3.2 勾股定理的逆定理板书设计及课后作业-最新学习文档

合集下载

《勾股定理的逆定理》教案设计

《勾股定理的逆定理》教案设计

《勾股定理的逆定理》教案设计活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满意什么条件是直角三角形?设计意图:通过对前面所学学问的归纳总结,联想到用三边的关系是否可以推断一个三角形为直角三角形,提高同学发觉反思问题的力量.师生行为同学分组争论,沟通总结;老师引导同学回忆.本活动,老师应重点关注同学:①能否乐观主动地回忆,总结前面学过的旧学问;②能否“温故知新”.生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的`直角三角形中,30°的角所对的直角边是斜边的一半.师:那么,一个三角形满意什么条件,才能是直角三角形呢?生:有一个内角是90°,那么这个三角形就为直角三角形.生:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有肯定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?二、讲授新课活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,假如围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.画画看,假如三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.设计意图:由特别到一般,归纳猜想出“假如三角形三边a,b,c满意a2+b2=c2,那么这个三角形就为直免三角形的结论,培育同学动手操作力量和寻求解决数学问题的一般方法.师生行为让同学在小组内共同合作,协手完成此活动.老师参加此活动,并给同学以提示、启发.在本活动中,老师应重点关注同学:①能否乐观动手参加.②能否从操作活动中,用数学语言归纳、猜想出结论.③同学是否有克服困难的士气.生:我们不难发觉上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.由于32+42=52.我们围成的三角形是直角三角形.生:假如三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发觉6.5cm的边所对的角是直角,并且2.52+62=6.52.再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发觉8.5cm的边所对的角是直角,且也有42+7.52=8.52.是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?活动3下面的三组数分别是一个三角形的三边长?。

【教学设计】 勾股定理的逆定理(2)

【教学设计】 勾股定理的逆定理(2)

勾股定理的逆定理教学目标知识与技能1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。

2.灵活应用勾股定理及逆定理解综合题。

3.进一步加深性质定理与判定定理之间关系的认识。

过程与方法在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。

使学生能归纳总结数学思想方法在题目中应用的规律。

情感态度与价值观培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值重点灵活应用勾股定理及逆定理解综合题目难点灵活应用勾股定理及逆定理解解综合题目教学设计与师生互动备注第一步:课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。

第二步:应用举例:例1已知:在△中,∠A、∠B、∠C的对边分别是a、b、c,满足a222+338=102426c。

试判断△的形状。

分析:利用因式分解和勾股定理的逆定理判断三角形的形状。

⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。

例2已知:如图,四边形,∥,4,6,5,3。

求:四边形的面积。

分析:使学生掌握研究四边形的问题,AB CDE通常添置辅助线把它转化为研究三角形的问题。

本题辅助线作平行线间距离无法求解。

创造3、4、5勾股数,利用勾股定理的逆定理证明就是平行线间距离。

⑴作∥,连结,则可以证明△≌△();⑵4,3,3;⑶在△中,3、4、5勾股数,△为直角三角形,⊥;⑷利用梯形面积公式可解,或利用三角形的面积。

例3已知:如图,在△中,是边上的高,且2·。

求证:△是直角三角形。

分析:勾股定理及逆定理的综合应用,注意条件的转化及变形。

∵222,222∴222+2222+2·2=()22第三步:课堂练习1.若△的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△是( )A .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。

