,提高居住热舒适度㊂3㊀结论近年来,国内外研究人员在石蜡相变材料的改性以及封装工艺改进方面取得了一些进展㊂就改性工艺而言,采用改性技术尤其是碳材料改性的石蜡相变材料的导热系数更高㊁相变潜热更大;就封装工艺而言,采用胶囊封装工艺,获得了壁材机械强度更高㊁分布更均匀㊁环保安全性能更突出的相变微胶囊㊂对于石蜡相变在建筑材料领域的应用而言,石蜡相变储能建筑材料具有很好的应用前景,但是目前制约石蜡相变材料在建筑上应用的主要是成本过高的问题㊂未来通过解决上述问题,有望进一步推进石蜡相变材料在建筑材料领域的实际应用㊂参考文献[1]JESUMATHYS,UDAYAKUMARM,SURESHS.ExperimentalstudyofenhancedheattransferbyadditionofCuOnanoparticle[J].Heat&MassTransfer,2012,48(6):965-978.[2]XIAL,ZHANGP,WANGRZ.Preparationandthermalcharacterizationofexpandedgraphite/paraffincompositephasechangematerial[J].Carbon,2010,48(9):2538-2548.[3]MUSTAPHAK,LACHHEBM,GOSSARDD,etal.Improvementofthermalconductivityofparaffinbyaddingexpandedgraphite[J].JournalofCompositeMaterials,2016,50(19):2589-2601.[4]任学明,沈鸿烈,杨艳.膨胀石墨/石蜡复合相变材料的碳纳米管掺杂改性研究[J].功能材料,2019,50(6):8-12.[5]郭美茹,周文,周天,等.石墨烯/石蜡复合材料的热物理性能研究[J].工程热物理学报,2014(6):1200-1205.[6]ALUDINMS,AKMALSS,ABDULLAHMAB,etal.Preparationandcharacterizationofform-stableparaffin/polycaprolactonecompositesasphasechangematerialsforthermalenergystorage[J].MatecWebofConferences,2017,97:1094.[7]张秋香,陈建华,陆洪彬,等.纳米二氧化硅改性石蜡微胶囊相变储能材料的研究[J].高分子学报,2015(6):692-698.[8]SILAKHORIM,NAGHAVIMS,METSELAARHSC,etal.Acceleratedthermalcyclingtestofmicroencapsulatedparaffinwax/polyanilinemadebysimplepreparationmethodforsolarthermalenergystorage[J].Materials,2013,6(5):1608-1620.[9]KONGX,ZHONGY,XIANR,etal.Buildingenergystoragepanelbasedonparaffin/expandedperlite:preparationandthermalperformancestudy[J].Materials,2016,9(2):1-16.[10]杜银飞,刘谱晟,魏唐中,等.一种石蜡-水泥基定形相变材料的制备方法:CN110804422B[P].2020-11-24.[11]李金洪,黄凯越,邓勇.同时增强膨胀蛭石基复合相变材料稳定性和导热率的方法:CN110105923B[P].2020-08-04.[12]马晓春,刘延君,肖帆,等.一种二氧化钛包覆石蜡微胶囊相变储能材料及其制备方法:CN108300421A[P].2018-07-20.[13]方贵银,曹磊,单锋,等.微包裹相变蓄能材料及其制备方法:CN103146350A[P].2013-06-12.[14]KUZNIKF,VIRGONEJ,NOELJ.Optimizationofaphasechangematerialwallboardforbuildinguse[J].AppliedThermalEngineering,2008,28(11/12):1291-1298.[15]ALAWADHIEM,ALQALLAFHJ.BuildingroofwithconicalholescontainingPCMtoreducethecoolingload:Numericalstudy[J].EnergyConversion&Management,2011,52(8/9):2958-2964.[16]CASTELLA,MARTORELLI,MEDRANOM,etal.ExperimentalstudyofusingPCMinbrickconstructivesolutionsforpassivecooling[J].Energy&Buildings,2010,42(4):534-540.[17]ZHUN,HUN,HUP,etal.Experimentstudyonthermalperformanceofbuildingintegratedwithdoublelayersshape-stabilizedphasechangematerialwallboard[J].Energy,2019,167(JAN.15):1164-1180.[18]闫全英,阮振邦,霍冉.添加相变材料对热水供暖墙板传热性能的影响研究[J].建筑科学,2013,29(12):35-38.[19]牛润萍,徐小龙.主动式太阳房相变蓄热地板供暖实测研究[J].建筑科学,2013,29(8):49-52.(本文文献格式:李娜,于恩强.石蜡相变材料在建筑领域的研究与应用进展[J].山东化工,2021,50(9):57-58.)㊃85㊃SHANDONGCHEMICALINDUSTRY㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2021年第50卷。

