全等三角形的判定-角边角-角角边(最新)
《三角形全等的判定--角边角-角角边》说课稿-
![《三角形全等的判定--角边角-角角边》说课稿-](https://img.taocdn.com/s3/m/656c4f610a4c2e3f5727a5e9856a561252d3219a.png)
(1)三边(SSS)
满足全等三角 形的六组条件 中的三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(二)合作交流、解读探究
1.实验验证(探究5),探索新知(角边角)
(1)分组实验,前后桌4位同学为一组,共同完 成实验。
三、重点与难点
一、教材分析 二、教学目标 三、重点难点
【重点】 用角边角、角角边来确定两个三角形全
等, 以及用全等证明角的相等、线段相等。
【难点】 用角边角、角角边来确定两个三角形全等; 证明三角形全等时的规范的书写格式。
一、教材分析 二、教学目标 三、重点难点 四、教学流程
四、教学流程
(一)创设情境, 孕育新知
3.拓展提高
一、教材分析 二、教学目标 三、重点难点 四、教学流程
如图所示,在△ABC和△DEF 中,已有条件 AB=DE,还需要添加两个条件才能使 △ABC≌△DEF,不能添加的一组是()
A. ∠B=∠E BC=EF B. BC=EF AC=DF C. ∠A=∠D ∠B=∠E D. ∠A=∠D BC=EF
一、教材分析 二、教学目标
二、教学目标
【知识技能】 1.让学生在自主探究的过程中得出A.S.A推 导出A.A.S定, 掌握
【过程与方法】 经历探索三角形全等条件的过程, 体会如何 探索、研究问题, 培养学生合作精神, 让学生初 步体会数学中的分类思想。
【情感态度与价值观】 通过画图、比较、验证, 培养学生注重观察、 善于思考、不断总结的良好思维习惯。
1.生活情境设疑,激发学生兴趣
小明在上美术课时,不慎将一块三角形玻璃调色板打破 成如图所示的三块,小明小心翼翼地将三块碎玻璃板捡起, 准备包好拿去玻璃店配制,老师看到后对小明说,如果只你 拿一块去,你看行吗? 你会拿哪一块呢?
三角形全等的判定ASA-AAS及尺规作图五种基本作
![三角形全等的判定ASA-AAS及尺规作图五种基本作](https://img.taocdn.com/s3/m/838edd5a53d380eb6294dd88d0d233d4b04e3f7d.png)
以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。
《第2课时 利用“角边角”“角角边”判定三角形全等》导学案 2022年最新word版
![《第2课时 利用“角边角”“角角边”判定三角形全等》导学案 2022年最新word版](https://img.taocdn.com/s3/m/02d17af8763231126fdb110a.png)
4.3 第2课时 利用“角边角〞“角角边〞判定三角形全等【学习目标】1.掌握“角边角〞、“角角边〞作为条件判断两个三角形全等; 2.利用“角边角〞、“角角边〞的判定方法解决简单的实际问题。
【使用说明与学法指导】1.先精读一遍教材P100-P101页,利用“角边角〞、“角角边〞的判定方法解决简单的实际问题。
针对课前预习二次阅读教材,并答复以下问题.2.找出自己的疑惑和需要讨论的问题,随时记录在课本或导学案上,准备课上讨论质疑.【课前预习】1.以下三角形全等的是2. 三边对应相等的两个三角形全等,简写为或 3. 如图,,那么与相等吗?3.自主预习书本P100-P101页.【课堂探究】专题一、探究“角角边〞的判定方法1.假设三角形的两个内角分别是和,它们所夹的边为2。
你能用量角器和刻度尺画出这个三角形吗?4 2 44 2342 3(1)(2)(3) (4)2.你画的三角形与同伴画的一定全等吗?专题二、探究“角角边〞的判定方法1.假设三角形的两个内角分别是60°和45°,且45°所对的边为3cm,你能画出这个三角形吗?3cm2.你画的三角形与同伴画的一定全等吗?由此我们得到两种新的判定三角形全等的方法:▲规律整理表述:〔1〕对应相等的两个三角形全等,简写成“〞或“〞〔2〕对应相等的两个三角形全等,简写成“〞或“〞专题三、三角形全等的条件的应用例1:如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,△AOC≌△BOD吗?为什么?例2:如图,∠B=∠C ,AD平分∠BAC,你能证明△ABD≌△ACD?假设BD=3cm,那么CD有多长?【学习小结】1.判定两个三角形全等,我们学习了哪些方法?【课堂检测】1.如以下列图,∠B=∠C,AB=AC,那么△ABE≌△ACD吗?请说明理由。
