仪器分析-气相色谱法
仪器分析学习 第6章 色谱法导论-气相色谱
* 用时间表示 单位: s或cm
(1)保留时间 tR
试样从进样开始到柱后出现峰极大点
时所经历的时间(O´B)
(2)死时间
t 0
不被固定相吸附或溶解的气体(如:空
* 用体积表示 单位:mL
(1)保留体积 VR
从进样开始到出现峰极大所通过的
载气体积。 VR=tRF0 F0:柱出口处载气流速 mL/min
精选ppt
2)评价柱效的参数
理论塔板数(n)
n5.5(4tR )21(6tR)2
W 1/2
W
理论塔板高度(H) 有效理论塔板数
H L n
n有效 5.54 (W tR '1
)2
16 (tR ' )2 W
2
有效理论塔板高度
注意事项:
L H 有效 n有效
(1)n大,柱效高,分离好,前提是两组分分配系数K应有差
H A B /u C gu C luA B /u Cu
由此可知:流动相线速u一定时,仅在A、B、C较小时,塔板高 度H才能较小,柱效才较高;反之柱效较低,色谱 峰将展宽。
这一方程对选择色谱分离条件具有实际指导意义,它指出 了色谱柱填充的均匀程度,填料颗粒的大小,流动相的种 类及流速,固定相的液膜厚度等对柱效的影响。
3) 塔板之间无分子扩散(忽略试样 的纵相扩散)
4) 组分在所有塔板上的分配精选系ppt 数保 持常数
精馏塔示意图
精选ppt
2、塔板理论之推导结论
1) 当组分进入色谱柱后,在每块塔板上进行两相间的分配, 塔板数越多,组分在柱内两相间达到分配平衡的次数也越 多,柱效越高,分离就越好。
n L H
n50 流出曲线呈基本对称的峰形; 当 n 达 103-106 流出曲线趋近于正态分布;
仪器分析
影响因素:第三章气相色谱法1. 当只要色谱柱的塔板数足够多,任何两物质都能被分离吗?答:错误的。
根据塔板理论,单位柱长的塔板数越多,表明柱效越高。
塔板理论给出了衡量色谱柱分离效能的指标,但柱效并不能表示被分离组分的实际组分的世纪分离效果,因为两组分的分配系数K相同时,无论该色谱柱的塔板数多大都无法实现分离。
2. 气相色谱中,固定液选择的基本原则是什么?如何判断化合物的出峰顺序?答:固定液选择的基本原则是:①挥发性小②热稳定性好③熔点不能太高④对试样中的各组分有适当的溶解能力⑤化学稳定性好,不与试样发生不可逆化学反应⑥有合适的溶剂溶解。
如何判断化合物的出峰顺序?答:①分离非极性组分时,通常选用非极性固体相,各组分按照沸点顺序出峰,低沸点组分先出峰②分离极性组分时,一般选用极性固定液,各组分按照极性大小顺序流出色谱柱,极性小的先出峰。
解答题1.为什么离子选择性电极对欲测电子具有选择性?如何估量这种选择性?答:离子选择性电极是以电位测量溶液中某些特定离子活度的指示电极。
各种离子选择性电极一般均由敏感膜极其支持体,内参比电极,内参比溶液组成,其电极电位产生的机制都是基于内部溶液与外部溶液活度不同而产生的电位差。
起核心部分是敏感膜,它主要对欲测电子有响应,而对其他离子则无响应或者响应很小,因此每一种离子选择性电极都具有一定的选择性。
而估量这种选择性可用离子选择性电极的选择性系数来估量其选择性。
2.何为分析线对?在光谱定量分析中选择内标元素及分析线对的原则是什么?答:在被测元素的光谱中选择一条作为分析线(强度为I),在选择内标物的一条谱线(强度为I0),组成分析线对。
选择原则:①内标元素含量一定②内标元素与被测元素在光源作用下应有相近的蒸发性质③分析线对应匹配,同为原子线或者离子线,且激发电位相近,形成“匀称线对”。
④分析线对波长应尽可能接近,分析线对的两条谱线应没有自吸或自吸很小,并且不受其他谱线干扰。
3.气相色谱定量的方法主要有哪几种?各适合什么条件下使用?答:归一化法:所有组分都出峰,且面积都能准确测定出来。
食品仪器分析-气相色谱法参考答案
气相色谱习题一、填空题1.在气一固色谱柱内,各组分的分离是基于组分在吸附剂上的吸附、脱附能力的不同,而在气液色谱中,分离是基于各组分在固定液中溶解、挥发的能力的不同。
2.色谱柱是气相色谱的核心部分,色谱柱分为填充柱型和毛细管柱型两类,通常根据色谱柱内充填的固体物质状态的不同,可把气相色谱法分为气固色谱和气液色谱两种。
3.色谱柱的分离效能,主要由柱中填充物所决定的。
4.色谱分析选择固定液时根据“相似性原则”,若被分离的组分为非极性物质,则应选用非极性固定液,对能形成氢键的物质,一般选择极性或氢键型固定液。
5.色谱分析中,组分流出色谱柱的先后顺序,一般符合沸点规律,即低沸点组分先流出,高沸点组分后流出。