锂离子电池基础科学问题(Ⅷ)——负极材料

锂离子电池基础科学问题(Ⅷ)——负极材料

万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据锂离子电池基础科学问题(Ⅷ)——负极材料作者:罗飞, 褚赓, 黄杰, 孙洋, 李泓, LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong作者单位:中国科学院物理研究所,北京,100190刊名:储能科学与技术英文刊名:Energy Storage Science and Technology年,卷(期):2014,3(2)1.Armand M;Murphy D;Broadhead J Materials for Advanced Batteries 19802.Garreau M;Thevenin J;Fekir M On the processes responsible for the degradation of the aluminum lithium electrode used as anode material in lithium aprotic electrolyte batteries 1983(3-4)3.Yazami R;Touzain P A reversible graphite-lithium negative electrode for electrochemical generators 1983(3)4.Tarascon J MorSe6:A new solid-state electrode for secondary lithium batteries 1985(9)5.Scrosati B Non aqueous lithium cells 1981(11)6.Abraham K Ambient temperature secondary lithium batteries using LiA1 lithium insertion anodes 19877.Hrold A Recherches sur les composes d'insertion du graphite 1955(7-8)8.Dey A;Sullivan B The electrochemical decomposition of propylene carbonate on graphite 1970(2)9.SONY Non-aqueous electrolyte secondary cell 198910.Nagaura T;Tozawa K Lithium ion rechargeable battery 199011.Endo M;Kim C;Nishimura K Recent development of carbon materials for Li ion batteries 2000(2)12.Mabuchi A A survey on the carbon anode materials for rechargeable lithiumbatteries 199413.Yamaura J;Ozaki Y;Morita A High voltage,rechargeable lithium batteries using newly-developed carbon for negative electrode material 1993(1)14.Tarascon J M;Armand M Issues and challenges facing rechargeable lithium battefies 2001(6861)15.Van S W;gcrosati B Advances in Lithium-Ion Batteries 200216.Kang B;Ceder G Battery materials for ultrafast charging and diseharging 2009(7235)17.Armand M;Tarascon J M Building better batteries 2008(7179)18.Jansen A;Kahaian A;Kepler K Development of a high-power lithium-ion battery 199919.Smith K;Wang C Y Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles 2006(1)20.Zhang X;Ross P;Kostecki R Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles 2001(5)21.Zhou H H;Ci L C;Liu C Y Progress in studies of the electrode materials for Li ion batteries 1998(1)22.Hao R R;Fang X Y;Niu S C Chemistry of the Elements (Ⅲ) 199823.Ohzuku T;Ueda A;Yamamoto N Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells 1995(5)24.Woo K C;Mertwoy H;Fischer J Experimental phase diagram of lithium-intercalated graphite 1983(12)25.Dahn J Phase diagram of LixC6 1991(17)26.Nalamova V;Guerard D;Lelaurain M X-ray investigation of highly saturated Li-graphite intercalation compound 1995(2)27.Feng Z Z;Song S Q Preparation and application of mesophase pitch 201328.Honda H;Yamada Y Meso-carbon microbeads 197329.Xu B;Chen E Intermediate development phase carbon microbeads (MCMB),properties and applications 1996(3)30.Niu Y J;Zhang H G;ZhouA M Non-Ferrous Progress:1996-2005 200731.Choi W C;Byun D;Lee J K Electrochemical characteristics of silver-and nickel-coated synthetic graphite preparedby a gas suspension spray coating method for the anode of lithium secondary batteries 2004(2)32.Lee H Y;Baek J K;Lee S M Effect of earbon coating on elevated temperature performance of graphite as lithium-ion battery anode material 2004(1)33.Tanaka H;Osawa T;Moriyoshi Y Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma 2004(1)34.Guoping W;Bolan Z;Min Y A modified graphite anode with high initial efficiency and excellent cycle life expectation 2005(9)35.Lee J H;Lee S;Paik U Aqueous processing of natural graphite particulates for lithium-ion battery anodes andtheir electrochemical performance 2005(1)36.Yamauchi Y;Hino T;Ohzeki K Gas desorption behavior of graphite anodes used for lithium ion secondary batteries 2005(6)37.Zhao X;Hayner C M;Kung M C In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries 2011(6)38.王广驹世界石墨生产,消费及国际贸易 2006(1)39.Jonker G H Magnetic compounds with perovskite structure Ⅳ conducting and non-conducting compounds 195640.Murphy D;Cava R;Zahurak S Ternary LixTiO2 phases from insertion reactions 198341.Ferg E;Gummow R;De K A Spinel anodes for lithium-ion batteries 1994(11)42.Robertson A;Trevino L;Tukamoto H New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries 199943.Peramunage D;Abraham K Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells 1998(8)44.Julien C;Massot M;Zaghib K Structural studies of Li4/3Me5/3O4 (Me=Ti,Mn) electrode materials:Local structure and electrochemical aspects 2004(1)45.Scharner S;Weppner W;Schmid B E Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel 1999(3)46.Zaghib K;Simoneau M;Armand M Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries 199947.Pecharroman C;Amarilla J Thermal evolution of infrared vibrational properties of Li4/3Ti5/3O4 measured by specular reflectance 2000(18)48.Guerfi A;Charest P;Kinoshita K Nano electronically conductive titanium-spinel as lithium ion storage negative electrode 2004(1)49.Gao L;Qiu W;Zhao H L Lithiated titanium complex oxide as negative electrode 2005(1)50.Bach S;Pereira R J;Baffier N Electrochemical properties of sol-gel Li4/3Ti5/3O4 199951.Kavan L;Grtzel M Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion 2002(2)52.Hao Y;Lai Q Y;Liu D Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery 2005(2-3)53.王虹微波法制备钛酸锂的方法 200854.白莹一种用于锂二次电池负极材料尖晶石钛酸锂的制各方法 200655.Li J;Tang Z;Zhang Z Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 2005(9)56.杨立一种应用于锂离子电池的钛酸锂负极材料的制备方法中国 200857.Huang S;Wen Z;Zhu X Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries 2007(1)58.Tian B;Xiang H;Zhang L Niobium doped lithium titanate as a high rate anode material for Li-ion batteries2010(19)59.Huang Y;Qi Y;Jia D Synthesis and electrochemical properties of spinel Li4Ti5Ol2-xClx anode materials forlithium-ion batteries 2012(5)60.Venkateswarlu M;Chen C;Do J Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy 2005(1)61.Cai R;Yu X;Liu X Li4Ti5O12/Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance 2010(24)62.Yuan T;Yu X;Cai R Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance 2010(15)63.Hu X;Lin Z;Yang K Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction 2011(14)64.Martha S K;Haik O;Borgel V Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application 2011(7)65.Huang K L;Wang Z X;Liu S Q Lithium-Ion Battery Technology and Key Principles 200866.Xu K;Wang X Y;Xiao L X Lithium Ion Battery 200267.Wang Q;Li H;Chen L Novel spherical microporous carbon as anode material for Li-ion batteries 200268.Li H;Wang Q;Shi L Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for aLi ion battery 2002(1)69.Hu J;Li H;Huang X Influence of micropore structure on Li-storage capacity in hard carbon spherules 2005(11)70.Fey G T K;Chen C L High-capacity carbons for lithium-ion batteries prepared from rice husk 200171.Yin G P;Zhou D R;Xia B J Preparation of phosphorus-doped carbon and its performance Lithium intercalation2000(4)72.Schnfelder H H;Kitoh K;Nemoto H Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons 1997(2)73.Buiel E;Dahn J Li-insertion in hard carbon anode materials for Li-ionbatteries 1999(1)74.Rosamaria F;Ulrich V S;Dahn J R Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells 1990(7)75.Stevens D;Dahn J The mechanisms of lithium and sodium insertion in carbon materials 2001(8)76.Bonino F;Brutti S;Piana M Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries 2006(17)77.Guo M;Wang J C;Wu L B Study of carbon nanofibers as negative materials for Li-ion batteries 2004(5)78.Sato Y;Kikuchi Y;Kawai T Characteristics of coke carbon modified with mesophase-pitch as a negative electrodefor lithium ion batteries 199979.Yoshio M;Tsumura T;Dimov N Electrochemical behaviors of silicon based anode material 2005(1)i S C Solid lithium-silicon electrode 197681.Sharma R A;Seefurth R N Thermodynamic properties of the lithium-silicon system 1976(12)82.Seefurth R N;Sharma R A Investigation of lithium utilization from a lithium-silicon electrode 1977(8)83.Seefurth R N;Sharma R A Dependence of lithium-silicon electrode potential and lithium utilization on reference electrode location 1980(5)84.Wen C J;Huggins R A Chemical diffusion in intermediate phases in the lithium-silicon system 1981(3)85.Boukamp B A;Lesh G C;Huggins R A All-solid lithium electrodes with mixed-conductor matrix 1981(4)86.Weydanz W J;Wohlfahrt M M;Huggins R A A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries 199987.Gao B;Sinha S;Fleming L Alloy formation in nanostructured silicon 2001(11)88.Li H;Huang X J;Chen L Q A high capacity nano-Si composite anode material for lithium rechargeable batteries 1999(11)89.Li H;Huang X J;Chen L Q The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature 2000(1-4)90.Limthongkul P;Jang Y I;Dudney N J Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage 2003(4)91.Hatchard T D;Dahn J R In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon 2004(6)92.Key B;Bhattacharyya R;Grey C P Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries 2009(26)93.Key B;Morcrette M;Grey C P Pair distribution function analysis and solid State NMR studies of silicon electrodes for lithium ion batteries:Understanding the (De) lithiation mechanisms 2011(3)94.Beaulieu L Y;Hatchard T D;Bonakdarpour A Reaction of Li with alloy thin films studied by in situ AFM 2003(11)95.Baggetto L;Danilov D;Notten P H L Honeycomb-structured silicon:Remarkable morphological changes induced by electrochemical (De)lithiation 2011(13)96.Lee S W;Mcdowell M T;Choi J W Anomalous shape changes of silicon nanopillars by electrochemical lithiation2011(7)97.Lee S W;Mcdowell M T;Berla L A Fracture of crystalline silicon nanopillars during electrochemical lithium insertion 2012(11)98.He Y;Yu X Q;Wang Y H Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic effficiency 2011(42)99.He Y;Wang Y H;Yu X Q Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries2012(12)100.He Y;Yu X Q;Li G Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction 2012101.Wang Y;He Y;Xiao R Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries 2012102.Notten P H L;Roozeboom F;Niessen R A H3-D integrated all-solid-state rechargeable batteries 2007(24)103.Baggetto L;Oudenhoven J F M;Van D T On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries 2009(1)104.Chan C K;Ruffo R;Hong S S Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes 2009(2)105.Zheng J Y;Zheng H;Wang R An investigation on the sold electrolyte interphase of silicon anode for Li-ion batteries through force curve method 2013(6)106.Zhang X W;Patil P K;Wang C S Electrochemical performance of lithium ion battery,nano-silicon-based,disordered carbon composite anodes with different microstructures 2004(2)107.Chan C K;Ruffo R;Hong S S Structural and electrochemical study of the reaction of lithium with silicon nanowires 2009(1)108.Cui L F;Ruffo R;Chan C K Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes 2009(1)109.Mcdowell M T;Lee S W;Ryu I Novel size and surface oxide effects in silicon nanowires as lithium battery anodes 2011(9)110.Ryu I;Choi J W;Cui Y Size-dependent fracture of Si nanowire battery anodes 2011(9)111.Xu W L;Vegunta S S S;Flake J C Surface-modified silicon nanowire anodes for lithium-ion batteries 2011(20) 112.Yue L;Wang S Q;Zhao X Y Nano-silicon composites using poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode 2012(3)113.Zang J L;Zhao Y P Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery 2012(1)114.Yoshio M;Wang H Y;Fukuda K Carbon-coated Si as a lithium-ion battery anode material 2002(12)115.Qu J;Li H Q;henry J J Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries 2012116.Jia H P;Gao P F;Yang J Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material 2011(6)117.Yao Y;Mcdowell M T;Ryu I Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life 2011(7)118.Fu K;Yildiz O;Bhanushali H Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexiblelithium ion battery electrodes 2013(36)119.Min J H;Bae Y S;Kim J Y Self-organized artificial SEI for improving the cycling ability of silicon-basedbattery anode materials 2013(4)120.Choi N S;Yew K H;Lww K Y Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode 2006(2)121.Chakrapani V;Rusli F;Filler M A Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery 2011(44)122.Etacheri V;Haik O;Goffer Y Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes 2011(1)123.Buddie M C High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries 2012(58)124.Profatilova I A;Stock C;Schmitz A Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate 2013125.Leung K;Rempe S B;Foster M E Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries 2014(3)126.Kovalenko I;Zdyrko B;Magasinski A A major constituent of brown algae for use in high-capacity Li-ion batteries 2011(6052)127.Ryou M H;Kim J;Lee I Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries 2012(11)128.Li J;Lewis R;Dahn J Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries 2007(2)129.Bridel J S;Azais T;Morcrette M Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries 2009(3)130.Mazouzi D;Lestriez B;Roue L Silicon composite electrode with high capacity and long cycle life 2009(11)131.Guo J C;Wang C S A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery 2010(9)132.Liu W R;Yang M H;Wu H C Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder 2005(2)133.Park H K;Kong B S;Oh E S Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ionbatteries 2011(10)134.Magasinski A;Zdyrko B;Kovalenko I Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid 2010(11)135.Yun J B;Soo K J;Tae L K Aphoto-cross-linkable polymeric binder for silicon anodes in lithium ion batteries 2013(31)136.Han Z J;Yabuuchi N;Hashimoto S Cross-linked poly (acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries 2013(2)137.Koo B;Kim H;Cho Y A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries 2012(35)138.Bae J;Cha S H;Park J A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery 2013(7)139.Yim C H;Abu L Y;Courtel F M High capacity silicon/graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders 2013(28)140.Erk C;Brezesinski T;Sommer H Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders 2013(15)141.Kim J S;Choi W;Cho K Y Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries 2013142.Li J;Christensen L;Obrovac M Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder 2008(3)143.Kim Y L;Sun Y K;Lee S M Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology 2008(13)144.Guo J C;Sun A;Wang C S A porous silicon-carbon anode with high overall capacity on carbon fiber current collector 2010(7)145.Choi J Y;Lee D J;Lee Y M Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes 2013(17)146.Hang T;Nara H;Yokoshima T Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries 2013147.Luais E;Sakai J;Desploban S Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector 2013148.Tang X X;Liu W;Ye B Y Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode 2013(6)149.Kim H;Han B;Choo J Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries 2008(52)150.Bang B M;Kim H;Song H K Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching 2011(12)151.Kasavajjula U;Wang C;Appleby A J Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells 2007(2)152.Magasinski A;Dixon P;Hertzberg B High-performance lithium-ion anodes using a hierarchical bottom-up approach 2010(4)153.Liu G;Xun S;Vukmirovic N Polymers with tailored electronic structure for high capacity lithium battery electrodes 2011(40)154.Chan C K;Peng H;Liu G High-performance lithium battery anodes using silicon nanowires 2007(1)155.Idota Y;Kubota T;Matsufiti A Tin-based amorphous oxide:A high-capacity lithium-ion-storage material 1997(5317)156.Courtney I A;Dahn J Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass 1997(9)157.Li H;Huang X J;Chen L Q Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries 1998(6)158.Liu W;Huang X J;Wang Z Studies of stannic oxide as an anode material for lithium-ion batteries 1998(1)159.Li H;Wang Z;Chen L Research on advanced materials for Li-ion batteries 2009(45)160.David M New materials extend Li-ion performance 2006(5)161.Ogisu K R&D activities & results for sony batteries 2005162.索尼公司索尼成功开发3.5 A·h高容量锂离子电池"Nexelion" 2011163.Dahn J;Mar R;Abouzeid A Combinatorial study of Sn1-xCox (0《x《 0.6) and (Sn0 55Co0 45)1-yCy (0《 y《 0 5)alloy negative electrode materials for Li-ion battaries 2006(2)164.Todd A;Mar R;Dahn J Tin-transition metal-carbon systems for lithium-ion battery negative electrodes 2007(6) 165.Ferguson P;Martine M;Dunlap R Structural and electrochemical studies of (SnxCo1-x)60C40 alloys prepared by mechanical attriting 2009(19)166.Ferguson P;Rajora M;Dunlap R(Sn0.5Co0 5)1-yCy alloy negative electrode materials prepared by mechanical attriting 2009(3)167.Ferguson P;ToddA;Dahn J Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries 2008(1)168.Hassoun J;Mulas G;Panero S Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling 2007(8)vela P;Nacimiento F;Ortiz G F Sn-Co-C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries 2010(1)170.Liu B;Abouimrane A;Ren Y New anode material based on SiO-SnxCoyCz for lithium batteries 2012(24)171.Zhong X C;Jiang F Q;Xin P A Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries 2009(1)172.Yang S;Li Q;Shen D Influence of Fe on electrochemical performance of SnxCoy/C anode materials 2011(2)173.Shaobin Y;Ding S;Qiang L Synthesis and electrochemical properties of Sno.35-0 5xCoo 35-0 5xZnxCo 3o composite 2010(1)174.YangSB;ShenD;WuXG Effects of Cu on structures and electrochemical properties of Sn-Co/C composite 2012(4)175.Cui W;Wang F;Wang J Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries 2011(13)176.Li M Y;Liu C L;Shi M R Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance 2011(8)177.Xin L;Jing Y X;Hai L Z Synthesis and properties of Sn30Co30C40 ternary alloy anode material for lithium ion battery 2013(7)178.Lee S I;Yoon S;Park C M Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anodefor Li-ion batteries 2008(2)179.Fauteux D;Koksbang R Rechargeable lithium battery anodes:Alternatives to metallic lithium 1993(1)180.Rahner D;Machill S;Schlorb H Intercalation materials for lithium rechargeable batteries 1996181.Besenhard J;Hess M;Komenda P Dimensionally stable Li-alloy electrodes for secondary batteries 1990182.Maxfield M;Jow T;Gould S Composite electrodes containing conducting polymers and Li alloys 1988(2)183.Winter M;Besenhard J O Electrochemical lithiation of tin and tin-based intermetallics and composites 1999(1) 184.Du C W;Chen Y B;Wu M S Advances in lithium-ion battery anode materials for non-carbon 2000185.Wu Y P;Wan C R Study on materials for lithium-ion batteries tin-based negative 1999(3)186.Kepler K D;Vaughey J T;Thackeray M M LixCu6Sn5(0《x《13):An intermetallic insertion electrode for rechargeable lithium batteries 1999(7)187.Mao O;Dunlap R;Dahn J Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries:Ⅰ.TheSn2Fe-C system 1999(2)rcher D;Beaulieu L;Macneil D In situ X-ray study of the electrochemical reaction of Li with η'-Cu6Sn52000(5)189.Li H;Zhu G;Huang X Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloyprepared by co-precipitation in alcohol solution at low temperature 2000(3)190.Kim H;Kim Y J;Kim D Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries 2001(1)191.Wang L;Kitamura S;Sonoda T Electroplated Sn-Zn alloy electrode for Li secondary batteries 2003(10)192.Yin J;Wada M;Yoshida S New Ag-Sn alloy anode materials for lithium-ion batteries 2003(8)193.Tamura N;Fujimoto M;Kamino M Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries2004(12)194.Wang L;Kitamura S;Obata K Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries 2005(2)195.Beauleiu L;Hewitt K;Turner R The electrochemical reaction of Li with amorphous Si-Sn alloys 2003(2)196.Besenhard J;Yang J;Winter M Will advanced lithium-alloy anodes have a chance in lithium-ion batteries 1997(1) 197.Yang J;Winter M;Besenhard J Small particle size multiphase Li-alloy anodes for lithium-ionbatteries 1996(1) 198.Mukaibo H;Sumi T;Yokoshima T Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries 2003(10)199.Photo F Nonaqueous secondary battery 1995200.Photo F Nonaqueous secondary battery 1995201.Goodenough J;Manthiram A;James A Lithium insertion compounds 1988202.Aydinol M;Kohan A;Ceder G Abinitio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries 1997(2)203.三星SDI株式会社用于非水电解液电池的负极活性材料,其制备方法和非水电解液电池 2005204.Song J H;Park H J;Kim K J Electrochemical characteristics of lithium vanadate,Li1+xVO2,new anode materials for lithium ion batteries 2010(18)205.Chang J J Synthesis and electrochemical:Properties of lithium-ion battery anode material Li1+xVO2 2012206.Armstrong A R;Lyness C;Panchmatia P M The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 2011(3)207.Chen H;Xiang K X;Hu Z L Synthesis and electrochemical performance of new anode materials Li1.1V0 9O2 forlithium ion batteries 2012(5)208.Choi N S;Kim J S;Yin R Z Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery 2009(2)zzari M;Scrosati B A cyclable lithium organic electrolyte cell based on two intercalation electrodes 1980(3) 210.Dipietro B;Patriarco M;Scrosati B On the use of rocking chair configurations for cyelabte lithium organic electrolyte batteries 1982(2)211.Ktakata H O;Meri T;Koshita N Procedures of the symposium onprimary and secondary lithium batteries 1988212.Poizot P;Laurelle S;Grugeon S Nano-sized ttansition-metal oxides as negative-electrode materials for lithium-ion batteries 2000(6803)213.Debart A;Dupont L;Poizot P A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium 2001(11)214.Dedryvere R;Laruelle S;Grugeon S Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium 2004(6)215.Xin C;Naiqing Z;Kening S3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries 2011(10)216.Li H;Richter G;Maier J Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries 2003(9)217.Badway F;Mansour A;Pereira N Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices 2007(17)218.Dbart A;Dupont L;Patrice R Reactivity of transition metal (Co,Ni,Cu) sulphides versus lithium:The intriguing case of the copper sulphide 2006(6)219.Gillot F;Boyanov S;Dupont L Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries 2005(25)220.Pereira N;Dupont L;Tarascon J Electrochemistry of Cu3N with lithium a complex system with parallel processes 2003(9)221.Zhang W M;Wu X L;Hu J S Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries 2008(24)222.Rahman M;Chou S L;Zhong C Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention 2010(40)223.Wang Y;Zhang H J;Lu L Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites 2010(8)224.Zhou G;Wang D W;Li F Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclicstability for lithium ion batteries 2010(18)225.Wang Y;Zhang L Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance 2012226.Zhang P;Guo Z;Kang S Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure forlithium-ion batteries 2009(1)227.Zhu X J;Guo Z P;Zhang P Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries 2009(44)228.Wang C;Wang D;Wang Q Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery 2010(21)229.Xia Y;Zhang W;Xiao Z Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries 2012(18)230.Yu Y;Chen C H;Shi Y A tin-based amorphous oxide composite with a porous,spherical,multideck-cage morphology as a highly reversible anode material for lithium-ion batteries 2007(7)231.Li F;Zou Q Q;Xia Y Y Co-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery 2008(2)232.Wu Z S;Ren W;Wen L Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance 2010(6)引用本文格式:罗飞.褚赓.黄杰.孙洋.李泓.LUO Fei.CHU Geng.HUANG Jie.SUN Yang.LI Hong锂离子电池基础科学问题(Ⅷ)——负。