★2.图中的两个三角形全等吗? 请说明理由。
★★3.如图,AC与BD交于点O,AD∥BC,且AD=BC,你能说明BO=DO吗?〔请用两种不同方法去说明〕【稳固作业】1.如右图,∠A=∠D ,∠1=∠2,那么要得到△ABC ≌△DEF ,还应给出的条件是〔 〕A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD2.如上图,∠A=∠D ,∠1=∠2,要根据“AAS 〞得到△ABC ≌△DEF ,还应给出的条件是____________________。
初中数学《三角形全等判定定理—“角边角”“角角边”》教案
![初中数学《三角形全等判定定理—“角边角”“角角边”》教案](https://img.taocdn.com/s3/m/0e925f0759fb770bf78a6529647d27284a733751.png)
教学设计复习引入一、巩固旧知1、能够的两个三角形叫做全等三角形。
2、全等三角形的性质有哪些?全等三角形的对应边,对应角。
3、已学的判定两个三角形全等方法有哪些?边边边:对应相等的两个三角形全等。
符号语言:边角边:和它们的对应相等的两个三角形全等。
符号语言:二、自主学习1.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.根据学生完成情况,了解学生对已学知识的掌握程度。
通过学生自主学习与思考,初步发现结论,同时激发学生勇于探索的科学精神。
教学过程教学环节教学活动评估要点ABCF ED探究新知 探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳: 相等的两个三角形全等(简称“角边角”或“ASA ”).几何语言:如图,在△ABC 和△DE F 中,∴△ABC ≌△DEF .典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC .求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB =AC , ∠B =∠C .求证:AD=AE .方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF .求证:△ADF ≌△CBE .引导学生通过动手画图、剪下来等操作,观察所画的图与原图是否重合,进而得出“角边角”的判定条件,并会用几何语言表述。
《三角形全等的判定--角边角-角角边》说课稿-ppt (2)
![《三角形全等的判定--角边角-角角边》说课稿-ppt (2)](https://img.taocdn.com/s3/m/e3e6a41bba1aa8114431d94e.png)
(四)例题讲解:
如右图,已知∠ ABC= ∠ DCB, ∠ ACB= ∠ DBC, 求证:△ABC≌△DCB。 证明:在△ABC和△DCB中, ∠ABC=∠ DCB(已知), BC=CB (公共边), ∠ACB=∠ DBC(已知) ∴△ABC≌△DCB(A.S.A)。 注意:公共边的利用
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好。 ②三角形全等书写三步骤:
写出在哪两个三角形中; 摆出三个条件用大括号括起来; 写出全等结论。
(六)课堂练习: 1、某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那 么最省事的办法是( ) A.带①去 B.带②去 C.带③去 D.带①和②去
一、教材分析 二、教学目标 三、重点难点