6.色谱分析从进样开始至每个组分流出曲线达最大值时所需时间称为保留时间,其可以作为气相色谱定性分析的依据。
7.一个组分的色谱峰其保留值可用于定性分析。
峰高或峰面积可用于定量分析。
峰宽可用于衡量柱效率,色谱峰形愈窄,说明柱效率愈高。
8.无论采用峰高或峰面积进行定量,其物质浓度和相应峰高或峰面积之间必须呈关系,符合数学式 mi=fA 这是色谱定量分析的重要依据。
9.色谱定量分析中的定量校正因子可分为绝对和相对校正因子。
10.色谱检测器的作用是把被色谱柱分离的组分根据其物理或物理化学特性,转变成电信号,经放大后由色谱工作站记录成色谱图。
11.在色谱分析中常用的检测器有热导、氢火焰、火焰光度、电子捕获等。
12.热导池检测器是由池体、池槽、热丝三部分组成。
热导池所以能做为检测器,是由于不同的物质具有不同的热导系数。
13.热导池检测器在进样量等条件不变的前提下,其峰面积随载气流速的增大而减小,而氢火焰检测器则随载气流速的增大而增大。
14.氢火焰离子化检测器是一种高灵敏度的检测器,适用于微量有机化合物分析,其主要部件是离子室。
15.分离度表示两个相邻色谱峰的分离程度,以两个组分保留值之差与其峰宽之比表示。
二、判断题1.色谱分析是把保留时间作为气相色谱定性分析的依据的。
仪器分析(第四版)第二章
3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM
推导:
组分和流动相通过长度为L的色谱柱,所需时间为:
理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500
结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化
仪器分析笔记《气相色谱分析》
填充柱(Packing column):常用不锈钢制成,内径2~4 mm,柱长1~3m。填充吸附剂或覆盖
在载体上均匀固定液膜。
毛细管柱(Capillary column):常用石英制成,内径0.1~0.5mm,柱长可达数十米。固定液直
接涂在毛细管内壁表面。
B、气相色谱固定相可分为:
1.2.2色谱分离的基本理论
柱效率可用理论塔板数(n)或理论塔板高度(H)表示。柱效率的高低能反映组分在柱内两相间的分配情况和组分通过色谱柱后峰加宽的程度,它与组分在气相中的扩散及在液相中的传质阻力有关。
1、塔板理论
塔板理论是将色谱柱比作蒸馏塔,柱内有若干“想象”的塔板。每两块塔板之间的距离称为板高,各组分就在这些塔板间隔的气液两相间进行分配,经过多次分配平衡后,分配系数小的组分先离开色谱柱,分配系数大的组分,后离开色谱柱。
C、按分离的原理分类
①吸附色谱:利用组分在固定相上的吸附能力强弱不同分离。
②分配色谱:利用组分在固定液中溶解度不同分离。
③凝胶(排阻)色谱:利用大小不同的分子在多孔固定相中的选择渗透分离
④离子交换色谱法:利用组分在离子交换剂上的亲和力大小不同分离
3、气相色谱仪组成
Ⅰ载气系统:气源、气体净化器、供气控制阀门和仪表;
(1)分配系数
在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比,称为分配系数。
式中—— :组分在固定相中的浓度; :组分在流动相中的浓度。
该组分与固定液分子间作用力 ;
空气在固定液中不溶解,其 ,故空气在柱子内的滞留时间最短,最先从色谱柱中馏出,因此,将空气的保留时间称之为死时间;
被测组分的 相差越大,越容易分离;
仪器分析之气相色谱法试题及答案
:选择题1 .在气相色谱分析中,用于定性分析的参数是(A ) A 保留值 B 峰面积 C 分离度 D 半峰宽2 .在气相色谱分析中,用于定量分析的参数是(D )A 保留时间B 保留体积C 半峰宽D 峰面积3 .良好的气-液色谱固定液为 (D ) A 蒸气压低、稳定性好 B 化学性质稳定C 溶解度大,对相邻两组分有一定的分离能力D A 、B 和 C6 .色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时(B ) A 进入单独一个检测器的最小物质量B 进入色谱柱的最小物质量C 组分在气相中的最小物质量D 组分在液相中的最小物质量 7 .在气-液色谱分析中,良好的载体为(D ) A 粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C 化学惰性、热稳定性好,有一定的机械强度D A 、B 和C8 .