materials characterization 分区

materials characterization 分区

materials characterization 分区Materials characterization can be broadly divided into several categories based on the techniques used:1. Structural Characterization: This involves studying the atomic or molecular arrangement of a material. Techniques include X-ray diffraction, electron diffraction, and neutron scattering.2. Chemical Characterization: This involves determining the chemical composition of a material. Techniques include elemental analysis (e.g., X-ray fluorescence), spectroscopy (e.g., infrared spectroscopy), and chromatography.3. Morphological Characterization: This involves studying the shape, size, and distribution of particles or features within a material. Techniques include microscopy (e.g., electron microscopy, atomic force microscopy), particle size analysis, and surface analysis (e.g., scanning probe microscopy).4. Mechanical Characterization: This involves studying the mechanical properties of a material, such as its strength, elasticity, and hardness. Techniques include tensile testing, hardness testing, and impact testing.5. Thermal Characterization: This involves studying the thermal behavior of a material, such as its melting point, thermal conductivity, and thermal expansion. Techniques include differential scanning calorimetry, thermogravimetric analysis, and thermal conductivity measurement.6. Electrical Characterization: This involves studying the electrical properties of a material, such as its conductivity, resistivity, and dielectric constant. Techniques include electrical conductivity measurement, impedance spectroscopy, and dielectric spectroscopy.7. Magnetic Characterization: This involves studying the magnetic properties of a material, such as its magnetization, magnetic susceptibility, and coercivity. Techniques include magnetic susceptibility measurement, magnetometry, and Mössbauer spectroscopy.These are just some of the main categories of materials characterization, and there can be overlap between different techniques and methods depending on the specific material and property of interest.。

JESD15_THERMAL MODELING OVERVIEW

JESD15_THERMAL MODELING OVERVIEW

JEDECSTANDARDThermal Modeling Overview JESD15OCTOBER 2008JEDEC SOLID STATE TECHNOLOGY ASSOCIATIONNOTICEJEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approvedby the JEDEC legal counsel.JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is tobe used either domestically or internationally.JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adoptingthe JEDEC standards or publications.The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.No claims to be in conformance with this standard may be made unless all requirements stated inthe standard are met.Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or call (703) 907-7559 orPublished by©JEDEC Solid State Technology Association 20083103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107This document may be downloaded free of charge; however JEDEC retains thecopyright on this material. By downloading this file the individual agrees not tocharge for or resell the resulting material.PRICE: Please refer to the currentCatalog of JEDEC Engineering Standards and Publications online at/Catalog/catalog.cfmPrinted in the U.S.A.All rights reservedPLEASE!DON’T VIOLATETHELAW!This document is copyrighted by JEDEC and may not bereproduced without permission.Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:JEDEC Solid State Technology Association3103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107or call (703) 907-7559JEDEC Standard No. 15 METHODOLOGY FOR THE THERMAL MODELING OF COMPONENT PACKAGES IntroductionIn recent years, the role of thermal modeling in the thermal characterization of component packages has greatly increased in importance. Unlike thermal tests, in which the basic practices have achieved a certain level of maturity, thermal modeling methods and software are undergoing rapid advancement.Hence this document and the associated series of documents are intended to promote the continued development of modeling methods, while providing a coherent framework for their use by defining a common vocabulary to discuss modeling, creating requirements for what information should be included in a thermal modeling report, and specifying modeling procedures, where appropriate, and validation methods.This document provides an overview of the methodology necessary for performing meaningful thermal simulations for packages containing semiconductor devices. The actual methodology components are contained in separate detailed documents.JEDEC Standard No. 15JEDEC Standard No. 15Page 1 METHODOLOGY FOR THE THERMAL MODELING OF COMPONENT PACKAGES (From JEDEC Board Ballot JCB-08-27, formulated under the cognizance of the JC-15.1 Committee on Thermal Characterization.)1 ScopeThe modeling methodology described herein is distributed among several documents so that the appropriate combination of documents can be selected to meet specific thermal simulation requirements. This document provides the OVERVIEW. The rest of the documents are grouped as shown below:Figure 1— Diagram indicating modular structure of component modeling documents Because modeling methodologies and validation methods will change as technology changes, additional documents will be added to these groups as the needs arise and standards established. As appropriate, each of these documents will contain terminology and symbolic definitions specific to the material covered by the individual document.JEDEC Standard No. 15Page 2References2 Normative1.JESD51, Methodology for the Thermal Measurement of Component Packages (SingleSemiconductor Device), Dec. 1995.2. JESD51-12, Guidelines for Reporting and Using Electronic Package Thermal Information,May 2005.3 RationaleThe junction temperature of a semiconductor device greatly influences the performance, reliability, and cost of the device. In recent years, thermal modeling has assumed increased importance in characterizing individual components and predicting their junction temperature in both standard test and application environments.This document and the subsequent documents it calls on, provide a consistent framework for reporting thermal model results and the modeling and validation methods used. In particular cases documents provide guidance in the use of particular modeling methods.The data can be used for package design evaluation, device (i.e., chip/package combination) characterization, reliability predictions, system-level thermal analyses, etc.4 PurposeThe output of a model is typically a junction temperature. However, it is common to extract temperatures and fluxes from many locations in a model.If the situation being modeled consists of a component in a simulated JEDEC test environment, it is possible to extract thermal resistances and thermal characterization parameters1,2.Presentation5 ResultsThe results of a model are not meaningful unless all the pertinent assumptions are provided along with them. The reporting requirements will depend upon the type of modeling methodology. The reporting requirements are presented in the documents in category Modeling Process. Furthermore, the accuracy of a model should be demonstrated by using the appropriate Validation Process and Method. These documents will indicate the reporting requirements related to these procedures.Standard Improvement Form JEDEC JESD15The purpose of this form is to provide the Technical Committees of JEDEC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to JEDEC. All comments will be collected and dispersed to the appropriate committee(s).If you can provide input, please complete this form and return to:Fax: 703.907.7583JEDECAttn: Publications Department3103 North 10th StreetSuite 240 SouthArlington, VA 22201-21071. I recommend changes to the following:Requirement, clause numberTest method number Clause numberThe referenced clause number has proven to be:Unclear Too Rigid In ErrorOther2. Recommendations for correction:3. Other suggestions for document improvement:Submitted byName: Phone:Company: E-mail:Address:City/State/Zip: Date:。

(2021年整理)材料专业常用术语英语单词表

(2021年整理)材料专业常用术语英语单词表

材料专业常用术语英语单词表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(材料专业常用术语英语单词表)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为材料专业常用术语英语单词表的全部内容。