2024最新-八年级数学《勾股定理的逆定理》教案【优秀4篇】

2024最新-八年级数学《勾股定理的逆定理》教案【优秀4篇】

八年级数学《勾股定理的逆定理》教案1篇教学目标1. 知识与技能:- 理解勾股定理的逆定理内容。

- 能够应用勾股定理的逆定理来判断一个三角形是否是直角三角形。

2. 过程与方法:- 通过观察、计算和推理,培养学生发现问题、分析问题和解决问题的能力。

- 提高学生的逻辑思维能力和空间想象能力。

3. 情感、态度与价值观:- 激发学生对数学学习的兴趣和好奇心。

- 培养学生严谨、细致的数学学习习惯。

教学重点与难点- 重点:掌握勾股定理的逆定理及其应用。

- 难点:理解勾股定理的逆定理证明过程。

教学准备- 勾股定理的相关知识回顾。

- 直角三角形和非直角三角形的图形准备。

- 计算器或测量工具。

教学过程一、导入新课1. 复习提问:回顾勾股定理的内容是什么?2. 导入新课:如果一个三角形的三边满足勾股定理的条件,那么这个三角形一定是直角三角形吗?我们如何判断?二、新课讲解1. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2. 逆定理证明(简要介绍):设三角形ABC中,AB² + AC² = BC²。

通过作边AB、AC的垂线并证明直角三角形中的相似三角形,可以推导出角C为直角。

3. 应用举例:给出三角形的三边长,判断是否为直角三角形。

三、课堂练习1. 判断题:下列哪些三角形是直角三角形?- a. 三边长分别为3, 4, 5。

- b. 三边长分别为5, 12, 13。

- c. 三边长分别为8, 15, 17。

2. 填空题:在三角形ABC中,AB = 5, AC = 12, BC = 13,则∠C = _______。

四、巩固提升1. 分组讨论:如何验证一个三角形是否是直角三角形(除了使用勾股定理的逆定理外,还有其他方法吗)?2. 小组展示:每个小组选派一名代表汇报讨论结果。

五、课堂小结1. 总结勾股定理的逆定理的内容。

2. 强调判断直角三角形时,勾股定理的逆定理的重要性和应用。

勾股定理的逆定理说课稿

勾股定理的逆定理说课稿

勾股定理的逆定理说课稿一、说教材勾股定理是几何学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。

而勾股定理的逆定理,则是在勾股定理的基础上,通过逻辑推理得出的一个逆向思维结论,即在三角形中,如果某一边的平方等于另外两边平方和,那么这个三角形就是直角三角形。

本文在教材中的作用和地位非常重要,它是学生建立几何直观、培养逻辑思维和推理能力的关键章节。

主要内容:本文主要围绕勾股定理的逆定理展开,通过具体的实例和图形,引导学生理解和掌握逆定理的含义、证明和应用。

此外,还涉及到一些相关概念,如直角三角形的判定、平方根等。

1. 作用:勾股定理的逆定理是初中数学教学的重要组成部分,它有助于学生巩固勾股定理的知识,拓展几何思维,提高解决问题的能力。

2. 地位:在教材中,勾股定理的逆定理是承上启下的章节,既是对勾股定理的巩固,也为后续学习相似三角形、解直角三角形等内容打下基础。

3. 主要内容:本文详细阐述了勾股定理的逆定理的定义、证明过程以及在实际问题中的应用,旨在帮助学生从理论到实践,全面掌握这一几何知识点。

二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解并掌握勾股定理的逆定理的含义;(2)能够运用勾股定理的逆定理判断三角形是否为直角三角形;(3)熟练运用勾股定理及其逆定理解决实际问题。

2. 过程与方法:(1)通过观察、分析、推理,培养学生几何直观和逻辑思维能力;(2)学会运用数学语言表达几何问题,提高学生数学表达能力;(3)掌握几何图形的绘制方法,提高学生动手操作能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养良好的学习习惯;(2)培养学生勇于探索、善于合作的精神,提高解决问题的自信心。

三、说教学重难点1. 教学重点:(1)勾股定理的逆定理的含义及其证明;(2)勾股定理及其逆定理在实际问题中的应用。

2. 教学难点:(1)理解并掌握勾股定理的逆定理;(2)运用勾股定理的逆定理解决实际问题。

3.2《勾股定理的逆定理》教案设计

3.2《勾股定理的逆定理》教案设计

3.2勾股定理的逆定理教学过程: 感悟栏 一、自主学习1.以6cm 、8cm 、10cm 为三条边画三角形,再用量角器量出这个三角形各角的度数,△ABC 是什么类型的三角形?21教育再以3cm 、4cm 、5cm 呢?2.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 三角形。