热导池检测器是一种(A ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器D 只对含硫、磷化合物有响应的检测器 10.下列因素中,对色谱分离效率最有影响的是(A ) A 柱温 B 载气的种类C 柱压D 固定液膜厚度三:计算题 1 .热导池检测器的灵敏度测定:进纯苯1mL 苯的色谱峰高为4 mV,半峰宽为1 min,柱出 口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为0.88g/mL )。
若仪器噪声为0.02 mV 计算其检测限。
S _ —G# 哥 尿】时F _ 4x1x20 二 go §解: ,, . mV- ml-- mg 1& =9= ^^=44x10-4 'J : 一:mg. mL 1 2 . 一根2 m 长的填充柱的操作条件及流出曲线的数据如下:流量 20 mL/min ( 50 C)柱前压力:133.32 kpa空气保留时间0.50 min 正己烷保留时间3.50 min气相色谱法练习柱温50 C 柱后压力101.32kPa正庚烷保留时间4.10 min①计算正己烷,正庚烷的校正保留体积;②若正庚烷的半峰宽为0.25 min ,用正庚烷计算色谱柱的理论塔板数和理论塔板高度;③求正己烷和正庚烷的分配比k1和k2。
仪器分析气相色谱分析
甲醇淋洗、烘干
酸。一些拖尾,可加 H3PO4 或 KOH 添加剂解决。
碱洗
5-10%NaOH 甲醇液回流, 水、甲醇淋洗、烘干
除 Al2O3 酸性作用点。用于胺类等碱性物质。
硅烷化 釉化
加入 DMCS 或 HMDS 等硅 烷化试剂,使与-SiOH 反应 2%Na2CO3 浸泡担体,过滤 得滤液再水稀 3 倍,用稀滤 液淋洗担体,烘干后再高温 处理
气固色谱:利用不同物质在固体吸附剂上的物理 吸附——脱吸能力不同实现物质的分离。只适于 较低分子量和低沸点气体组分的分离分析。
气液色谱:利用待测物在气体流动相和固定在惰 性固体表面的液体固定相之间的分配原理实现分 离。
第一节 气相色谱仪
102G型气相色谱仪
102型气相色谱仪 常用于学生实验
GC-7890气相色谱仪
350~550oC 活化
永久气体
不同极性 170oC
除水、通气活化
水+气体氧 +CH4+低级醇
化
物
二 气液色谱固定相——载体+固定液 由载体和固定液构成; 载体为固定液提供大的惰性表面,以承担固定
液,使其形成薄而匀的液膜。 1. 载体 也称担体
惰性的,多孔性固体颗粒。 对载体的要求:稳、匀、大。 载体类型:分为硅藻土型和非硅藻土型,后硅藻土型
第3章 气相色谱分析
3.1、气相色谱仪 3.2、气相色谱流动相与固定相 3.3、气相色谱检测器 3.4、 气相色谱分离分析条件 3.5、气相色谱定性方法 3.6、气相色谱定量方法 3.7、 毛细管柱气相色谱法简介 3.8、气相色谱的应用
气相色谱过程:待测物样品被被蒸发为气体 并注入到色谱分离柱柱顶,以惰性气体 指不与 待测物反应的气体,只起运载蒸汽样品的作用, 也称载气 将待测物样品蒸汽带入柱内分离。 其分离原理是基于待测物在气相和固定相之 间的吸附——脱附 气固色谱 和分配 气液色 谱 来实现的。因此可将气相色谱分为气固色 谱和气液色谱。
仪器分析气相色谱法
仪器分析气相色谱法气相色谱法(Gas Chromatography,GC)是一种常用的分析技术,在化学、生物、环境等领域中广泛应用。
该技术通过样品在气相色谱柱中的分离和检测,可以对复杂的混合物进行分析和定量。
本文将介绍气相色谱法的基本原理、仪器分析方法以及应用领域。
一、气相色谱法的基本原理气相色谱法是一种层析技术,原理是通过样品在一个固定相(色谱柱内涂层的液体或固体)和一个惰性气体流动的气相之间的分配来进行分离。
在气相色谱仪中,样品通过进样口被注入到气相色谱柱中,柱温控制使得样品能够在柱内发生分离。
分离后的组分通过检测器检测,得到相应的信号图谱。
气相色谱法的分离机理有吸附、分配、离子交换、凝聚相分离等方式。
其中最常用的是吸附分离,即通过固定相对不同组分的吸附性能进行选择性分离。
二、气相色谱仪的基本组成及原理气相色谱仪主要由进样系统、色谱柱、载气系统、检测器和数据处理系统等部分组成。
进样系统用于将样品引入到气相色谱柱中,色谱柱进行分离,载气系统用于将惰性气体送入色谱柱以推动样品的迁移,检测器用于检测组分的信号,数据处理系统则用于对检测信号进行分析和处理。