Unit 1property (材料的)性质heat treatment 热处理metal 金属glass 玻璃plastics 塑料fiber 纤维electronic devices 电子器件component 组元,组分semiconducting materials 半导体材料materials science and engineering 材料科学与工程materials science 材料科学materials engineering 材料工程materials scientist 材料科学家materials engineer 材料工程师synthesize 合成synthesissubatomic structure 亚原子结构electron 电子atom 原子nuclei 原子核nucleusmolecule 分子microscopic 微观的microscope 显微镜naked eye 裸眼macroscopic 宏观的specimen 试样deformation 变形polished 抛光的reflect 反射magnitude 量级solid materials 固体材料mechanical properties 力学性质force 力elastic modulus 弹性模量strength 强度electrical properties 电学性质electrical conductivity 导电性dielectric constant 介电常数electric field 电场thermal behavior 热学行为heat capacity 热容thermal conductivity 热传导(导热性)magnetic properties 磁学性质magnetic field 磁场optical properties 光学性质electromagnetic radiation 电磁辐射light radiation 光辐射index of refraction 折射率reflectivity 反射率deteriorative characteristics 劣化特性processing 加工performance 性能linear 线性的integrated circuit chip 集成电路芯片strength 强度ductility 延展性deterioration 恶化,劣化mechanical strength 机械强度elevated temperature 高温corrosive 腐蚀性的fabrication 制造Unit 2chemical makeup 化学组成atomic structure 原子结构advanced materials 先进材料high-technology 高技术smart materials 智能材料nanoengineered materials 纳米工程材料metallic materials 金属材料nonlocalized electrons 游离电子conductor 导体electricity 电heat 热transparent 透明的visible light 可见光polished 抛光的surface 表面lustrous 有光泽的aluminum 铝silicon 硅alumina 氧化铝silica 二氧化硅oxide 氧化物carbide 碳化物nitride 氮化物dioxide 二氧化物clay minerals 黏土矿物porcelain 瓷器cement 水泥mechanical behavior 力学行为ceramic materials 陶瓷材料stiffness 劲度strength 强度hard 坚硬brittle 脆的fracture 破裂insulative 绝缘的resistant 耐……的resistance 耐力,阻力,电阻molecular structures 分子结构chain-like 链状backbone 骨架carbon atoms 碳原子low densities 低密度mechanical characteristics 力学特性inert 隋性synthetic (人工)合成的fiberglass 玻璃纤维polymeric 聚合物的epoxy 环氧树脂polyester 聚酯纤维carbon fiber—reinforced polymer composite 碳纤维增强聚合物复合材料glass fiber-reinforced materials 玻璃纤维增强材料high-strength, low-density structural materials 高强度低密度结构材料solar cell 太阳能电池hydrogen fuel cell 氢燃料电池catalyst 催化剂nonrenewable resource 不可再生资源Unit 3periodic table (元素)周期表atomic structure 原子结构magnetic 磁学的optical 光学的microstructure 微观结构macrostructure 宏观结构positively charged nucleus 带正电的原子核atomic number 原子序数proton 质子atomic weight 原子量neutron 中子negatively charged electrons 带负电的电子shell 壳层magnesium 镁chemical bonds 化学键partially-filled electron shells 未满电子壳层bond 成键metallic bond 金属键nonmetal atoms 非金属原子covalent bond 共价键ionic bond 离子键Unit 4physical properties 物理性质chemical properties 化学性质flammability 易燃性corrosion 腐蚀oxidation 氧化oxidation resistance 抗氧化性vapor (vapour)蒸汽,蒸气,汽melt 熔化solidify 凝固vaporize 汽化,蒸发condense 凝聚sublime 升华state 态plasma 等离子体phase transformation temperatures 相变温度density 密度specific gravity 比重thermal conductivity 热导linear coefficient of thermal expansion 线性热膨胀系数electrical conductivity and resistivity 电导和电阻corrosion resistance 抗腐蚀性magnetic permeability 磁导率phase transformations 相变phase transitions 相变crystal forms 晶型melting point 熔点boiling point 沸腾点vapor pressure 蒸气压atm 大气压glass transition temperature 玻璃化转变温度mass 质量volume 体积per unit of volume 每单位体积the acceleration of gravity 重力加速度temperature dependent 随温度而变的,与温度有关的grams/cubic centimeter 克每立方厘米kilograms/cubic meter 千克每立方米grams/milliliter 克每毫升grams/liter 克每升pounds per cubic inch 磅每立方英寸pounds per cubic foot 磅每立方英尺alcohol 酒精benzene 苯magnetize 磁化magnetic induction 磁感应强度magnetic field intensity 磁场强度constant 常数vacuum 真空magnetic flux density 磁通密度diamagnetic 反磁性的factor 因数paramagnetic 顺磁性的ferromagnetic 铁磁性的non-ferrous metals 非铁金属,有色金属brass 黄铜ferrous 含铁的ferrous metals 含铁金属,黑色金属relative permeability 相对磁导率transformer 变压器,变换器eddy current probe 涡流探针Unit 5hardness 硬度impact resistance 耐冲击性fracture toughness 断裂韧度,断裂韧性structural materials 结构材料anisotropic 各向异性orientation 取向texture 织构fiber reinforcement 纤维增强longitudinal 纵向transverse direction 横向short transverse direction 短横向a function of temperature 温度的函数,温度条件room temperature 室温elongation 伸长率tension 张力,拉力compression 压缩bending 弯曲shear 剪切torsion 扭转static loading 静负荷dynamic loading 动态载荷cyclic loading 循环载荷,周期载荷cross-sectional area 横截面stress 应力stress distribution 应力分布strain 应变engineering strain 工程应变perpendicular 垂直normal axis 垂直轴elastic deformation 弹性形变plastic deformation 塑性形变quality control 质量控制nondestructive tests 无损检测tensile property 抗张性能,拉伸性能Unit 6lattice 晶格positive ions 正离子a cloud of delocalized electrons 离域电子云ionization 电离,离子化metalloid 准金属,类金属nonmetal 非金属diagonal line 对角线polonium 钋semi—metal 半金属lower left 左下方upper right 右上方conduction band 导带valence band 价带electronic structure 电子结构synthetic materials (人工)合成材料oxygen 氧oxide 氧化物rust 生锈potassium 钾alkali metals 碱金属alkaline earth metals 碱土金属volatile 活泼的transition metals 过渡金属oxidize 氧化barrier layer 阻挡层basic 碱性的acidic 酸性的electrochemical series 电化序electrochemical cell 电化电池cleave 解理,劈开elemental 元素的,单质的metallic form 金属形态tightly-packed crystal lattice 密排晶格,密堆积晶格atomic radius 原子半径nuclear charge 核电荷number of bonding orbitals 成键轨道数overlap of orbital energies 轨道能重叠crystal form 晶型planes of atoms 原子面a gas of nearly free electrons 近自由电子气free electron model 自由电子模型an electron gas 电子气band structure 能带结构binding energy 键能positive potential 正势periodic potential 周期性势能band gap 能隙Brillouin zone 布里渊区nearly-free electron model 近自由电子模型solid solution 固溶体pure metals 纯金属duralumin 硬铝,杜拉铝Unit 9purification 提纯,净化raw materials 原材料discrete 离散的,分散的iodine 碘long—chain 长链alkane 烷烃,链烃oxide 氧化物nitride 氮化物carbide 碳化物diamond 金刚石graphite 石墨inorganic 无机的mixed ionic—covalent bonding 离子-共价混合键constituent atoms 组成原子conduction mechanism 传导机制phonon 声子photon 光子sapphire 蓝宝石visible light 可见光computer-assisted process control 计算机辅助过程控制solid—oxide fuel cell 固体氧化物燃料电池spark plug insulator 火花塞绝缘材料capacitor 电容electrode 电极electrolyte 电解质electron microscope 电子显微镜surface analytical methods 表面分析方法Unit 12macromolecule 高分子repeating structural units 重复结构单元covalent bond 共价键polymer chemistry 高分子化学polymer physics 高分子物理polymer science 高分子科学molecular structure 分子结构molecular weights 分子量long chains 长链chain—like structure 链状结构monomer 单体plastics 塑料rubbers 橡胶thermoplastic 热塑性thermoset 热固性vulcanized rubbers 硫化橡胶thermoplastic elastomer 热塑弹性体natural rubbers 天然橡胶synthetic rubbers 合成橡胶thermoplastic 热塑性thermoset 热固性resin 树脂polyethylene 聚乙烯polypropylene 聚丙烯polystyrene 聚苯乙烯polyvinyl—chloride 聚氯乙烯polyvinyl 聚乙烯的chloride 氯化物polyester 聚酯polyurethane 聚氨酯polycarbonate 聚碳酸酯nylon 尼龙acrylics 丙烯酸树脂acrylonitrile-butadiene—styrene ABS树脂polymerization 聚合(作用)condensation polymerization 缩聚addition polymerization 加聚homopolymer 均聚物copolymer 共聚物chemical modification 化学改性terminology 术语nomenclature 命名法chemist 化学家the Noble Prize in Chemistry 诺贝尔化学奖catalyst 催化剂atomic force microscope 原子力显微镜(AFM) Unit 15composite 复合材料multiphase 多相bulk phase 体相matrix 基体matrix material 基质材料reinforcement 增强体reinforcing phase 增强相reinforcing material 加强材料metal—matrix composite 金属基复合材料ceramic—matrix composite 陶瓷基复合材料resin—matrix composite 树脂基复合材料strengthening mechanism 增强机理dispersion strengthened composite 弥散强化复合材料particle reinforced composites 颗粒增强复合材料fiber—reinforced composites 纤维增强复合材料Unit 18nanotechnology 纳米技术nanostructured materials 纳米结构材料nanometer 纳米nanoscale 纳米尺度nanoparticle 纳米颗粒nanotube 纳米管nanowire 纳米线nanorod 纳米棒nanoonion 纳米葱nanobulb 纳米泡fullerene 富勒烯size parameters 尺寸参数size effect 尺寸效应critical length 临界长度mesoscopic 介观的quantum mechanics 量子力学quantum effects 量子效应surface area per unit mass 单位质量的表面积surface physics and chemistry 表面物理化学substrate 衬底,基底graphene 石墨烯chemical analysis 化学分析chemical composition 化学成分analytical techniques 分析技术scanning tunneling microscope 扫描隧道显微镜spatial resolution 空间分辨率de Brogile wavelength 德布罗意波长mean free path of electrons (电子)平均自由程quantum dot 量子点band gap 带隙continuous density of states 连续态密度discrete energy level 离散能级absorption 吸收infrared 红外ultraviolet 紫外visible 可见quantum confinement (effect) 量子限域效应quantum well 量子势阱optoelectronic device 光电子器件energy spectrum 能谱electron mean free path 电子平均自由程spin relaxation length 自旋弛豫长度Unit 21biomaterial 生物材料implant materials 植入材料biocompatibility 生物相容性in vivo 在活体内in vitro 在活体外organ transplant 器管移植calcium phosphate 磷酸钙hydroxyapatite 羟基磷灰石research and development 研发 R&D Preparation & Characterizationprocessing techniques 加工技术casting 铸造rolling 轧制,压延welding 焊接ion implantation 离子注入thin—film deposition 薄膜沉积crystal growth 晶体生长sintering 烧结glassblowing 玻璃吹制analytical techniques 分析技术characterization techniques 表征技术electron microscopy 电子显微术X—ray diffraction X射线衍射calorimetry 量热法Rutherford backscattering 卢瑟福背散射neutron diffraction 中子衍射nuclear microscopy 核子微探针。