【重点】 (1)探究“角边角”公理 (2)利用“角边角”推导出“AAS” (2)理解应用“角边角”公理及其推 论,并能利用它们判定两个三角形全等 【难点】 (1)如何引导学生探究发现“ASA”公理 (2)培养学生严密的逻辑思维力, (3)规范学生证明三角形全等书写格式。
教具准备:一张三角形纸片,教学用三角板, 量角器,多媒体课件
学具准备:三角板,量角器,剪刀或小刀, 铅笔
教学流程
一、教材分析 教学目标 重点难点 二 教法 三 学情学法 四 教学过程
(一)回顾 (二)创设情境,孕育新知 1、生活情境设疑,激发学生兴趣
现在老师手上有一个三角形的教具,但是破弄坏了,你们能 不能用所学过的知识重新做出一个与原来完全一样的教具呢? 大家一起来帮老师想想办法吧
二、教学目标
一、教材分析 二、探究的过程中得出A.S.A推导出 A.A.S定,掌握”角边角“这一三角形全等的判定方法,并 解决实际问题。 2 发展学生有条理的数学语言的表表达能力 【过程与方法】 经历探索三角形全等条件的过程,体会如何探索、 研究问题,培养学生合作精神,让学生初步体会数学中 的类比思想。 【情感态度与价值观】 通过画图、比较、验证,培养学生注重观察、善于 思考、不断总结的良好思维习惯。
三角形全等的判定---角边角、角角边
![三角形全等的判定---角边角、角角边](https://img.taocdn.com/s3/m/f65be534af45b307e871974c.png)
《三角形全等的判定(角边角,角角边)》教学设计一、内容和内容解析(一)内容人教版《义务教育课程标准实验教科书·数学》八年级上册“12.2三角形全等的判定”(角边角,角角边).(二)内容解析全等三角形是研究图形的重要工具,只有掌握全等三角形的有关内容,并且能灵活的加以运用,才能学好等腰三角形、四边形和圆等内容,同时为今后研究轴对称、旋转等全等变换打下良好的基础.此外,也由于它在日常生活中有着广泛的应用,研究全等三角形,具有重要的意义.发展学生的合情推理和初步的演绎推理能力是《数学课程标准》的重要要求之一.本章是在七年级下册第五章出现证明和证明格式的基础上,进一步介绍了推理论证的方法.通过定理内容的规范化书写,并在例习题中注重分析思路,让学生学会思考、学会清楚地表达思考的过程,可以进一步培养学生的推理能力.同时,“12.2三角形全等的判定”中几种判定方法,是作为基本事实提出来的,通过画图和实验,让学生确信其正确性,符合学生的认知水平.这样的分析问题、解决问题的方法,对全章乃至以后的学习都是至关重要的.本节课是全等三角形判定的第三课时,主要探究利用“角边角”和“角角边”两种方法判定三角形全等,以及简单应用.探索三角形全等的条件,不仅是“全等三角形”知识体系的重要组成部分,而且在探索过程中所体现的思想方法,为学生主动获取知识、感悟三角形全等的数学本质、积累数学活动经验、体验运用类比的方法研究问题等,提供了很好的素材. 通过本节课的学习,可以加深学生对已学几何图形的认识,并为今后的学习奠定基础.(三)教学重点掌握角边角和角角边两个判定三角形全等的方法及简单应用.二、教学目标和目标解析(一)目标1.掌握角边角、角角边判定两个三角形全等的方法及简单应用.2.学会分析法、综合法解决问题.3.让学生在数学学习的过程中获得解决问题的经验.4.逐步养成良好的个性思维品质.(二)目标解析1.使学生掌握角边角、角角边判定两个三角形全等的方法,会运用这两种方法解决问题.2.通过有关的证明及应用,教给学生一些基本的数学思想方法,使学生逐步学会分别从题设或结论出发,寻找论证思路,学会用综合法证明问题,从而提高学生分析问题、解决问题的能力.3.通过学生探究特殊角度、特殊边长的三角形全等的条件,再由教师利用课件演示数学事实,让学生充分参与到数学学习的过程中来,获得解决问题的经验;通过习题变式,从中体会事物之间的相互联系与区别,从而进一步培养学生的辩证唯物主义观点.4.探究本课的两个判定方法,使学生经历“实践——观察——猜想——验证——归纳——概括”的认知过程,培养学生良好的个性思维品质.三、学生情况分析基于学生的学习基础,在研究几何图形的方法和合情推理方面还存在欠缺.本节课是学生在已经掌握了边边边和边角边判定之后,继续探索三角形全等的条件.他们已经了解了一些探究的思路,也经历过一些探究的过程:动手实践、观察猜想、归纳总结、巩固应用等.因此,本节课的学习,可以引导学生类比前面的研究方法.