在气相色谱仪中,进样系统的关键部分是进样口、进样器和进样针。
色谱柱是气相色谱法中的核心装置,决定了样品的分离效果。
检测器根据不同的检测原理可以分为不同种类,如火焰光度检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
三、气相色谱法的应用领域气相色谱法广泛应用于化学、生物、环境等领域。
在化学领域,气相色谱法可用于研究化合物的结构和性质、分析有机物、无机物等;在生物领域,可以用于检测生物样品中的氨基酸、脂肪酸、激素等;在环境领域,可用于监测空气、水、土壤中的有机物、农药、挥发性物质等。
总之,气相色谱法是一种重要的分析技术,具有高分析效率、分辨率高、样品消耗少等优点,被广泛应用于各个领域。
通过不断改进仪器设备和方法,气相色谱法将在未来的研究中发挥更重要的作用。
仪器分析-气相色谱法
性质相近时,分子间的作用力就越大,分配系数大, 组分的保留时间长,有利于分离
➢被测组分为非极性:选用角鲨烷、阿皮松等非极性固定液, 出峰顺序为组分的沸点高低,低的先流出
➢分离强极性物质: 选用强极性固定液, 组分按极性从 小到大的顺序先后流出色谱柱
➢能形成氢键的试样,如醇、酚、胺和水等: 选用氢键型 固定液,如聚乙二醇—2000
1、柱长的选择
增加柱长可使理论塔板数增大,但同时使峰宽加 大,分析时间延长。柱长选择以使组分能完全分离, 分离度达到所期望的值为准。
2、载气及其流速的选择
曲线的最低点,塔板高度H最小,柱效最高,其相应 的流速是最佳流速。
3、柱温的选择
提高柱温可使气相、液相传质速率加快,有利于 降低塔板高度,改善柱效。
AC-1毛细管柱
色谱柱炉 气化室 检测器 温度控制方式:恒温 程序升温: 在一个分析周期内柱温随时间由低温向高温作
线性或非线性变化。
色谱柱分离后的组分按时间及其浓度或质量的变化, 转化成易于测量的电信号, 得到该混合样品的色谱流 出曲线及定性和定量信息。
菊酯类气雾杀虫剂色谱图
一、两组分的分配系数差异要大,填充柱γ2,1≥1.15 才能分开 二、稳定性好、沸点高、挥发性小,不气液色谱固定相
填充柱
2、毛细管柱——空心柱
涂壁空心柱是将固定液均匀地涂在内径0.l~0.5mm的 毛细管内壁而成,毛细管材料可以是不锈钢,玻璃或石英。
毛细管色谱柱渗透性好,传质阻力小,而柱子可以做 到长几十米。与填充往相比,其分离效率高(理论塔板数 可达106)、分析速度快、样品用量小,但柱容量低、要求 检测器的灵敏度高,并且制备较难。
含碳有机物在氢气和空气火焰中燃烧产生离子,在 外加的电场作用下,使离子形成离子流,产生电信号。
仪器分析-气相色谱分析
• 3、保留值:是试样各组分在
色谱柱中保留行为的量度,它 反映组分与固定相间作用力大 小,通常用保留时间和保留体 积表示。 死时间tM:不被固定相吸附或 溶解的组分(如空气、甲烷) 从进样到出现其色谱蜂最大值 所需的时间,图中O'A'所示。 保留时间tR :指某组分通过 色谱柱所需时间,即试样从进 样到出现峰极大值时的时间, 图中O‘B所示。 调整保留时间tR’ 死时间后的 保留时间,它是组分在固定相 中的滞留时间。图中A’B所示, 即 tR’ = tR - tM
通常以有效塔板数neff 和有效塔板高度Heff 表示:
neff H eff
t t 2 5.5 4( ) 1 6( )2 W1 / 2 Wb L neff
' R
' R
2-2-3 速率理论
• 塔板理论存在的假定有缺陷,不能解释塔板高度H
受那些因素影响. 1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论。 • van Deemter方程:H=A+B/u+C*u u 为流动相线速度; A,B,C 为常数. 其中: A — 涡流扩散系数; B — 分子扩散系数; C — 传质阻力系数(包括液相和固相传质阻力系 数)
• 1、气路系统
• 载气:H2,N2,He,Ar等 • 净化器:提高载气纯度 • 稳压恒流装置,气体流速控制和测量。
• 2、进样系统
• 进样器: 微量注射器、六通阀 • 气化室:瞬间气化,死体积尽可能小
• 3、分离系统
• 色谱柱有填充柱和毛细管柱两大类
2-1-3 组成
• • • • •
4、温控系统 色谱柱、气化室、检测室三处温度控制 气化室温度应使试样瞬间气化但又不分解; 检测器除氢火焰外都对温度敏感; 柱温的变化影响柱的选择性和柱效,因此柱室的 温度控制要求精确,温控反复根据需要可以恒温, 也可以程序升温。