3.符号表示: ∵△ABC 中,a 2+b 2=c 2∴ΔABC 为Rt Δ,且∠ =900 二、合作探究1. 画图:画出边长分别是下列各组数的三角形(单位:厘米).A .3,4,3;B .3,4,5;C .3,4,6D .5,12,13.判断:请判断一下上述你所画的三角形的形状.2. 猜想:三角形的三边满足什么条件时,这个三角形是直角三角形?3.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.21·cn·jy·com4.你会用这个结论判断一个三角形是不是直角三角形吗?这个结论与勾股定理有什么关系吗? 探索规律1.满足a 2+b 2=c 2的3个正整数a 、b 、c 称为勾股数.2.判断:下列各组数是勾股数吗?(1)6,8,10;(2)9,12,15;(3)12,16,20.你发现什么规律?你还能写出更多的勾股数吗? 教 学目 标1.理解直角三角形的判定条件;2.掌握一些常见的勾股数;3.能应用直角三角形的判定条件判定一个三角形是直角三角形;重 点 难 点能应用直角三角形的判定条件判定一个三角形是直角三角形CA B 3cm 5cm 4cm C A B 10cm 6cm 8cm知识应用例1 很久很久以前,古埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样钉成一个三角形,你知道这个三角形是什么形状吗?并说明理由. 21世纪教育例2 已知某校有一块四边形空地ABCD,如图现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需100元,问需投入多少元?变式:要做一个如图所示的零件,按规定∠B与∠D都应为直角,工人师傅量得所做零件的尺寸如图,这个零件符合要求吗?21cnjy三、当堂有效测试四、课后作业教后记:。