另外,由于本节课所探究的两种方法,其图形不易辨别,那么,学生如何分析图形之间的内在联系,如何清晰地表达数学思考的过程,也是教师应要特别关注的问题.本课教学难点:是利用角边角、角角边判定两个三角形全等方法的应用及规范化书写.四、教学支持条件分析根据本节课内容的特点,为了更直观、形象的突出重点、突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式,在教学过程中,通过设置一系列例题变式,创设问题情境,启发学生思考,利用画图,结合操作测量,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计1.开门见山,引出课题在前面的学习中,我们通过动手画图、观察猜想、总结归纳,对三角形全等的条件进行了探究.主要研究了“三边”对应相等和“两边一角”对应相等的情况,得到了两种判定两个三角形全等的方法.本节课,继续探究“两角一边”对应相等的情况.【设计意图】教师通过引导,帮助学生回忆已学知识,回顾探究的方法,使学生明确本节课要探究的问题,了解探究两个三角形全等的基本思路,弄清知识之间的联系.2.动手操作,实验探究问题1 先在一张纸上画一个△ABC,然后在另一张纸上画△A ,B ,C, ,使A, B, =AB , ∠A = ∠A,∠B = ∠B,△ABC和△A ,B ,C,能够重合吗?(教师引导学生分析画图步骤,用电脑演示画图过程. 同学之间观察对比,通过两个三角形叠放到一起,引导学生观察、猜想)【设计意图】通过学生动手画图,让学生明确已知两角及夹边怎样画出三角形.通过学生展示作品,以及同学之间观察对比,让学生确信结论的正确性.问题2 对于任意的两个三角形,当满足“两角及夹边”对应相等时,这两个三角形就一定能够全等吗?教师用电脑展示,给学生以直观的印象,学生总结得到角边角判定方法,教师给出符号语言的规范格式,强调“对应”的含义.【设计意图】通过观察多媒体动态演示的过程,进一步强化对两个三角形所满足条件的直观感知,使学生在验证猜想的过程中,获得解决问题的经验.3.应用新知,探究归纳问题3 解答下面的问题,你能得到什么结论?如图1,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?你能利用角边角证明你的结论吗?C DA'A B E 图1(教师提出问题,学生思考,找寻方法.师生共同总结角角边的判定方法,给出符号语言的规范格式)【设计意图】通过本题的练习,让学生在尝试运用角边角判定两个三角形全等的过程中,进一步加深对三个条件的理解.同时,训练学生的表达能力,使学生能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据.4.拓广探索,综合运用练习1 已知:如图,AB=A′ C ,∠A=∠A′,∠B=∠C求证:△ABE≌ △ A′ CD2、如图,已知AB=DE , ∠A =∠D , ,∠B=∠E ,则△ABC ≌△DEF 的理由是:3、如图,已知AB=DE ,∠A=∠D ,,∠C=∠F ,则△ABC ≌△DEF 的理由是:练习1、如图 ,AB=AC,∠B=∠C,那么△ABE 和△ACD 全等吗?为什么?(由学生分析,教师展示解答过程。
13.2.4三角形全等的判定(角边角或角角边)
![13.2.4三角形全等的判定(角边角或角角边)](https://img.taocdn.com/s3/m/5625cbe24afe04a1b071de7d.png)
B E ∵BC EF C F
在△ABC和△DEF中,
A
D
B
\
C
E
\
F
练习
∴ △ABC≌△DEF (A.S.A.)
例1、已知:点D在AB上,点E在AC上,BE和 CD相交于点O,AB=AC,∠B=∠C。 求证: △ABE≌△ACD
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) ∵ AB=AC(已知)
C
A
O
B
D
探究2
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?
A D
C E B
F
探究反映的规律是:
有两角和其中一个角的对边分别对应相等的 两个三角形全等(简写成“角角边”或 “A.A.S.”)