仪器分析 气相色谱
(2) 灵敏度高
可以检测出μg·g-1(10-6)级甚至ng·-1(10-9)级的物质量。 g
(3) 分析速度快
一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广
气相色谱:沸点<400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。 不足之处: 被分离组分的定性较为困难。
42
2、气相色谱柱及固定相的种类
分离系统由色谱柱组成,它是色谱仪的核心 部件,其作用是分离样品。色谱柱主要有两 类:填充柱和毛细管柱。 1)填充柱 填充柱由不锈钢或玻璃材料制 成,内装固定相,一般内径为2~6 mm,长 0.5~10m。填充柱的形状有U型和螺旋型二 种。
43
2)毛细管柱 毛细管柱又叫空心柱,分为 涂壁,多孔层和涂载体空心柱。涂壁空心柱 是将固定液均匀地涂在内径0.l~0.5 mm的 毛细管内壁而成,毛细管材料可以是不锈钢, 玻璃或石英。 毛细管色谱柱渗透性好,传质阻力小, 而柱子可以做到长几十米。与填充往相比, 其分离效率高(理论塔板数可达106)、分 析速度块、样品用量小,但柱容量低、要求 检测器的灵敏度高,并且制备较难。
VR= tR qVo
29
6.调整保留体积VR 某组分的保留体积扣除死体积后,称 为该组分的调整保留体积。
VR = VR V0 = tR qVo
30
(4) 相对保留值r21
组分2与组分1调整保留值之比: r21 = t´R2 / t´R1= V´R2 / V´R1 相对保留值只与柱温
和固定相性质有关,与其他
死体积V0 指色谱柱在填充后,柱管内固定 相颗粒间所剩留的空间、色谱仪中管路 和连接头间的空间以及检测器的空间的 总和。当后两项很小可忽略不计时,死 体积可由死时间与色谱柱出口的载气流 速qVo(cm3· -1)计算。 min
仪器分析第5章 气相色谱分析法PPT课件
30
理论塔板数与色谱参数之间的关系为: 理论塔板数n的经验公式
n5.54 (tR )216 (tR)2
Y1/2
仪器分析
第5章 气相色谱分 析法 gas
chromatographic analysis ,GC
2020/7/31 1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
第一节 气相色谱法概述
一、色谱法概述
1.色谱法定义 色谱法是一种分离技术,该分离技术应用于
11
液体进样器: 不同规格的专用注射器,填充柱色谱常
用10μL;毛细管色谱常用1μL;新型仪器带 有全自动液体进样器,清洗、润冲、取样、 进样、换样等过程自动完成,一次可放置数 十个试样。
气化室:将液体试样瞬间 气化的装置。无催化作用。
12
(3)色谱柱(分离柱)
色谱柱:色谱仪的核心部件。 柱材质:不锈钢管或玻璃管,内径3-6毫米。长度可根据 需要确定。 柱填料:粒度为60-80或80-100目的色谱固定相。
2020/7/31
6
液固色谱法(固定相为固体吸附剂,流动相为液 体);
液液色谱法(固定相:担体+固定液,流动相为液 体)。 2.按固定相使用的形式分为:柱色谱法、纸色谱法、 薄层色谱法。
3.按分离过程的机制分为: 吸附色谱法; 分配色谱法; 离子交换色谱法; 排阻色谱法。
仪器分析教程 气相色谱法
10、 氰丙基(25%) 苯基(25%) 甲基聚硅氧烷
11、聚乙二醇
OV-3 OV-7 OV-17 OV-22 DNP OV-210 OV-225
PEG20M
350 350 300 350 130 250 250
9.1.2 色谱法分类
(一)按流动相(mobile phase)和 固定相(stationary phase)的状态分类
气相色谱(GC):流动相为气体的色谱法。 若固定相为固体,又叫气固色谱(GSC); 若固定相为液体,则叫气液色谱(GLC)。 液相色谱(LC):流动相为液体的色谱法。 若固定相为固体,又叫液固色谱(LSC); 若固定相为液体,则叫液液色谱(LLC)。
白色担体: 颗粒疏松,孔径较大,机械强度较差,表面积
较小,活性吸附中心较少,适宜分离极性组分的试 样。
若固定液用量少,则必须对硅藻土类担体进行 预处理:
酸洗、碱洗、硅烷化、釉化等。
(2)非硅藻土类担体
种类较多,包括: 玻璃微球、石英微球、素瓷、氟担体、高分 子多孔微球等。 特点:大多比表面较小,耐腐蚀,常用于特 殊分析。