《勾股定理的逆定理》示范教学设计【人教版八年级数学下册】

《勾股定理的逆定理》示范教学设计【人教版八年级数学下册】

《勾股定理的逆定理》教学设计一、教学目标1.掌握勾股定理的逆定理,并会证明.2.理解原命题、逆命题和逆定理的概念及关系.3.进一步掌握勾股定理及其逆定理,并会熟练应用.二、教学重点及难点重点:掌握勾股定理的逆定理.难点:灵活应用勾股定理的逆定理解决实际问题.三、教学用具多媒体课件四、相关资料《古埃及人画直角的方法》动画,《利用三角形三边平方的数量关系判断三角形的形状》动画,《互逆命题》图片,《常见勾股数举例》图片,《勾股定理与其逆定理的区别与联系》图片,《勾股定理的逆定理(1)》图片,《勾股定理的逆定理(2)》图片五、教学过程【问题导入】问题1:你能说出勾股定理吗?并指出定理的题设和结论.命题1 勾股定理:如果直角三角形的两条直角边分别为a,b,斜边长为c,那么a2+ b2=c2.追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?追问2:新的命题能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.【探究学习】古埃及人曾用下面的方法得到直角:用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.按照这种做法真能得到一个直角三角形吗?实验操作:(1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),它们是直角三角形吗?① 2.5,6,6.5;②6,8,10.解:2.52+62=6.52 ,62+82=102(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:请判断这些三角形的形状,并提出猜想.问题2 由上面几个例子你发现了什么吗?请以命题的形式说出你的观点!命题2 :如果三角形的三边长a、b、c满足a2+ b2=c2,那么这个三角形是直角三角形.问题3:把勾股定理记着命题1,上面的结论作为命题2.命题1和命题2的题设和结论分别是什么?命题1 如果直角三角形的两条直角边分别为a,b,斜边长为c,那么a2+ b2=c2.命题2 如果三角形的三边长a、b、c满足a2+ b2=c2,那么这个三角形是直角三角形.问题4:命题1和命题2的题设和结论有着什么的关系?两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.插入《互逆命题》图片资源以图示的方式对比互逆命题,加深学生对互逆命题概念的认识.插入《互逆命题》图片本图片资源以图示的方式对比互逆命题,加深学生的概念的认识.如果三角形的较长边的平方等于其它两条较短边的平方和,那么这个三角形是直角三角形.已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2.求证:△ABC是直角三角形.证明:画一个△A’B’C’,使∠C’=90°,B’C’=a, C’A’=b.因为∠C′=90°,所以A′B′2= a2+b2.因为a2+b2=c2,所以A′B′2=c2.因为边长取正值,所以A′B′ =c.在△ABC和△A′B′C′中,BC=a=B′C′,CA=b=C′A′,AB=c=A′B′,所以△ABC≌△A′B′C′(SSS).所以∠C= ∠C′.所以∠C= 90°.所以△ABC是直角三角形.插入《常见勾股数举例》图片资源给出一些常见的勾股数,加深学生对勾股数的认识.插入《常见勾股数举例》图片本图片资源给出一些常见的勾股数,加深学生的概念的认识.【典例讲解】例1判断由线段a,b,c 组成的三角形是不是直角三角形:a=15,b=17,c=8;分析:根据勾股定理及其逆定理判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.解:因为152+82 =225+64=289,172 =289,所以152+82 =172.所以以15,8,17为边长的三角形是直角三角形.像15,17,8 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.例2 如图,某港口P位于东西方向的海岸上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于Q、R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?解:根据题意,PQ = 16 × 1.5 = 24 ,PR = 12 × 1.5 = 18,QR = 30.因为24 2+ 182 = 30 2,即PQ2 +PR2 = QR2所以∠QPR= 90°由“远航”号沿东北方向航行可知,∠1=45°.所以∠2=_45°,即“海天”号沿西北方向航行.设计意图:例2从生活实际出发,让学生了解在实际生活中对数学知识的运用,站在数学角度看待问题解决问题,培养学生的数学思维.插入《勾股定理与其逆定理的区别与联系》图片,总结勾股定理与其逆定理的区别与联系,加深学生对勾股定理和勾股定理逆定理的认识.插入《勾股定理与其逆定理的区别与联系》图片本图片资源总结勾股定理与其逆定理的区别与联系,加深学生对定理的认识.【随堂练习】1.说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:(2)对顶角相等;逆命题:(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:2.已知三角形的三边长为9 ,12 ,15 ,则这个三角形的最大角是_度;3.△ABC的三边长为9 ,40 ,41 ,则△ABC的面积为_______;4.三角形的三边长为8 ,15 ,17 ,那么最短边上的高为_____;5.如图,在四边形ABCD是,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积.1.内错角相等,两直线平行.真命题.相等的角是对顶角.假命题.相等的角是对顶角.假命题.2.903.1804.155.解:因为32+42=9+16=25,52=25,即32+42=52所以根据勾股定理的逆定理,△ABD是直角三角形因为52+122=25+144=169,132=169,即52+122=132所以根据勾股定理的逆定理,△BCD是直角三角形所以四边形ABCD的面积=S△ABD+S△BCD=3×4÷2+5×12÷2=6+30=36.设计意图:对勾股定理的逆定理进行练习,让学生掌握勾股定理逆定理的解题过程,培养学生独立解决问题的能力.六、课堂小结1.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,这个三角形是直角三角形.2.勾股数:能够成为直角三角形三条边长的三个正整数.3.互逆命题与互逆定理:两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.七、板书设计勾股定理的逆定理1.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,这个三角形是直角三角形.2.勾股数:能够成为直角三角形三条边长的三个正整数.3.互逆命题与互逆定理:两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.。