用数学符号表示
在△ABC和△A`B`C`中 ∠A=∠A` A
例2.如图,已知AB=AC,∠ADB= ∠AEC,求证:△ABD≌△ACE
证明:∵ AB=AC, ∴ ∠B= ∠C(等边对等角) ∵ ∠ADB= ∠AEC, AB=AC,
A
∴ △ABD≌△ACE(A.A.S.)
B
D
E
C
练习:
1.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
2:如图,已知∠ABC=∠D, ∠ACB=∠CBD判断图中的 两个三角形是否全等, 并说明理由.
不全等。因为虽然有两组内角相等, 且BC=BC,但BC不都是两个三角形两 组内角的夹边,所以不全等。
作业:
1.如图已知∠ABC=∠DCB, ∠ACB= ∠DBC, 求证:△ABC≌△DCB, AB=DC
三角形全等的判定方法(5种)例题+练习(全面)
![三角形全等的判定方法(5种)例题+练习(全面)](https://img.taocdn.com/s3/m/67bf10de988fcc22bcd126fff705cc1755275f80.png)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
三角形全等的判定:角边角和角角边_课件
![三角形全等的判定:角边角和角角边_课件](https://img.taocdn.com/s3/m/da30c04cfc4ffe473368abaa.png)
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
全等三角形的判定-角边角-角角边(最新)知识讲解
![全等三角形的判定-角边角-角角边(最新)知识讲解](https://img.taocdn.com/s3/m/44ff017ab90d6c85ed3ac63f.png)
(1)AC∥BD,CE=DF, AC=BD
(SAS)
( 2) AC=BD, AC∥BD ∠A=∠B (ASA)
( 3) CE=DF,∠AEC=∠BFD ∠C=∠D (ASA)
( 4)∠ C= ∠D,AC=BD ∠A=∠B A
(ASA)
C
F E
D
B
思考:如果两个三角形有两个角 和其中一个角的对边分别对应相 等,那么这两个三角形是否全等?
用符号语言表达为: AB=DE B C
在△ABC与△DEF中 ∠B=∠E
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件
(1)_A__C_=_A_D__∠__C_A_B_=__∠_D_A_B (SAS)
如果知道两个三角形的两个角及一条边分别对 应相等,这两个三角形一定全等吗?
这时应该有两种不同的情况: (1)两个角及两角的夹边; (2)两个角及其中一角的对边
图24.2.8
探究1 先任意画出一个△ABC,
再画一个△A'B'C',使A'B'=AB, ∠A'=∠A, ∠B' =∠B 。把画好
的△A'B'C'剪下,放到△ABC上, 它们全等吗?
( 2 ) __B_C_=_B__D__A__C_=_A_D____
(SSS)
C
A
B
D
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
三角形全等的条件(HL)最新版
![三角形全等的条件(HL)最新版](https://img.taocdn.com/s3/m/6b2bfb76f7ec4afe05a1df2f.png)
等,这两个直角三角形全等吗?为什么?
答:全等,根据ASA
思考:
B
A
C
如图,△ABC中,∠C =90°,
直角边是__B__C_、_A__C__,斜边是__A_B___。
我们把直角△ABC记作 Rt△ABC。
前面学过的四种判定三角形全等的方法,对 直角三角形是否适用?
情境问题1:
舞台背景的形状是两个直角三角形,为 了美观,工作人员想知道这两个直角三角 形是否全等,但每个三角形都有一条直角 边被花盆遮住无法测量。
射线C´N于点A´; ⑷ 连接A´B´.