Ti60_合金热变形行为与应变补偿型本构模型

Ti60_合金热变形行为与应变补偿型本构模型

第16卷 第2期 精 密 成 形 工 程2024年2月JOURNAL OF NETSHAPE FORMING ENGINEERING87收稿日期:2023-09-24 Received :2023-09-24引文格式:叶玉刚, 信灿尧. Ti60合金热变形行为与应变补偿型本构模型[J]. 精密成形工程, 2024, 16(2): 87-95.YE Yugang, XIN Canyao. Deformation Behavior and Constitutive Model by Using Strain Compensation of Ti60 Alloy at Ele-vated Temperature[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 87-95. *通信作者(Corresponding author ) Ti60合金热变形行为与应变补偿型本构模型叶玉刚1,信灿尧2*(1.山西工程技术学院 机械工程系,山西 阳泉 045000;2.中北大学 材料科学与工程学院,太原 030051)摘要:目的 确定Ti60合金在高温下的应变行为,促进材料性能的优化和工程应用的发展。

方法 在变形温度为900、950、990、1 020、1 050 ℃,应变速率为0.001、0.01、0.1、1、5 s −1,最大变形量为60%条件下,利用Gleeble-3800热模拟实验机对Ti60试样进行不同应变速率的热压缩实验。

结果 Ti60合金的高温流变应力-应变规律如下:当温度一定时,随着应变速率的升高,峰值应力上升,当温度和应变速率一定时,随着应变的升高,应力表现为先上升后下降的趋势,而在1 020 ℃、0.01 s −1条件下,表现反常,这可能与第二相的动态析出有关。

不同真应变下的变形激活能Q =838.996 201 9 kJ/mol ,相应的本构方程相关系数n =2.889 582,α=0.013 182 009,A =1.335 7×1033,建立了Ti60合金热变形Arrhenius 本构关系模型3838.99610exp 8.314Z T ε⎛⎫⨯== ⎪⎝⎭2.889582332p 1.335710sinh(1.318210)σ-⎡⎤⨯⨯⎣⎦,用于预测和优化Ti60合金在高温条件下的峰值应力。

复合材料的热性能表征

复合材料的热性能表征

复合材料的热性能表征(characterization of the rmalproperties of composites)复合材料在加热或温度变化时,所表现的物理性能,如线膨胀系数、热导率等。

线膨胀系数大多数物质都有热胀冷缩现象,复合材料的热膨胀主要取决于增强体和基质的线膨胀系数及其体积百分比。

线膨胀系数定义为温度升高1℃材料的相对伸长。

其测试方法是将一定尺寸的标准试样置于膨胀仪中升温,记录试样的长度变化△L——温度曲线,平均线膨胀系数α为:式中L0为试样室温时的长度,mm;K为测量装置的放大倍数,△T=T2-T1为温度差,℃;α石英为对应于(T2-T1)石英的线膨胀系数,取0.51×10-6/℃;T1,T2为温度间隔的下限和上限。

精确测定复合材料的平均线膨胀系数对于确定复合材料制品成型前后的体积收缩比,保证制品尺寸,防止制品变形,减小内应力等都是很重要的一项物理参数。

在复合材料的铺层设计中需测定:αL:∥纤维方向的线膨胀系数;αT:⊥上纤维方向的线膨胀系数。

热导率热导率是表征物质热导能力的物理量,复合材料的热导率测定是将厚度为d的标准试样置于热导率测量仪的加热板上,达到稳定后,精确测定试样两侧的温差△t。

由加热板的功率W和面积S,可求出复合材料的热导率λ:式中W为主加热板在稳定时的功率,W;d为试样厚度,m;S为主加热板的计算面积,m2;△t为试样两侧的温差,℃。

实际测定时同时测:λL:∥纤维方向的热导率;λT:⊥上纤维方向的热导率。

平均比热容 1g物质温度升高1℃所吸收的热量称为比热容。

复合材料的平均比热容用铜块量热计混合法(即降落法)测定。

将标准试样在加热炉内恒温加热一定时间后降落到铜块量热计中,试样释放的热量被量热计完全吸收,测量试样和铜块量热计的温度变化值,即可求出试样的平均比热容。

式中H为量热计热值,J/℃;t0为落样时刻的量热计温度,℃;t0为量热计最高温度,℃;M为测验后试样质量,g;t为试样在保温期的温度,℃;tδ为量热计温度修正值,℃。

热动专业英语翻译第2章

热动专业英语翻译第2章

热能与动力工程教研室
Department of Thermal Energy & Power Engineering
Specialized English for Thermal Energy & Power Engineering
Utility boilers are used primarily to generate electricity in large central power stations. They are designed to optimise overall thermodynamic efficiency at the highest possible availability. A key characteristic of newer units is the use of a reheater section to increase overall cycle efficiency.
整体煤气化联合循环(IGCC):在CC基础上增加煤气化 以降低燃料费用并将污染排放降到最低。 增压循环流化床燃烧(PFBC):在更高压力下燃烧,包 括燃气净化,以及燃烧产物膨胀并通过燃气轮机做功。 高炉排烟热量回收:利用高炉余热产生蒸汽。 太阳能蒸汽发生器:利用集热器收集太阳辐射热产生蒸汽。
热能与动力工程教研室
热能与动力工程教研室
Department of Thermal Energy & Power Engineering
Specialized English for Thermal Energy & Power Engineering
现代蒸汽发生系统可根据不同的标准分类。这 些包括最终用途、燃烧方式、运行压力、燃料和循 环方式。大型中心电站的电站锅炉主要用来发电。 经过优化设计,使最大可能可用性时有最高的热效 率。新机组的关键特性是利用再热器提高整个循环 效率。

Advanced Materials Characterization

Advanced Materials Characterization

Advanced Materials CharacterizationAdvanced materials characterization is an essential aspect of modernscientific research and technological development. It involves the study and analysis of the physical, chemical, and mechanical properties of materials at the atomic, molecular, and macroscopic levels. This field plays a crucial role in various industries, including electronics, aerospace, automotive, and healthcare. In this discussion, we will explore the significance of advanced materials characterization, the techniques involved, and its impact on innovation and progress. First and foremost, advanced materials characterization is significant due to its role in enabling the development of new and improved materials with enhanced properties. By understanding the structure and behavior of materials at the microscopic and nanoscale levels, researchers and engineers can design and engineer materials with specific characteristics, such as increased strength, conductivity, or flexibility. This has profound implications for the advancement of various industries, leading to the creation of more efficient electronic devices, lightweight and durable structural materials, and innovative medical implants and devices. Furthermore, advanced materials characterization is crucial for quality control and assurance in manufacturing processes. By employing techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM), researchers and industrial practitioners can analyze the microstructure and composition of materials, identify defects or impurities, and ensure the consistency and reliability of the manufactured products. This not only contributes to the overall improvement of product performance and durability but also reduces the likelihood of failures or malfunctions in critical applications. In addition to its practical applications, advanced materials characterization also contributes to fundamental scientific research and the advancement of our understanding of the natural world. By investigating the properties and behavior of materials at the atomic and molecular levels, researchers can gain insights into fundamental physical and chemical phenomena, paving the way for new discoveries and innovations. This knowledge not only fuels technological advancements but also enriches our understanding of the underlying principles governing the behavior of matter. The field of advancedmaterials characterization encompasses a wide range of techniques and methodologies, each offering unique insights into the properties and behavior of materials. For instance, spectroscopic techniques such as Raman spectroscopy and infrared spectroscopy enable the analysis of molecular vibrations and chemical bonding in materials, providing valuable information about their composition and structure. On the other hand, imaging techniques like transmission electron microscopy (TEM) and atomic force microscopy (AFM) allow researchers to visualize and characterize materials at the nanoscale, offering unprecedented detail and resolution. Moreover, diffraction techniques such as X-ray diffraction (XRD) and neutron diffraction provide information about the crystal structure and phase composition of materials, aiding in the identification of crystalline phases and the determination of crystallographic parameters. Thermal analysis techniques, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), offer insights into the thermal stability, phase transitions, and decomposition behavior of materials, essential for understanding their thermal properties and behavior under varying conditions. In conclusion, advanced materials characterization plays a pivotal role in driving innovation, ensuring quality and reliability, and advancing our fundamental understanding of materials. By leveraging a diverse array of techniques and methodologies, researchers and engineers can gain profound insights into the properties and behavior of materials, leading to the development of new and improved materials with a wide range of applications. As technology continues to advance, the field of advanced materials characterization will undoubtedly remain a cornerstone of scientific and technological progress, shaping the future of various industries and contributing to the betterment of society as a whole.。

电致变发射率材料在红外隐身技术中的应用

电致变发射率材料在红外隐身技术中的应用

电致变发射率材料在红外隐身技术中的应用摘要目标的红外辐射特性主要受温度和发射率影响,因而调节目标发射率已成为红外隐身技术的重要手段。

电致变发射率器件具有发射率调节范围广、变发射率速率快、稳定性好等优点,在红外隐身技术领域具有巨大的应用潜力。

本文介绍了电致变发射率器件的应用机理,重点综述了WO 3、聚苯胺、聚噻吩及其衍生物三种电致变发射率材料的国内外研究进展,并总结了电致变发射率器件的实用化情况。

关键词电致变色可变发射率材料WO3 聚苯胺Applications of Electrochromic-based Variable Emissivity Materials in Infrared Stealth TechnologyInfrared radiation characteristics of the target are mainly controlled by emissivity and temperature, emissivity modulation has been applied as a significant method in infrared stealth technology. Electrochromic-based variable emissivity devices have presented broad potential in infrared stealth technology field due to their numerous advantages such as large emissivity modulation range, fast switching rate, and superior stability. In this paper, the applied mechanism of electrochromic-based variable emissivity device has been introduced, and the research progress of electrochromic-based variable emissivity materials, especially tungsten oxide, polyanilines and polythiophenes have been reviewed in detail. In the last part, the practical development of these devices has been concluded.Keywords: Electrochromism; Variable Emissivity Materials; Tungsten oxide; Polyaniline1引言近年来,随着红外探测技术的不断发展,红外隐身技术已成为地面和空中目标必不可少的隐身防护技术[1-3]。

粉末床激光选区熔化纳米增强相原位合金化磁热材料成形过程和机理的研究

粉末床激光选区熔化纳米增强相原位合金化磁热材料成形过程和机理的研究

粉末床激光选区熔化纳米增强相原位合金化磁热材料成形过程和机理的研究英文文档内容:Title: Research on the Forming Process and Mechanism of Powder Bed Laser Selective Melting Nanostructured Phase In-situ Alloying Magnetic Thermal MaterialsThe study focuses on the investigation of the powder bed laser selective melting process for nanostructured phase in-situ alloying magnetic thermal materials.This advanced manufacturing technique has gained significant attention in recent years due to its potential applications in various fields such as aerospace, defense, and energy.The research involves the analysis of the forming process, which includes the powder bed preparation, laser melting, and subsequent solidification.The effects of various process parameters such as laser power, scanning speed, and powder feed rate on the microstructure and properties of the fabricated materials are examined.Furthermore, the study aims to understand the mechanism behind the in-situ alloying and nanostructure formation during the laser melting process.The research employs advanced characterization techniques such as scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction to investigate the microstructure,composition, and phase transformation of the materials.The findings of this research contribute to the development of novel magnetic thermal materials with improved properties, such as enhanced thermal conductivity and magnetic performance.The understanding of the forming process and mechanism can also guide the optimization of the powder bed laser selective melting technique for the production of advanced materials with tailored properties.中文文档内容:标题:粉末床激光选区熔化纳米增强相原位合金化磁热材料成形过程和机理的研究本研究聚焦于粉末床激光选区熔化技术在纳米增强相原位合金化磁热材料制备过程中的应用。