人教版八年级下期(教案).2勾股定理的逆定理

人教版八年级下期(教案).2勾股定理的逆定理
3.重点难点解析:在讲授过程中,我会特别强调勾股定理逆定理的判断方法和应用这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理逆定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量实际物体的边长,运用勾股定理逆定理判断其是否为直角三角形。
五、教学反思
今天我们在课堂上学习了勾股定理的逆定理,这节课下来,我觉得有几个地方值得反思。首先,我发现学生们对于逆定理的理解还是有一定难度的。在讲解过程中,我尽量用简单的语言和图示来解释,但仍有部分学生显得有些迷茫。这可能是因为这个概念本身比较抽象,需要更多的时间去消化和理解。
其次,我注意到在实践活动环节,学生们在分组讨论时,有些小组的讨论并不够深入。可能是因为他们对逆定理的应用还不够熟悉,或者是在小组合作中分工不够明确。针对这个问题,我考虑在下次课上增加一些小组合作的指导,比如如何分配任务,如何有效地进行讨论。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理逆定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-实例强调:给出具体的三角形边长,指导学生运用勾股定理的逆定理进行判断引导学生验证3²+4²=5²,进而判断这是一个直角三角形。
2.教学难点
-难点内容:理解并运用勾股定理的逆定理解决实际问题。
-突破方法:

苏科版数学八年级上册3.2《勾股定理的逆定理》说课稿

苏科版数学八年级上册3.2《勾股定理的逆定理》说课稿

苏科版数学八年级上册3.2《勾股定理的逆定理》说课稿一. 教材分析《勾股定理的逆定理》是苏科版数学八年级上册第三章第二节的内容。

这一节主要介绍了勾股定理的逆定理及其应用。

教材通过引入直角三角形和斜边的关系,引导学生探索并证明勾股定理的逆定理。

学生通过学习这一节内容,能够理解和掌握勾股定理的逆定理,并能够运用它解决一些实际问题。

二. 学情分析学生在学习这一节内容之前,已经学习了勾股定理和直角三角形的相关知识。

他们对于勾股定理有一定的理解和掌握,但可能对于逆定理的概念和证明过程较为陌生。

因此,在教学过程中,我需要引导学生理解逆定理的概念,并通过讲解和示例,帮助他们掌握逆定理的证明过程。

三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的逆定理的概念,并能够运用逆定理判断一个三角形是否为直角三角形。

2.过程与方法目标:学生通过观察和思考,培养直观想象和逻辑推理的能力。

3.情感态度与价值观目标:学生通过对勾股定理逆定理的学习,培养对数学的兴趣和探索精神。

四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的逆定理,并能够运用它判断一个三角形是否为直角三角形。

2.教学难点:学生对于逆定理的证明过程的理解和掌握。

五. 说教学方法与手段在教学过程中,我将采用讲授法、问题驱动法和合作交流法相结合的方式进行教学。

通过讲解和示例,引导学生理解逆定理的概念和证明过程。

同时,通过问题和讨论,激发学生的思考和探索兴趣,培养他们的直观想象和逻辑推理能力。

六. 说教学过程1.导入:通过回顾勾股定理的内容,引导学生思考勾股定理的逆定理的概念。

2.讲解:讲解勾股定理的逆定理的概念和证明过程,通过示例让学生理解并掌握逆定理的应用。

3.练习:学生独立完成一些练习题,巩固对逆定理的理解和掌握。

4.应用:学生分组讨论并解决一些实际问题,运用逆定理判断三角形的类型。

5.小结:总结本节课的重点内容,强调逆定理的概念和应用。

七. 说板书设计板书设计如下:1.勾股定理的逆定理概念2.逆定理的证明过程3.逆定理的应用示例八. 说教学评价教学评价将通过课堂参与、练习题和小组讨论等方式进行。