现象:两个直角三角形能重合。
∟
C N AA´ ´
∟
说明:
M BB´´
C´´
探索发现的规 律是: 斜边和一条直角边对应相等的两个直
角三角形全等。
简写为“斜边、直角边”或“HL”。
A
A´
几
何
语
B
C
∟ ∟
B´
C´
言:∵在Rt△ABC和Rt△A´B´C´中
AB=A´B´ BC=B´C´
A
D
B
CE
F
P102探 究 8 请你动手画一画
A
任意画出一个Rt△ABC,∠C=90°。
再画一个Rt△A´B´C´,使得∠C´= 90°,
B´C´=BC,A´B´= AB。
按照下面的步骤画Rt△A´B´C´
∟
⑴ 作∠MC´N=90°;
B
C
N A´
⑵ 在射线C´M上取B´C´=BC;
⑶ 以B´为圆心,AB为半径画弧, 交射线C´N于点A´;
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,��
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
![三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)](https://img.taocdn.com/s3/m/d80af6d60875f46527d3240c844769eae009a38b.png)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
全等三角形的判定-角边角和角角边
![全等三角形的判定-角边角和角角边](https://img.taocdn.com/s3/m/d3669974366baf1ffc4ffe4733687e21af45ffa7.png)
在选择时,可以根据已知条件的多少和问题的具体要求来决定使用哪种判定法。例如,如果 已知条件更符合角边角(ASA)判定法的条件,那么选择角边角(ASA)判定法可能更为简 便和直接。
PART 05
全等三角形的应用
两种方法的应用范围
角边角(ASA)判定法
01
适用于已知两个角和它们之间
的边的情况。
02
在几何证明和实际问题中广泛
应用,如建筑设计、地图制作
等。
03
角角边(AAS)判定法
04
适用于已知两个角和一个非夹
角的边的情况。
05
在解决一些特定问题时更为方
便,如测量问题、航海问题等
。
06
两种方法的选择原则
选择原则
角边角判定法的应用
在证明两个三角形全等时,如果已知条件符合角边角判定法 ,可以直接应用该判定法得出结论。
角边角判定法也可以用于解决一些实际问题,例如测量、绘 图等。
角边角判定法的证明
根据三角形的内角和性质,两个三角形的两组对应角相等,则它们的第三组对应角 也相等。
由于夹边相等,根据三角形的边角边全等判定,这两个三角形全等。
因此,角边角判定法得证。
PART 03
角角边判定法
REPORTING
WENKU DESIGN
角角边判定法的定义
两个三角形中,如果两个角分别相等,且这两个角所夹的一边也相等,则这两个 三角形全等。
简称"AAS"或"角角边"判定法。
角角边判定法的应用
在证明两个三角形全等时,如果已知条件符合角角边判定 法,可以直接应用此判定法证明三角形全等。
《全等三角形的判定方法角角边》
![《全等三角形的判定方法角角边》](https://img.taocdn.com/s3/m/231fe0e70975f46527d3e193.png)
我能行!
如Hale Waihona Puke ,AB⊥BC, AD⊥DC, ∠1=∠2. 求证:AB=AD
证明: ∵AB⊥BC, AD⊥DC, ∴∠B=∠D=90°(垂直定义)
在△ABC与△ADC中,
∠B=∠D(已证) ∠1=∠2(已知) AC=AC(公共边) ∴ △ABC≌△ADC(AAS) ∴ AB=AC(全等三角形对应边相等)
例2 已知:如图,点B,F,C,E在同一条直线上, AC∥FD,∠A=∠D,BF=EC. 求证:△ABC≌△DEF.
证明 ∵ AC∥FD, ∴∠ACB =∠DFE.
∵ BF= EC,
∴ BF+FC=EC+FC, 即 BC=EF .
在△ABC 和△DEF中, ∠A =∠D, ∠ACB =∠DFE, BC = EF, ∴ △ABC≌△DEF(AAS).
全等三角形的判定方法
———角角边
回顾
三角形全等判定(一)
两边及其夹角分别相等的两个三角形全等. 简记为SAS (或边角边)
三角形全等判定(二)
两角及其夹边分别相等的两个三角形全等. 简记为 (ASA) 或角边角
探究
如果两个三角形有两个角及其中一个角的对边分 别对应相等,那么这两个三角形是否一定全等?
已知:∠A=∠A′, BC=B′C′ 求证:
∠B=∠B′,
△ABC≌△A′B′C′
A C
B
B′
A′
C′
证明: ∵∠A=∠A′,
∠B=∠ B′
又∵∠A+∠B+∠C=180°(三角形 的内角和等180°)
同理∠A′+∠B′+∠C′=180° ∴ ∠C=∠C′.