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
AP L
300
苯
3、硅油
OV-101
350
丙酮
4、 苯基 10% 甲基聚硅氧烷
5、 苯基(20%) 甲基聚硅氧烷
6、 苯基(50%) 甲基 聚硅氧烷
7、苯基(60%)甲基 聚硅氧烷
8、邻苯二甲酸 二壬酯
K 的大小主要取决于组分和固定相的性质,以及 柱温、柱压等条件。
仪器分析气相色谱分析
仪器分析气相色谱分析气相色谱(Gas Chromatography, GC)是一种常用的仪器分析技术,用于分离和测定混合气体或挥发性液体样品中的组分。
它基于分子在固定相或涂在固定相上的液态载体上的分配和吸附行为的差异,将混合物分离为不同的峰,通过峰的面积或峰高比例来定量分析。
气相色谱通常包括样品处理、进样、分离和检测等过程。
在气相色谱分析中,样品处理至关重要。
首先,样品需要确保完全气化,这可以通过液体/固体萃取、溶解、热解等方法来实现。
然后,样品通常需要进行预处理,包括稀释、浓缩、衍生化等。
预处理的目的是提高目标物的检测灵敏度,同时降低可能的干扰物。
最后,将样品进样到气相色谱仪中。
进样器是气相色谱仪中的关键部分之一、它可以通过体积或压力进样两种方式将样品引入色谱柱。
采用体积进样时,样品通过一个准确的体积放样器引入色谱柱,其体积可以校准和调整。
而压力进样则是通过一定压力将样品推入色谱柱中,其进样体积由进样时间和色谱柱流速决定。
分离是气相色谱分析的核心过程,它通过色谱柱将混合物中的组分分离开来。
色谱柱通常由不同的固定相或液态载体制成,例如聚二甲硅氧烷(PDMS)、聚酯、聚酰胺等。
不同的固定相有不同的极性和选择性,可以选择具有特定性能的柱进行不同的分析。
例如,聚酰胺柱对极性化合物具有较好的分离效果,而PDMS柱对非极性化合物更为适用。
检测器是气相色谱仪中的重要组成部分,用于检测分离出的化合物。
常见的检测器有火焰光度检测器(FLD)、热导检测器(TCD)、质谱检测器(MS)等。
FLD适用于大多数有机化合物的检测,通过化合物的荧光特性进行分析。
TCD则根据样品中物质导热性能的改变进行检测。
质谱检测器可以提供化合物分子结构的信息,对于复杂的样品分析有很高的选择性和灵敏度。
在气相色谱分析中,为了提高分离效果和减少背景噪声,通常进行方法优化和条件调整。
例如,可以调整进样量、柱温、载气类型和流速、柱长度和内径等参数来优化分离过程。
仪器分析-气相色谱法
组分通过时不在此冷凝
12
Instrumental Analysis
Gas Chromatography
4. 温度控制系统
• 程序升温:在一个分析周期内
柱温随时间由低温向高温作线 性或非线性变化,从而用最短
时间获得最佳分离
沸点范围很宽的混合物
程序升温方式
13
恒温色谱(a)与程序升温色谱(b)分离直链烷烃比较
6
Agilent 7890A
Instrumental Analysis
Gas Chromatography
气路系统
进样系统
色谱柱
检测系统
信号记录系统
温控系统
7
Instrumental Analysis
Gas Chromatography
气相色谱仪主要组成
1. 气路系统
载气、载气净化器、稳压恒流装置
394 nm
HPO*
526 nm
*
/nm
Air + O2
sample
H2
质量型检测器
26
Instrumental Analysis
Gas Chromatography
( )1. 气相色谱分析中,混合物能否完全分离取决于色谱柱, 分离后的组分能否检测出来取决于检测器。 ( A )2. 气相色谱分析中,载气种类的选择主要取决于 A. 检测器的种类 C. 被测物的种类 B. 被测物质的状态 D. 固定相的类型
专属型检测器:对特定物质有高灵敏响应,e.g., 电子捕获检测器
16
Instrumental Analysis
Gas Chromatography
2. 检测器性能评价指标
(1)灵敏度 S
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算公式
浓度型
Q0 = 1.065Y1 / 2 ⋅ D
质量型
Q0 = 1.065Y1 / 2 ⋅ Fc ⋅ D
线性范围
是指试样量与信号之间保持线性关系的范围, 用最大进样量和最小进样量的比值来表示,此 范围越大,越有利于准确定量。
响应时间