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。

3.2 勾股定理的逆定理板书设计及课后作业

3.2 勾股定理的逆定理板书设计及课后作业

3.2 勾股定理的逆定理板书设计及课后作业1.判断:(1)△ABC 的两边AB =5,AC =12,则BC =13. ( )(2)在△ABC 中,若a =6,b =8,则c =10. ( )(3)由于0.3,0.4,0.5不是勾股数,故以0.3,0.4,0.5为边长的三角形不是直角三角形. ( )(4)由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数. ( )2.已知三角形的三边长分别为5 cm ,12 cm ,13 cm ,则这个三角形是_______.3.三条线段分别长m .n ,p ,且满足m 2-n 2=p 2,以这三条线段为边组成的三角形为_______.4.在△ABC 中,a =9,b =40,c =41,那么△ABC 是( ).A .锐角三角形B .直角三角形C .钝角三角形’D .等腰三角形5.分别以下列四组数为一个三角形的边长:①6,8,10;②5,12,13;③8,15,17;④4,5,6,其中能构成直角三角形的有( ).A .4组B .3组C .2组D .1组6.如图,在由单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ).A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF7.判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)a=7,b =24,c =25;(2)a =1.5,b =2,c =2.5;8.如图,在△DEF中,DE=17 cm,EF=30 cm,边EF上的中线DG=8 cm,试判断△DEF 是否为等腰三角形,并说明理由.9.如图,CD⊥AB,垂足为D,如果AD=2,DC=3,BD=4.5,那么∠ACB是直角吗?试说明理由.10.如图是一块地的平面图,其中AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC =90°,求这块地的面积.11.如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.证明:AC ⊥CD.。

3.2 勾股定理的逆定理板书设计及课后作业

3.2 勾股定理的逆定理板书设计及课后作业

3.2 勾股定理的逆定理板书设计及课后作业(1)△ABC的两边AB=5,AC=12,那么BC=13.( )(2)在△ABC中,假设a=6,b=8,那么c=10.( )(3)由于0.3,0.4,0.5不是勾股数,故以0.3,0.4,0.5为边长的三角形不是直角三角形.( )(4)由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数.( )2.三角形的三边长分别为5 cm,12 cm,13 cm,那么这个三角形是_______.3.三条线段分别长m.n,p,且满足m2-n2=p2,以这三条线段为边组成的三角形为_______.4.在△ABC中,a=9,b=40,c=41,那么△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形’D.等腰三角形5.分别以以下四组数为一个三角形的边长:①6,8,10;②5,12,13;③8,15,17;④4,5,6,其中能构成直角三角形的有( ).A.4组B.3组C.2组D.1组6.如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF7.判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)a=1.5,b=2,c=2.5;8.如图,在△DEF中,DE=17 cm,EF=30 cm,边EF上的中线DG=8 cm,试判断△DEF 是否为等腰三角形,并说明理由.9.如图,CD⊥AB,垂足为D,假如AD=2,DC=3,BD=4.5,那么∠ACB是直角吗?试说明理由.10.如图是一块地的平面图,其中AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC =90°,求这块地的面积.11.如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.证明:AC ⊥CD.第 1 页。

(八年级数学教案)《勾股定理逆定理》导学设计

(八年级数学教案)《勾股定理逆定理》导学设计

《勾股定理逆定理》导学设计八年级数学教案3.2 勾股定理逆定理班级姓名一、教学目标:1 .会阐述勾股定理的逆定理。

2. 会应用勾股定理的逆定理判定一个三角形是直角三角形3. 在探索勾股定理的逆定理的过程中,发展合情推理能力,体会形”与数”的内在联系。

二、教学重点:勾股定理的逆定理三、教学难点:会应用勾股定理的逆定理解决一些简单的实际问题四、教学过程(一)、情境创设:温故知新1. 已知△ abc 中,/ c=90 ,a=7, c=25 ,则b= .2. 已知△ abc中,/ a=25 ° / b=65 :则/c= °此时△ abc为三角形.3. 勾股定理及它的逆命题,几何语言的阐述,思考它们都是真命题吗?(二)、探究活动:如图,已知△ abc中,a2+b2 = c2 △ abc是否为直角三角形?您会证明么?a c勾股定理的逆定理:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形。