在△ABC和△A′B′C′中 ∠B=∠ B′ (已知) BC=B′C ′(已知) ∠C=∠C′ (已证) ∴△ABC≌△A′B′C′(ASA)
三角形全等的判定:角边角、角角边(主要内容)
![三角形全等的判定:角边角、角角边(主要内容)](https://img.taocdn.com/s3/m/c329576d84868762cbaed533.png)
么?为什么?
BE=CD
A 证明:你在还△能A得B出E与其他△ACD中 ∠什B么=∠结论C ? (已知)
D
E
∠A= ∠A (公共角)
O
AE=AD (已知)
B
C ∴ △ABE ≌△ACD(AAS)
∴ BE=CD (全等三角形对应边相等)
青苗辅导1
16
例2. 如图,O是AB的中点,A = B , AOC 与 BOD 全等吗? 为什么?
分析:能否转化为ASA?
证明:∵ ∠A=∠D, ∠B=∠E(已知)
∴∠C=∠F(三角形内角和定理) 在△ABC和△DEF中
∠B=∠E BC=EF
∠C=∠F ∴△ABC≌△DEF(ASA)
两角及你能一从角上的题对中边得对到什应么相结等论的? 两个三角形全等(AAS)。
青苗辅导1
9
如
C
C′
何
用
符
A
B A′
A∠BB∥=D∠EE (ASA)
或∠A=∠D (AAS)
或 AC=DF (SAS)
青苗辅导1
21
拓展 1.根据题目条件,判别下面的两个三
角形是否全等,并说明理由.
(不全等,因 为BC虽然是公 共边,但不是 对应边。)
青苗辅导1
22
2.要使下列各对三角形全等,需要增加什
么条件?
(1)
(2)
∠A=∠D, ∠B=∠F, _________;
说明理由.
解 ∵ △ABC是等腰三角形
∴ AC=BC ∠A=∠B
又∵ AD、BE 分别是
∠A、∠B 的角平分线
∴ ∠BAD= 1∠A
2
∠ABE= ∠1B
2
∠BAD =∠ABE ∵ AB为公共边
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等. (AAS) A
A′
用
B
C B′
C′
符 号
在△ABC和△ A'B'C'中
{ 语
言 表
∠B= ∠B' ∠A= ∠A'
达
BC= B'C'
为∴ △ABC≌△ A'B'C'
(AAS)
两角和它们的夹边对应相等的两个三角 形全等,简写成“角边角”或“ASA”。
(ASA)
(AAS)
两角和其中一角的对边分别相等的两个 三角形全等,简写成“角角边”或“AAS”
A
A′
B
C B′
C′
例:如图:如果两个三角形有两个角及其 中一个角的对边分别对应相等,那么这两 个三角形是否一定全等?
已知:∠A=∠D, ∠B=∠E, AC=DF 求证: △ABC≌△DEF
A
D
B
E C
F
全等三角形的判定方法4:
如果两个三角形的两个角及其中一个角
的对边分别对应相等,那么这两个三角形
(1)_A__C_=_A_D__∠__C_A_B_=__∠_D_A_B (SAS)
( 2 ) __B_C_=_B__D__A__C_=_A_D____
(SSS)
C
A
B
D
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
问:通过实验可以发现什么事实?
全等三角形的判定方法3:
如果两个三角形的两个角及其夹边分别对应相等, 那么这两个三角形全等. 角边角 (ASA)
A
A′
B
C B′
在△ABC和△ A'B'C'中
{∠A= ∠A' AB= A'B' ∠B= ∠B'
∴ △ABC≌△ A'B'B=AC,∠B=∠C,(1)△ABE 和△ACD全等吗?(2)AD=AE吗?