指进入检测器的组分输出达到63%所需的 指进入检测器的组分输出达到63%所需的 时间,该时间受到检测器死体积、电路滞 后等影响。 希望越小越好
当恒定的电流与载气通过热丝时, 电压输出为零。 当恒定的电流与载气通过热丝时 , 电压输出为零 。 当载气携带试样组分进入测量池时, 当载气携带试样组分进入测量池时 , 由于被测组 分与载气的热导系数不同, 分与载气的热导系数不同 , 使参比池和测量池中 热丝的温度发生差异。 热丝的温度发生差异。 温度变化导致热丝的电阻有差异。 温度变化导致热丝的电阻有差异。 电阻的差异导致电桥有信号输出(电压) 电阻的差异导致电桥有信号输出(电压)。
S+S →S
* 2
* 2
S → S 2 + hυ
S原子在适当温度下生成激发态S*2,当其跃迁回 原子在适当温度下生成激发态S 基态时,发射出350-430nm的特征光谱。 基态时,发射出350-430nm的特征光谱。 含磷试样以HPO*形式发射526nm的特征光谱。 含磷试样以HPO*形式发射526nm的特征光谱。 这些光经滤光片照射在光电倍增管上,产生光 电流,经放大后信号由记录仪记录下来。
应用举例
ECD检测器 顶空分析法 水中丙烯酰胺的测定 GB 11936-89
火焰光度检测器
Flame Photometric Detector FPD
结构
原理
含硫试样在富氢火焰 含硫试样在富氢火焰下燃烧,发生下述反应: 富氢火焰下燃烧,
RS + O2 → SO2 + CO2
2SO2 + 8H → 2S + 4 H 2 O
第二章
气相色谱法
Gas Chromatography
一、气相色谱仪及检测器
1. 气相色谱仪流程
气相色谱仪
气体净化装置
进样器
柱温箱
气相色谱填充柱
2. 气相色谱检测器
检测器各论 检测器的性能指标
(1)检测器的定义
检测器是将色谱柱后流出组分的含量转化 为相应的电信号的一种装置。 理论上说,试样和流动相性质上的任何差 异,都可用以设计检测器。
气体纯度:要求高, 气体纯度:要求高,对基线影响很大 极化电压:±250V 极化电压:±250V左右 使用温度:大于80℃ 使用温度:大于80℃
FID的响应特性 FID的响应特性
选择性检测器:对大多数有机物有响应, 选择性检测器:对大多数有机物有响应 , 对无机 物无响应, 对含硫 、 卤素 、 物无响应 , 对含硫、 卤素、 氧 、 氮 、 磷的有机物 响应很小。 响应很小。 质量型检测器 灵敏度高, 一般比热导检测器高几个数量级 , 灵敏度高 , 一般比热导检测器高几个数量级, 能 检测ppb级物质,适合于痕量分析。 检测ppb级物质,适合于痕量分析。 线性范围宽, 线性范围宽,在107以上。 以上。 结构简单、价格低廉。
输出信号计算公式
1 α ER 0 I 2 E 0 = G 4 J 1 1 λ − λ x 2 2 1
几何因子
电学因子
热导因子
影响热导检测器性能的因素
几何因子
热丝长度
2πL G= ln(rc / rf )
池腔半径 热丝半径
G越小,E越大,响应越大 越小,E 检测器结构设计对性能有很大的影响,还需考虑死 体积的影响。
记录仪
60C1C 2 A Sm = m
积分仪或工作站
A Sm = m
检测限(敏感度) 检测限(敏感度)
检测限D 检测限D是指检测器恰能产生和噪声相鉴别的信号时, 在单位体积或时间内需向检测器 在单位体积或时间内需向检测器进入的物质质量 检测器进入的物质质量 (单位为g),通常认为恰能和噪声相鉴别的信号至 (单位为g),通常认为恰能和噪声相鉴别的信号至 少应等于噪声的两倍。 少应等于噪声的两倍。即
(1) 气固色谱固定相
类 名称 活性炭 吸 附 剂 硅胶 氧化铝 分子筛 合 成
高分子多 孔小球
分离对象 永久性气体和低沸点烃类 永久性气体和低级烃 烃类及有机异构体, 烃类及有机异构体,在低温下可分氢 有机异构体 同位素 特别适合永久气体和惰性气体分离 特别适合永久气体和惰性气体分离 永久气体和惰性气体
热导系数
100℃ 100℃ 3.14 22.4 17.41 3.18 3.14 4.56 1.84 2.30 2.22
热导因子
载气与试样的热导系数相差越大,灵敏度越高。
一般物质的热导系数都比较小,故选用热导系数 大的氢气(氦气)做载气,此时灵敏度高。 选用氮气做载气,灵敏度低,有时还会出现倒峰 和W峰。
讨论题: 讨论题:气相色谱检测器的选择