磷酸铁锂电池火灾危险性分类

磷酸铁锂电池火灾危险性分类

磷酸铁锂电池火灾危险性分类董海斌, 张少禹, 李毅, 等. ncm811高比能锂离子电池热失控火灾特性[j]. 储能科学与技术, 2019, 8(s1): 65-70.[本文引用: 1]dong h b, zhang s y, li y, et al. thermal runaway fire characteristics of lithium ion batteries with high specific energy ncm811[j]. energy storage science and technology, 2019, 8(s1): 65-70.[本文引用: 1][2]forgez c, vinh d d, friedrich g, et al. thermal modeling of a cylindrical lifepo4/graphite lithium-ion battery[j]. journal of power sources, 2010, 195(9): 2961-2968.[3]huang p f, ping p, li k, et al. experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module withli4ti5o12 anode[j]. applied energy, 2016, 183: 659-673. [4]larsson f, mellander b e. abuse by external heating, overcharge and short circuiting of mercial lithium-ion battery cells[j]. journal of the electrochemical society, 2014, 161(10): a1611-a1617.[5]li d j, danilov d l, gao l, et al. degradation mechanisms of c6/lifepo4 batteries: experimental analyses of cycling-induced aging[j]. electrochimica acta, 2016, 210: 445-455.[本文引用: 1][6]feng x n, sun j, ouyang m g, et al. characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[j]. journal of power sources, 2015, 275: 261-273.[本文引用: 1][7]lamb j, orendorff c j, steele l a m, et al. failure propagation in multi-cell lithium ion batteries[j]. journal of power sources, 2015, 283: 517-523.[8]lopez c f, jeevarajan j a, mukherjee p p. experimental analysis of thermal runaway and propagation inlithium-ion battery modules[j]. journal of the electrochemical society, 2015, 162(9): a1905-a1915.[9]li h, duan q l, zhao c p, et al. experimental investigation on the thermal runaway and its propagation in the large format battery module withli(ni1/3co1/3mn1/3)o2 as cathode[j]. journal of hazardous materials, 2019, 375: 241-254.[本文引用: 2][10]刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[j]. 储能科学与技术, 2018, 7(6): 1105-1112.liu y j, duan q l, li k, et al. experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[j]. energy storage science and technology, 2018, 7(6): 1105-1112.[本文引用: 1][11]babrauskas v. pillow burning rates[j]. fire safety journal, 1985, 8(3): 199-200.[本文引用: 1][12]ribière p, grugeon s, morcrette m, et al. investigation on the fire-induced hazards of li-ion battery cells by fire calorimetry[j]. energy & environmental science, 2012, 5(1): 5271-5280.[本文引用: 2][13]ping p, wang q s, huang p f, et al. study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[j]. journal of power sources, 2015, 285: 80-89.[本文引用: 1][14]ping p, kong d p, zhang j q, et al. characterization of behaviour and hazards of fire and deflagration for high-energy li-ion cells by over-heating[j]. journal of power sources, 2018, 398: 55-66.[本文引用: 1][15]li h, chen h d, zhong g b, et al. experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[j]. journal of loss prevention in the process industries, 2019, 61: 122-129.[本文引用: 1][16]feng x n, sun j, ouyang m g, et al. characterization of large format lithium ion battery exposed to extremely high temperature[j]. journal of power sources, 2014, 272: 457-467.[本文引用: 1][17]larsson f, bertilsson s, furlani m, et al. gas explosions and thermal runaways during external heating abuse of mercial lithium-ion graphite-licoo2 cells at different levels of ageing[j]. journal of power sources, 2018, 373: 220-231.[本文引用: 1]1... 然而,由于自身的物理化学性质,当不正确使用时(热滥用、电滥用和机械滥用),磷酸铁锂电池会发生不可逆的热失控行为,存在较大的火灾危险性[1-5].在储能电站、变电站等实际运营场景中,往往将成百上千节的电池单体经过串并联后形成电池模组或者电池簇后集中使用.在该种情况下,一旦其中某节电池发生火灾,其释放的强热、燃烧等行为会造成周围电池温度上升,导致整个电池模组的热失控,甚至造成整个电池系统的火灾、爆炸事故[6-9].因此,在电化学储能以及变电系统等大规模应用场景中,研究锂离子电池热失控的火灾危险性并针对性开发相应的火灾抑制技术,对于电池系统的安全运行尤为重要. ...1... 然而,由于自身的物理化学性质,当不正确使用时(热滥用、电滥用和机械滥用),磷酸铁锂电池会发生不可逆的热失控行为,存在较大的火灾危险性[1-5].在储能电站、变电站等实际运营场景中,往往将成百上千节的电池单体经过串并联后形成电池模组或者电池簇后集中使用.在该种情况下,一旦其中某节电池发生火灾,其释放的强热、燃烧等行为会造成周围电池温度上升,导致整个电池模组的热失控,甚至造成整个电池系统的火灾、爆炸事故[6-9].因此,在电化学储能以及变电系统等大规模应用场景中,研究锂离子电池热失控的火灾危险性并针对性开发相应的火灾抑制技术,对于电池系统的安全运行尤为重要. ...1... 然而,由于自身的物理化学性质,当不正确使用时(热滥用、电滥用和机械滥用),磷酸铁锂电池会发生不可逆的热失控行为,存在较大的火灾危险性[1-5].在储能电站、变电站等实际运营场景中,往往将成百上千节的电池单体经过串并联后形成电池模组或者电池簇后集中使用.在该种情况下,一旦其中某节电池发生火灾,其释放的强热、燃烧等行为会造成周围电池温度上升,导致整个电池模组的热失控,甚至造成整个电池系统的火灾、爆炸事故[6-9].因此,在电化学储能以及变电系统等大规模应用场景中,研究锂离子电池热失控的火灾危险性并针对性开发相应的火灾抑制技术,对于电池系统的安全运行尤为重要. ...1... 然而,由于自身的物理化学性质,当不正确使用时(热滥用、电滥用和机械滥用),磷酸铁锂电池会发生不可逆的热失控行为,存在较大的火灾危险性[1-5].在储能电站、变电站等实际运营场景中,往往将成百上千节的电池单体经过串并联后形成电池模组或者电池簇后集中使用.在该种情况下,一旦其中某节电池发生火灾,其释放的强热、燃烧等行为会造成周围电池温度上升,导致整个电池模组的热失控,甚至造成整个电池系统的火灾、爆炸事故[6-9].因此,在电化学储能以及变电系统等大规模应用场景中,研究锂离子电池热失控的火灾危险性并针对性开发相应的火灾抑制技术,对于电池系统的安全运行尤为重要. ...2... 然而,由于自身的物理化学性质,当不正确使用时(热滥用、电滥用和机械滥用),磷酸铁锂电池会发生不可逆的热失控行为,存在较大的火灾危险性[1-5].在储能电站、变电站等实际运营场景中,往往将成百上千节的电池单体经过串并联后形成电池模组或者电池簇后集中使用.在该种情况下,一旦其中某节电池发生火灾,其释放的强热、燃烧等行为会造成周围电池温度上升,导致整个电池模组的热失控,甚至造成整个电池系统的火灾、爆炸事故[6-9].因此,在电化学储能以及变电系统等大规模应用场景中,研究锂离子电池热失控的火灾危险性并针对性开发相应的火灾抑制技术,对于电池系统的安全运行尤为重要. ...... 随着温度持续升高,电池内部热反应持续加快,100%与50% soc锂离子电池分别在2253 s和2611 s形成二次射流火,而对于0% soc的锂离子电池,因为电池内部能量较低,电池内部化学反应过程相对缓慢[9, 15],其燃烧行为明显缓和,在整个过程中并未出现多次射流火现象. ...1... 本文以228 a·h的磷酸铁锂为研究对象,通过自主搭建的锂离子电池火灾燃烧实验平台研究了目标电池的火灾危险性[10],并进一步分析了荷电状态对其火灾行为的影响规律,为锂离子电池的安全设计及火灾防控提供理论和技术支撑. ...1... 热释放速率是进行火灾危险性研究、分析样品火灾危险性的重要参数[11-13].其计算方式主要依据氧消耗原理,即通过精确测量燃烧过程中体系中的氧消耗量进而计算得到该过程的热释放速率[14],如式(1)所示. ...2... 如图7所示,相比于100% soc锂离子电池的剧烈燃烧,50%与0% soc锂离子电池的燃烧行为较为缓和.在本次实验中,50% soc锂离子电池的热释放速率曲线存在3个明显的峰值,这与实验观察到的射流火次数相符.但是由于电池内部热反应过程较为缓慢,持续时间较长,因此其最高峰值出现在第1个峰值,为52.82 kw,约为100% soc电池峰值的53.4%.而对于0% soc的锂离子电池,在经历初次射流火后即进入持续的稳定燃烧阶段,直至最终火焰熄灭,因此整个实验过程中仅观察到一个明显的hrr峰值,为41.74 kw.对应50%与0% soc 锂离子电池的总燃烧热(10.33 mj、7.68 mj)分别为100% soc(13.94 mj)电池的74.1%和55.1%.可以看出,随着soc的降低,电池燃烧剧烈程度明显降低,对应热释放速率峰值以及总燃烧热随之降低.而电池的总燃烧热不仅与电池的燃烧剧烈程度相关,还与燃烧的持续时间相关,因此soc对电池燃烧释放总燃烧热的影响并不明显,这一特性也被其他研究者所证实,如ribiere等[12]以2.9 a·h的软包limn2o4/石墨电池为研究对象,实验研究了不同荷电状态锂离子电池的燃烧产热,研究发现50% soc的电池燃烧总热量为383 kj,高于100% soc电池的313 kj.造成该现象的原因是soc较低的锂离子电池的发生热失控对应反应物的消耗速率较低,进而延长了电池的燃烧时间. ...... 为了更好地了解锂离子电池的火灾危险性,图8比较了不同soc锂离子电池与几种常见燃料的热释放速率[12].100% soc 样品电池的标准化热释放速率峰约为2.91 mw/m2,超过汽油的标准热释放速率峰(2.2 mw/m2),50% soc与0% soc锂离子电池燃烧时的热释放速率峰分别为1.55 mw/m2与1.22 mw/m2,介于汽油(2.2 mw/m2)与燃油(1.1 mw/m2)之间. ...1... 热释放速率是进行火灾危险性研究、分析样品火灾危险性的重要参数[11-13].其计算方式主要依据氧消耗原理,即通过精确测量燃烧过程中体系中的氧消耗量进而计算得到该过程的热释放速率[14],如式(1)所示. ...1... 热释放速率是进行火灾危险性研究、分析样品火灾危险性的重要参数[11-13].其计算方式主要依据氧消耗原理,即通过精确测量燃烧过程中体系中的氧消耗量进而计算得到该过程的热释放速率[14],如式(1)所示. ...1... 随着温度持续升高,电池内部热反应持续加快,100%与50% soc锂离子电池分别在2253 s和2611 s形成二次射流火,而对于0% soc的锂离子电池,因为电池内部能量较低,电池内部化学反应过程相对缓慢[9, 15],其燃烧行为明显缓和,在整个过程中并未出现多次射流火现象. ...1... 图4(d)给出了电池的电压变化趋势,在本次实验中发现,电池的电压跳水时间较晚于其安全阀破裂时间,这是由于造成电压掉落的主要原因是隔膜收缩熔融,而隔膜的收缩温度通常在130 ℃以上[16].而电池的sei膜在90 ℃时即发生分解,造成负极活性材料与电解液反应并产生一定量的气体,造成电池内部压力持续升高[17].而在电压跳水之前,随着温度的升高,电池电压表现出微量的衰减,这是由于电池的正、负极材料溶解所致.因此,在实际应用过程中,可考虑采用气体信号和电、热信号相结合的手段,对磷酸铁锂电池的热失控行为进行预测预警. ...1... 图4(d)给出了电池的电压变化趋势,在本次实验中发现,电池的电压跳水时间较晚于其安全阀破裂时间,这是由于造成电压掉落的主要原因是隔膜收缩熔融,而隔膜的收缩温度通常在130 ℃以上[16].而电池的sei膜在90 ℃时即发生分解,造成负极活性材料与电解液反应并产生一定量的气体,造成电池内部压力持续升高[17].而在电压跳水之前,随着温度的升高,电池电压表现出微量的衰减,这是由于电池的正、负极材料溶解所致.因此,在实际应用过程中,可考虑采用气体信号和电、热信号相结合的手段,对磷酸铁锂电池的热失控行为进行预测预警. ...。