(1)AC∥BD,CE=DF, AC=BD
(SAS)
( 2) AC=BD, AC∥BD ∠A=∠B (ASA)
( 3) CE=DF,∠AEC=∠BFD ∠C=∠D (ASA)
( 4)∠ C= ∠D,AC=BD ∠A=∠B A
(ASA)
C
F E
D
B
思考:如果两个三角形有两个角 和其中一个角的对边分别对应相 等,那么这两个三角形是否全等?
1.要使下列各对三角形全等,需要增加什
么条件?
(1)
(2)
∠A=∠D, ∠B=∠F, _________;
∠A=∠D, AB=DE, _________;
2.如图,已知AB与CD 相交于O,∠A= ∠D,CO=BO,说明△AOC与△DOB全
等的理由.
(利用A.A.S定理说明)
例
已知:AC∥DF,BC∥EF,AE=BD. 证明: AC=DF
两边和它们的夹角对应相等的两个三角形
全等。简写成“边角边”或“SAS” A
用符号语言表达为: AB=DE B C
在△ABC与△DEF中 ∠B=∠E
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件
的△A'B'C'剪下,放到△ABC上, 它们全等吗?
探 究1
已知:任意 △ ABC,画一个△ A'B'C', 使A'B'=AB, ∠A' =∠A, ∠B'=∠B :
画法: 1、画A'B'=AB;
2、在 A'B'的同旁画∠DA'B'=∠A , ∠EB'A' =∠B, A' D,B'E交于点C'。
△A'B'C'就是所要画的三角形。
F
A E
C
B D
试一试
1、如图 ,AB=AC,∠B=∠C,那么△ABE 和△ACD全等吗?为什么?
解:△ABE ≌△ACD A
理由: ∵在△ABE与△ACD中
D
E
∠B=∠C (已知)
AB=AC (已知)
∠A= ∠A (公共角)
B
C ∴ △ABE ≌△ACD (ASA)
2、如图,AD=AE,∠B=∠C,那么BE 和CD相等么?为什么?
解:BE=CD
A 理由: 在△ABE与△ACD中
D
E
∠A=∠A (公共角) ∠B= ∠C (已知)
AE=AD (已知)
B
C ∴ △ABE ≌△ACD(AAS)
∴ BE=CD
(全等三角形对应边相等)
4已知:如图,∠1= ∠2, ∠3 = ∠4。 求证: AC=AD。
D
A
1 2
3
B4
C
5.已知:如图,AB=AC, AE=AD ∠1= ∠2。BE交AC于G,CD交AB 于F, BE与CD相交与O. 求证: (1) ∠B= ∠C
怎么办?可以 帮帮我吗?
问题导入
如果知道两个三角形的两个角及一条边分别对 应相等,这两个三角形一定全等吗?
这时应该有两种不同的情况: (1)两个角及两角的夹边; (2)两个角及其中一角的对边
图 24.2.8
探究1 先任意画出一个△ABC,
再画一个△A'B'C',使A'B'=AB, ∠A'=∠A, ∠B' =∠B 。把画好
全等三角形的判定-角边角-角角边 (最新)
知识梳理: 三角形全等判定方法1
三边对应相等的两个三角形全等(可以 简写为“边边边”或“SSS”). A
用符号语言表达为:
在△ABC和△ DEF中
AB=DE
B
C
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
知识梳理: 三角形全等判定方法2
(2) △ADF≌ △AEG
A
1
2
D
F
O
B
E G
C
本节课我们主要学习了有关 全等三角形的“两角一边”识别 方法,有两种情况:
1. 两个角及两角的夹边;
2.两个角及其中一角的对边。
(都能够用来识别三角形全等。)
到目前为此,我们共学了几种 识别三角形全等的方法?
A
D
E
B
C
练习:如图,∠ABC=∠DCB,∠ACB=
∠DBC,
试说明△ABC ≌△DCB.
A
D
B
C
解 ∵ ∠ABC=∠DCB,∠ACB=∠DBC,(已知)
又∵ BC=CB(公共边)
∴△ABD ≌△ACD.(ASA)
课
堂 如图,要证明△ACE≌ △BDF,根据给定的条件 练 和指明的依据,将应当添设的条件填在横线上。 习