满足a2+b2=c2的三个正整数a,b,c,称为。

练习(1)、下列各数组中,不能作为直角三角形的三边长的是()a、3,4,5b、10,6,8c、4,5,6d、12,13,5(2)若厶abc的两边长为8和15,则能使△ abc为直角三角形的第三条边长的平方是()a. 161b. 289;c. 17d. 161 或289.(3)、4个三角形的边长分别为:①a=5,b=12,c=13;②a=2,b=3,c=4;③a=2.5,b=6,c=6.5; ④a=21,b=20,(其中,直角三角形的个数是()a、4 c、2 d、1(4)、下列各组数是勾股数吗?为什么?⑴12, 15, 18; ⑵7 24, 25;⑶ 15, 36, 39; ⑷ 12, 35, 36.小结:练习.如图,判断△ abc的形状,并说明理由.思考:(1)如果△ abc满足c2=a2-b2,这个三角形是直角三角形吗?如果是,哪个角是直角?(2) 一个直角三角形的三边长为3,4,5如果将这三边同时扩大3倍,那么得到的三角形还是直角三角形吗?如果扩大4倍呢?扩大n倍呢?八年级数学教案(1)填表:a 3 6 9 …3nb 4 8 16 …c 5 15 20 …5na 3 6 9 …3nb 4 8 16c 5 15 20 …5n(五).课堂小结:通过这节课的学习活动你有哪些收获?学了这么多,来小试身手吧!一、选择题1•在△ abc 中,/a 、/ b 、/c 的对边分别是a 、b 、c ,下列条件中,能判断 △ abc 为直角三角形的是a. a + b = cb. a:b:c = 3:4:5c. a = b = 2c2•若三角形三边长分别是6,8,10则它最长边上的高为a. 6b. 4.8c. 2.43如图,在四边形 abcd 中,已知:ab = 1, bc = 2, cd = 2, ad = 3,且 ab 丄 bc.试说明ac 丄cd.4 .要做一个如图所示的零件,按规定 Z b 与Z d 都应为直角,工人师傅量 得所做零件的尺寸如图,这个零件符合要求吗?为什么?5.已知:如图一个零件,ad = 4, cd = 3, Z adc = 90° ab = 13, bc = 12.求 图形的面积.6*(选做).在△ abc 中,bc=m2— n2, ab=m2 + n2, ac=2mn ( m>n>0 ) d. / a = Z b = Z c () d. 8(1)试判断△ abc的形状,并说明理由;(2)利用所给的be、ac、ab的长度的表达式,写出一组勾股数,使其中一个数是28.家作班级姓名1•在△ abc中,/a、/ b、/c的对边分别是a、b、c,下列条件中,能判断△ abc为直角三的为( )a. a+ b = cb. a:b:c= 3:4:5c. (c+a)(c-a)=b2d. / b-Z c=Z a,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 勾股定理的逆定理板书设计及课后作业
(1)△ABC的两边AB=5,AC=12,则BC=13.( )
(2)在△ABC中,若a=6,b=8,则c=10.( )
(3)由于0.3,0.4,0.5不是勾股数,故以0.3,0.4,0.5为边长的三角形不是直角三角形.( )
(4)由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数.( )
2.已知三角形的三边长分别为5 cm,12 cm,13 cm,则这个三角形是_______.
3.三条线段分别长m.n,p,且满足m2-n2=p2,以这三条线段为边组成的三角形为_______.4.在△ABC中,a=9,b=40,c=41,那么△ABC是( ).
A.锐角三角形B.直角三角形
C.钝角三角形’D.等腰三角形
5.分别以下列四组数为一个三角形的边长:①6,8,10;②5,12,13;③8,15,17;④4,5,6,其中能构成直角三角形的有( ).
A.4组B.3组
C.2组D.1组
6.如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ).
A.CD、EF、GH B.AB、EF、GH
C.AB、CD、GH D.AB、CD、EF
7.判断由线段a,b,c组成的三角形是不是直角三角形:
(1)a=7,b=24,c=25;
(2)a=1.5,b=2,c=2.5;
8.如图,在△DEF中,DE=17 cm,EF=30 cm,边EF上的中线DG=8 cm,试判断△DEF 是否为等腰三角形,并说明理由.
9.如图,CD⊥AB,垂足为D,如果AD=2,DC=3,BD=4.5,那么∠ACB是直角吗?试说明理由.
10.如图是一块地的平面图,其中AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC =90°,求这块地的面积.
11.如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.证明:AC ⊥CD.
第 1 页。

相关文档
最新文档