耐高温耐高压 英语

耐高温耐高压 英语

耐高温耐高压英语Enduring High Temperature and High PressureThe ability to withstand extreme environmental conditions is a remarkable feat of engineering and material science. In the realm of industrial applications, where the demands for performance and reliability are paramount, the need for materials that can endure high temperatures and high pressures has become increasingly crucial. This essay delves into the world of materials that possess the remarkable capacity to withstand such challenging environments, exploring their properties, applications, and the ongoing research and development that drives their advancement.At the heart of this discussion lies the fundamental understanding of the behavior of materials under extreme conditions. When subjected to high temperatures and high pressures, materials can undergo a range of physical and chemical transformations that can significantly impact their structural integrity, mechanical properties, and overall performance. This is where the science of materials engineering comes into play, as researchers and scientists work tirelessly to develop new materials and refine existing ones to meet the ever-increasing demands of modern industry.One of the most prominent examples of materials that excel in high-temperature and high-pressure environments is ceramics. Ceramics, such as silicon carbide, alumina, and zirconia, possess remarkable thermal stability, high compressive strength, and excellent resistance to corrosion and wear. These properties make them ideal for applications in industries like aerospace, energy production, and chemical processing, where the operating conditions can be incredibly harsh.In the aerospace industry, for instance, ceramic-based components are extensively used in jet engines, where they are exposed to temperatures exceeding 1000 degrees Celsius and pressures that can reach several hundred atmospheres. These materials not only withstand the extreme conditions but also contribute to the overall efficiency and performance of the engines, helping to reduce fuel consumption and emissions.Similarly, in the energy sector, ceramics play a crucial role in the design and construction of high-temperature reactors, where they are employed in the fabrication of fuel elements, control rods, and other critical components. Their ability to maintain structural integrity and resist degradation under intense heat and pressure is essential for ensuring the safe and reliable operation of these power generation systems.Beyond ceramics, other materials have also been developed to tackle the challenges of high-temperature and high-pressure environments. Superalloys, for example, are a class of metal-based materials that exhibit exceptional strength, corrosion resistance, and thermal stability at elevated temperatures. These alloys, often composed of nickel, cobalt, or iron, are widely used in gas turbines, rocket engines, and other high-performance applications where extreme conditions prevail.The development of these advanced materials is not without its challenges, however. Researchers must grapple with a complex interplay of factors, including chemical composition, microstructural design, and manufacturing processes, to optimize the performance of these materials under extreme conditions. This requires a multidisciplinary approach, drawing on expertise from fields such as materials science, engineering, and computational modeling.One area of particular interest in this field is the use of additive manufacturing, or 3D printing, to create complex, customized parts that can withstand high temperatures and pressures. By leveraging the capabilities of additive manufacturing, engineers can design and produce components with intricate geometries and tailored properties, opening up new possibilities for the application of high-performance materials in various industries.Moreover, the ongoing research and development in this field are not limited to the materials themselves. Equally important is the advancement of the testing and characterization techniques used to evaluate the performance of these materials under extreme conditions. From advanced imaging technologies to sophisticated simulation models, researchers are continuously pushing the boundaries of our understanding of material behavior, enabling the development of even more robust and reliable solutions for high-temperature and high-pressure applications.In conclusion, the ability to endure high temperatures and high pressures is a testament to the remarkable progress made in materials science and engineering. The development of materials that can withstand such extreme conditions has been crucial for the advancement of various industries, from aerospace to energy production. As the demands for performance and efficiency continue to rise, the ongoing research and innovation in this field will undoubtedly play a pivotal role in shaping the future of technology and engineering. By pushing the limits of what is possible, the materials that can endure high temperature and high pressure are paving the way for a more resilient and sustainable future.。

碳化硅纳米颗粒增强环氧树脂

碳化硅纳米颗粒增强环氧树脂

碳化硅纳米颗粒增强环氧树脂付新【摘要】SiC nanoparticles were prepared by the carbon thermal reduction method,in which furfuryl alcohol and tetraethoxysilane (TEOS) were respectively employed as carbon and silica precursors. Polym-ethylhydrosiloxane (PMHS) was employed as pore-adjusting agent.XRD,TEM, DLS were used to characterize the SiC samples. The results showed that the SiC nanoparticles with dimensions in the range of 10 ~50 nm can be finally obtained. The SiC nanoparticles with smaller size have better reinforcement effect in epoxy resin.%以糠醇为碳源,正硅酸乙酯为硅源,含氢硅油为结构助剂,通过碳热还原的方法制备出碳化硅纳米颗粒,采用XRD、TEM、DLS对样品进行表征.结果表明,所得碳化硅纳米颗粒尺度分布在10~50nm,其增强的环氧树脂,拉伸强度和压缩强度均有明显提高.【期刊名称】《应用化工》【年(卷),期】2012(041)008【总页数】3页(P1479-1481)【关键词】碳化硅纳米颗粒;碳热还原;环氧树脂【作者】付新【作者单位】渭南师范学院化学与生命科学学院,陕西渭南714000【正文语种】中文【中图分类】TQ050.4碳化硅(SiC)是一种性能优异的半导体材料,具有很多优异的性能,例如禁带宽度大、热传导率高、热稳定性强、抗氧化及耐腐蚀等。

热设计之JESD51电子器件热测试方法系列标准介绍

热设计之JESD51电子器件热测试方法系列标准介绍

热设计之JESD51电子器件热测试方法系列标准介绍接要:芯片结温直接影响产品的性能、可靠性、质量和成本,通讯产品热设计重要目的之一就是保证芯片在设备工作温度范围内,芯片结温不超过芯片的结温限值,以保证产品的性能、可靠性。

本文介绍了美国联合电子设备工程协会(JEDEC)的电子器件热测试系列标准(JESD51),系统了解芯片热特性值的测试标准,加深对芯片各热特性值的理解,并列举两个热设计中常见的误区,通过对国际标准原文的介绍,提升产品设计水平。

关键词:热设计、热特性参数、热阻、热测试;JESD51系列标准规范了单结半导体器件封装热测试的方法。

随着技术不断的进步,测试环境、元件装配技术、器件生产工艺和技术的不断发展,测试方法也会不断发展。

下文分别列举JESD51系列14个标准文件。

JESD51 Methodology for the thermal measurement of component packages (single semiconductor device)JESD51是该系列标准的综述性文件,概括介绍单结单导体器件热测试方法,具体测试方法在后续文件中具体介绍。

该系列标准分为以下几组:在说明测试方法、测试环境、器件安装方法、测试装置搭建方法的条件下得到的热特性值才有使用的价值。

JESD51-1 Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device) 芯片热测试方法——电气测试方法规定一种单结半导体器件的热特性参数测试方法。

电气性能、应用环境、温度传感器精度都会直接影响测试的准确性。

A temperature-sensitive parameter to sense the change in temperature of the junctionoperating area due to the application of electrical power to the device-under-test.T J=T J0+ΔT JΔT J=K×ΔTSPΔTSP change in temperature-sensitive parameter value [mV]K constant defining relationship between changes in T J and TSP [℃/mV]常用的temperature-sensitive parameter是正偏二极管的电压降(a forward-biased diode)。