工业级乙醇中含水量的测定 石油中的硫化物分析 香精成分的定性与定量 氟里昂的组成 天然气中的烃类分析 水中硝基苯类污染物的分析 农产品中的有机磷农药的分析 茶叶中有机氯农药的残留 城市空气中的有机污染物 汽车尾气中的氮氧化合物的测定
二、气相色谱固定相
Gas Chromatography Stationary Phase 根据固定相形态的不同,将气相色谱分为 气固色谱和气液色谱两类。 气固色谱和气液色谱两类。
原理
蒸气分子受激发后被离子化, 蒸气分子受激发后被离子化 , 在电场作用下定向运 动形成离子流,然后进行放大和记录。 动形成离子流,然后进行放大和记录。 氢焰检测器的离子化作用机理:
Cn Hm →⋅CH
(发生在内层火焰中) 发生在内层火焰中)
发生在中层火焰中) ⋅ CH + O* → 2CHO+ + e− (发生在中层火焰中)
电学因子
热丝温度系数α 热丝温度系数α越大,信号越大。 桥电流越大,信号越大,E 桥电流越大,信号越大,E与I3成正比关系。 桥流的选择要根据载气的性质与热丝的材 料 热丝阻值越大(0 热丝阻值越大(0℃),检测器越灵敏。
气体的热导系数
气体种类
空气 氢气 氦气 氧气 氮气 甲烷 苯 甲醇 二氧化碳 0℃ 2.17 17.41 14.57 2.47 2.43 3.01 0.92 1.42 1.47
TCD的响应特性 TCD的响应特性
通用型检测器 灵敏度较低,适合于大于几十ppm组分测定 灵敏度较低,适合于大于几十ppm组分测定 对卤化物、 对卤化物、重金属酯响应较小 浓度型检测器 非破坏型检测器
应用举例
氢火焰离子化检测器
Flame Ionization Detector FID
结构
FID
2N D= S
D越小,说明仪器越敏感;而灵敏度大,但噪声也较 大,即检测限大,并不能说明该检测器性能好。因 此检测限是检测器的最主要 此检测限是检测器的最主要性能指标。 最主要性能指标。
噪声
最小检测量
最小检测量Q 最小检测量Q0是指检测器恰能产生和噪声相 色谱柱的最小物质 鉴别的信号时,所需进入色谱柱 鉴别的信号时,所需进入色谱柱的最小物质 量(或最小浓度) 最小检测量Q 最小检测量Q0与检测限成正比,但不同的是, Q0不仅与检测器的性能有关,还与柱效和操 作条件有关,所得色谱峰越窄,最小检测量 越小。
+ 2
−
由于被测组分俘获电子,使基流降低,产生负 信号,形成倒峰。组分浓度越高,倒峰越大。
ECD的工作参数 ECD的工作参数
放射源:63Ni 或 3H 电子收集 载气的影响 温度的影响
ECD的响应特性 ECD的响应特性
ECD是高选择性检测器, ECD是高选择性检测器,对含电负性原子或基团 的化合物有高的响应 。 如卤素化合物 、 含氧 、 的化合物 有高的响应。 如卤素化合物、 含氧、 磷 、 硫的有机化合物和甾族化合物、 硫的有机化合物和甾族化合物 、 金属有机化合物 及螯合物等。 及螯合物等。 灵敏度高,可检测ppt级电负性物质。 灵敏度高,可检测ppt级电负性物质。适合于痕量 分析。 分析。 线性范围较窄,一般为10 线性范围较窄,一般为103。
破坏型和非破坏型检测器 通用型和选择性检测器
灵敏度
∆R S= ∆Q
不同类型的检测器灵敏度的单位和计算方式都 不同 浓度型检测器 (mV·mL·mg-1) mV·mL·
记录仪
记录仪的 灵敏度 记录仪纸 速的倒数
积分仪或工作站
C1C 2 Fc A Sc = m
进样量
Fc A Sc = m
质量型检测器 (mV·s·g-1) mV·
检测器操作条件的选择
载气:用氦气较好,氮气的灵敏度较低。 载气:用氦气较好,氮气的灵敏度较低。 对纯度要求与氢焰检测器相当, 对纯度要求与氢焰检测器相当,要求富 氢火焰, 氢火焰, 温度:要求高于柱温,通常高50℃ 温度:要求高于柱温,通常高50℃。
响应特性
选择性好,对含磷或含硫的化合物有很高 的灵敏度,对烃类及其它化合物的响应值 很小。
分离气体和液体中的水,CO,CO2,CH4, 分离气体和液体中的水, , 低级醇,以及H2S,SO2,NH3,NO2等 低级醇,以及 ,
(2) 气液色谱固定相
由担体与固定液构成 由担体与固定液构成
(2)检测器各论
热导检测器 氢火焰离子化检测器 电子俘获检测器 火焰光度检测器 氮磷检测器
热导检测器
Thermal Conductivity Detector TCD
TCD
热丝
结构
参比池
测量池 (B)四臂热导池
(A)双臂热导池
热导池结构示意图
原理
热导检测器是基于不同的物质具有不同的热 导系数来设计的。 导系数来设计的。