Materials Characterization

Materials Characterization

Materials Characterization Materials characterization is a crucial aspect of material science that involves the study of the structure, properties, and performance of materials. Through various techniques and methods, researchers are able to gain a deeper understanding of the materials they are working with, which in turn allows them to make informed decisions about their applications and potential uses. The field of materials characterization is constantly evolving, with new technologies and methods being developed to better understand and analyze materials at the microand nanoscale levels. One of the key aspects of materials characterization is the study of the structure of materials. This involves analyzing the arrangement of atoms and molecules within a material, as well as the various phases andinterfaces present. By understanding the structure of a material, researchers can predict its properties and behavior under different conditions. Techniques such as X-ray diffraction, electron microscopy, and spectroscopy are commonly used tostudy the structure of materials and provide valuable insights into their properties. Another important aspect of materials characterization is theanalysis of the properties of materials. This includes studying mechanical, thermal, electrical, and magnetic properties, among others. By characterizingthese properties, researchers can determine how a material will perform indifferent environments and applications. For example, the mechanical properties of a material can help determine its strength, toughness, and elasticity, while the thermal properties can indicate its ability to conduct heat or resist high temperatures. In addition to studying the structure and properties of materials, materials characterization also involves the analysis of performance. Thisincludes studying how a material behaves under specific conditions, such as stress, temperature, or exposure to different chemicals. By testing materials in real-world conditions, researchers can assess their performance and durability, as well as identify any potential weaknesses or areas for improvement. Performance testing is crucial for ensuring that materials meet the requirements of their intended applications and can withstand the demands placed on them. Materials characterization plays a vital role in a wide range of industries, from aerospace and automotive to electronics and healthcare. By understanding the properties andperformance of materials, researchers and engineers can develop new materials with enhanced properties and functionalities, leading to innovations in various fields. For example, the development of lightweight and high-strength materials has revolutionized the aerospace industry, allowing for the creation of more fuel-efficient and durable aircraft. Overall, materials characterization is a complex and multidisciplinary field that requires a combination of advanced techniques, analytical skills, and creativity. Researchers in this field must constantly adapt to new challenges and technologies, as well as collaborate with experts from different disciplines to gain a comprehensive understanding of materials. By pushing the boundaries of materials characterization, scientists and engineers can unlock new possibilities for materials design and development, leading to groundbreaking advancements in technology and industry.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thermal Characterization of AdvancedLithium-Ion Polymer Cells Matthew A. Keyser, Ahmad Pesaran, and Mark MihalicThird Advanced Automotive Battery Conference, June 2003 ABSTRACTCompact Power Incorporated (CPI) and LG Chem have been developing high-power lithium-ion (Li-Ion) polymer batteries over the past few years. The National Renewable Energy Laboratory (NREL) has supported this development with thermal characterization and analysis of three generations of CPI prototype Li-Ion polymer cells. All generations of the cells usea manganese-dioxide material for their cathode and graphite anodes. NREL measured the heat generation and subjected the cells to thermal imaging. The first-and second-generation cells showed signs of localized heat during thermal imaging underneath the positive electrode during discharge. As the cell was improved and better electrodes designed, the third-generation cell became relatively uniform in temperature and was the most efficient of the cells tested. It exceeded an efficiency of 91% for all currents below 48 amps. In comparison, the second-generation CPI cell was only 78% efficient at 30 amps. CPI is incorporating its latest Li-Ion cellsin a stand-alone battery pack for vehicle applications.1.0 IntroductionThe performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on those of the vehicle’s energy storage system. Advanced batteries such as lithium-ion (Li-Ion) polymer batteries are considered viable options for storing energy in EVs and HEVs. Compact Power Inc. (CPI) of Colorado, USA and LG Chem Ltd. (LGC) ofNational Renewable Energy Laboratory/transportation/BTMJi-Sang Yu and Soo-Ryung KimLG Chem Ltd./ Mohamed Alamgir and Daniel RiversCompact Power South Korea have been developing large Li-Ion polymer cells and batteries for EV, HEV, and other applications. The technology is based on LGC’s small Li-Ion cell portable power applications.Early on, CPI realized that thermal issues are important for operating high-power Li-Ion polymer batteries. Actual data on the thermal behavior of polymer cells, such as heat generation rate and temperature rise under a specified power cycle, were needed to verify the expected thermal performance of the cells and to fine tune the cell and pack thermal management system. Because the National Renewable Energy Laboratory (NREL) has unique facilities and experience [1,2,3], CPI asked the laboratory to conduct tests to evaluate thermal behavior of its polymer cells. NREL’s facilities include a unique calorimeter that is large enough to hold multiple cells, high-power battery cyclers capable of simulating any driving cycle, and state-of-the-art thermal imaging and heat transfer equipment. CPI and NREL collaborated to conduct tests to (1) obtain thermal images of cells under load and (2) measure heat generation rate from the cells under various charge/discharge profiles.2.0 Background2.1 Compact Power Li-ion Polymer Cell Figure 1 pictorially shows the cells. Table 1 gives the published characteristics of the three generations of Li-Ion polymer cells.Figure 1: (Counterclockwise from upper left) CPI Gen I cell, Gen II cell, and Gen III cell. Table 1: Physical and electrical characteristics of CPI’s Li-Ion polymer cells. Upper voltage limit = 4.2 V and lower voltage limit = 3.0 V.The latest version of the cell, Gen III(manufactured by LGC) uses high-capacity artificial graphite anodes and spinel lithiated manganese-dioxide cathodes. The anodes and cathodes are laminated together with the separator and assembled using a proprietary winding-stacking technique. The result is a cell that requires no external pressure and shows exceptional cycle life, very high power (2,000 W/kg), and high specific energy (95 Wh/kg). Figure 2 shows the 18-second discharge power and 2-second regen power capability of the Gen III cell as a function of depth of discharge. The test protocol used to determine the power capabilities is the Partnership for a New Generation of Vehicles (PNGV) Hybrid Pulse Power Capability (HPPC) test [4]. Using the HPPC results for an individual cell, the battery sizing factor, i.e., the number of cells, necessary to meet the PNGV goals of 25 kW on dischargeCellAhCap. (Ah) Max Dis.Current (Amps)Mass (grams)SpecificEnergy (Wh/kg)Size (L x W x H) (mm) Gen I 4.5 45 144.6 118 105x125x3 Gen II 5.0 75 201.3 94 122x118x11 Gen III8.0 140 300.8 95 243x125x6and 30 kW on regen at end of life was calculatedto be 75.Figure 2: Power capability of the CPI Gen III cell under HPPC profile.2.2 NREL CalorimeterNREL uses a custom-made, single-ended, conduction-type calorimeter to measure heat capacity and heat generation from a cell or module [2]. The calorimeter can measure heat as low as 10 J with a heat rate as low as 10 mW. It is designed to measure heat rates as high as 100 W with an accuracy of ±2%. A module in the calorimeter is charged and discharged by a high-power battery cycler.3.0 Heat Generation TestingNREL’s calorimeter was used to measure the heat generation of the CPI cells. Depending on the cell, the heat generation was measured at 25°C for the following conditions.1. Constant current discharge at a C/5, C/1,2C, and 6C rate until voltage reached CPI’s specified lower voltage limit (3.0 V) – 100% state of charge (SOC) to 0% SOC. 2.Under CPI’s recommended charging scheme, C/2 current was applied to the cell until it reached 4.2 V. The voltage was then held at 4.2 V until the current decayed below 250 mAmps.The energy efficiency of the cell during constant charge/discharge cycles was determined by the following equation.Eff=[1 −(HeatGenerated/ Energy(Input K Output))]*100 The heat generated by the cell is due to the I2R losses in the cell and the chemical changes within the cell as measured by the calorimeter.The energy (input…output) is the electrical energy supplied or taken away from the cell over the testing cycle. Both the heat generated and the electrical energy are measured in Joules.The average cell heat rate in Watts is determined by the following equation.HeatGeneratedAverageCellHeatRate=CycleTimeThe heat generated is divided by the cycle time in seconds (the time over which the charge or discharge to the battery was completed). For instance, a C/1 discharge from 100% to 0% SOC takes approximately 60 minutes (3600 seconds).Figure 3 shows the efficiency of the cells as a function of discharge current at 25o C. Each cell was discharged from 100-0% SOC with 3.0 V representing a fully discharged cell. The efficiency for all generations of cells decreases as the current increases. Furthermore, the Gen III cell has the highest efficiency for any given current. For instance, the Gen III cell has an efficiency of 94.4% at a current of 30.0 amps, whereas the Gen II cell has an efficiency of78.8% at the same current. Figure 4 shows theaverage heat rate of the cell as a function of discharge current at 25o C. The heat rate for each cell increases with increasing current. The Gen III cell is the most efficient cell and therefore has the lowest average heat rate for a given current, which indicates improvements between generations. At 30 amps, the Gen III average heat rate was 5.6 W compared to the Gen II cell average heat rate of 21.1 W. The efficiency of the cells was also measured under CPI’s recommended charging scheme. The Gen III cell was the most efficient at 99% under the recommended charging scheme compared to anefficiency of 95% for Gen I and Gen II. Figure 3: Efficiency data for CPI’s Li-Ion polymer cells at 25oC.Figure 4: Heat rate data for CPI’s Li-Ion polymer cells at 25o C.Figure 5 shows the calorimeter response and voltage curve of the Gen III cell under a C/5 full discharge. The total discharge lasted approximately 4.5 hours. At the beginning of the cycle, the cell is initially endothermic – a negative heat rate represents an endothermic reaction, heat being pulled from the constant temperature bath surrounding the calorimeter to the battery. The heat rate does not go completely exothermic until approximately 2.5 hours. The cell then peaks at a heat rate of 0.11 W at 3.56 hours and then slightly decreases –possibly because of a phase change. Finally, the heat rate increases at the exact moment that the voltage precipitously dips, 3.95 hours into the test.Figure 5: Heat rate data for CPI’s Gen III cell under a C/5 discharge.4.0 Cell Infrared TestingFigure 6 shows the thermal imaging set-up for the Gen III Compact Power cell -all cells were tested in a vertical configuration. The present aluminum packaging of the cells has too low of an emissivity for accurate IR imaging. Therefore, the exterior of the cell was coated with boron nitride that has an emissivity of approximately 0.8. A high emissivity surface effectively eliminates reflections from the object being imaged. The boron nitride coating canalso be easily removed with isopropyl alcohol.Figure 6: CPI Gen III cell thermal imaging set-up.The polymer cells were thermally imaged under various cycles at room temperature. Figure 7 shows the thermal images taken at the end of the discharge for the three generations of cells. The cell was fully discharged from 100% to 0% SOC and the thermal image was taken right after the cell completed the discharge. The Gen I cell was limited to a 9.0-amp discharge by the manufacturer, whereas the Gen II and Gen III cells were subjected to infrared imaging after completing a 30-amp discharge. Table 2 shows the minimum and maximum temperatures of the cells for two different areas. In Figure 7, a blue and a red box outline the two separate areas. Essentially, the active cell area (blue box) is where the cathode, separator, and anode are physically located. The second area (red box) is the area between where the electrodes enter the cell and the active area. The two areas are analyzed separately to emphasize the improvement in the electrode design between generations.For the active area, Gen III has the lowestspread in temperature, 3.0oC, compared to GenII, which has a temperature spread of 13.5oC at the same current, 30 amps. Even though the current through the Gen I cell is only 9.0 amps, ithas a larger temperature spread, 5.6oC, as compared to the Gen III cell over the active area. Furthermore, the Gen I cell has differential heating across the cell – the cell heating is biased underneath the positive electrode. The Gen II cell shows biased heating underneath both electrodes – essentially, the cell heating (current density) decreases as the distance from the electrodes increases. Neither of these differential-heating modes was observed with the Gen III cell – the cell temperature is relatively uniform over the entire active area. The mottled infrared appearance of the cell in Figure 7c resulted from the cell jacket making contact with the active material, not to localized heating. In looking at the area (red box) between the electrodes and the active cell area, the Gen III cell once again has the lowest temperaturedifference, 4.8oC, compared to the Gen II cell that has the highest temperature difference at10.6oC. The Gen II cell heating is biased toward the positive electrode and the maximumtemperature is greater than 50oC. The positive electrode shows slightly higher temperatures due to the electrical resistivity of aluminum compared to the negative electrode that is copper. Furthermore, the electrode design for the Gen IPositive and Gen II cells didn’t provide for a large enough cross-sectional area for the current demand – CPI therefore modified the cross-sectional area of the electrodes in the Gen III cell.Table 2: Temperature distribution of the CPI cells under various discharge currents.Active Area (blue box)Area between Bottom of Electrodesand Active Area(red box)CellCurrent (Amps) Min.Temp. (o C)Max. Temp. (o C) Min. Temp. (o C) Max. Temp. (oC) Gen I 9.0 33.037.0 Gen II 30.0 34.0 > 50.0 Gen III 30.0 35.7 37.0 29.6 38.6 39.4 47.5 32.2 38.7 PositiveNegativeFigure 7a: Thermal image of Gen I cell after 9.0-amp discharge.Positive NegativeFigure 7b: Thermal image of Gen II cell after 30.0-amp discharge.Negative PositiveFigure 7c: Thermal image of Gen III cell after30.0-amp discharge.5.0 Conclusions and SummaryNREL has been supporting the development of CPI’s high-power Li-Ion polymer cell using thermal characterization and analysis. Three generations of CPI prototype Li-Ion polymer cells were studied. All generations of the cells use a manganese-dioxide material for cathode and graphite anodes. The first-and second-generation cells showed signs of localized heat during thermal imaging underneath the positive electrode during discharge, whereas the Gen III cell remained relatively uniform in temperature. As the cell was improved and better electrodes designed, the Gen III became the most efficient of the cells tested. It exceeded an efficiency of91% for all currents below 48 amps. In comparison, the Gen II CPI cell was only 78% efficient at 30 amps. Furthermore, the Gen III cell showed signs of being slightly endothermic during the initial 2 hours of a C/5 discharge and showed that the heat generation during a C/5 discharge is not constant and highly dependent on the SOC of the cell. Gen III has shown exceptional cycle life, very high power (2,000 W/kg), and high specific energy (95 Wh/kg). CPI has developed battery packs based on Gen III for HEV applications.6.0 References[1] Pesaran, A.A., Vlahinos, A., and Burch, S.D., "Thermal Performance of EV and HEV Battery Modules and Packs," Proceedings of the 14th International Electric Vehicle Symposium, Orlando, Florida, December 15–17, 1997. [2] Pesaran, A.A., Russell, D.J., Crawford, J.W., Rehn, R., and. Lewis, E.A., "A Unique Calorimeter-Cycler for Evaluating High-Power Battery Modules," Proceedings of the 13th Annual Battery Conference: Applications and Advances, Long Beach, California, January 13– 16, 1998.[3] Pesaran, A.A., Swan, D., Olson, J., Guerin, J.T., Burch, S., Rehn, R., and Skellenger, G.D., "Thermal Analysis and Performance of a Battery Pack for a Hybrid Electric Vehicle," Proceedings of the 15th International Electric Vehicle Symposium, Brussels, Belgium, October 1– October 3, 1998.[4] “PNGV Battery Test Manual, Rev III,” DOE/ID-10597, February 2001.。

相关文档
最新文档