高考物理生活中的圆周运动解题技巧及练习题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理生活中的圆周运动解题技巧及练习题含解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:
(1)质量为m 2的物块在D 点的速度;
(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:
(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】
(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:
v y 22100.45gR =⨯⨯m/s =3m/s
y D
v v =tan53°43
=
所以:v D =2.25m/s
(2)物块在内轨道做圆周运动,在最高点有临界速度,则
mg =m 2
v R

解得:v 32
2
gR =
=
m/s 物块到达P 的速度:
22
223 2.25P D y v v v =+=+=3.75m/s
若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:
()22
222111cos5322
M P m v m v m g R =-⋅+︒ 可得:2
0.3375M v =-,这显然是不可能的,所以物块不能到达M 点
(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:
24m/s a =
则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=
质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:
p 10BC E m gx μ-=
质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:
2p 221
2
BC B E m gx m v μ-=
可得,2m BC x = 在这过程中摩擦力做功:
12 1.6J BC W m gx μ=-=-
由动能定理,B 到D 的过程中摩擦力做的功:
W 2222201122
D m v m v =
- 代入数据可得:W 2=-1.1J
质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功
12 2.7J W W W =+=-
即克服摩擦力做功为2.7 J .
2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,
重力加速度
.求:
(1)滑块通过C 点时的速度大小;
(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)
【解析】
【详解】
(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s
(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10
m/s
设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m
解得:N=45N
(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2 解得:v A =16.1m/s
设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A 解得:I=8.1kg•m/s ; 【点睛】
本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.
3.如图所示,半径为
4
l
,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .
(1)装置静止时,求小球受到的绳子的拉力大小T ;
(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?
【答案】(1)415
T = (2)①ω0=15215g l
②2g l ω≥【解析】 【详解】
(1)设轻绳a 与竖直杆的夹角为α
15cos 4
α=
对小球进行受力分析得
cos mg
T α
=
解得:
415
T =
(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

可知小球做圆周运动的半径为
r=
4
l 2
0tan mg m r αω=
解得:
ω0=152
15g
l
②轻绳b 刚伸直时,轻绳a 与竖直杆的夹角为60°,可知小球做圆周运动的半径为
sin60r l '=︒
2tan 60mg m r ω'︒=
解得:
l 轻绳b 伸直时,竖直杆的角速度
2g l
ω≥
4.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R 、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R 后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵到达管口C 时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g .求: (1)质量为m 的鱼饵到达管口C 时的速度大小v 1; (2)弹簧压缩到0.5R 时的弹性势能E p ;
(3)已知地面欲睡面相距1.5R ,若使该投饵管绕AB 管的中轴线OO ' 。

在90︒角的范围内来
回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在
2
3
m 到m 之间变化,且均能落到水面.持续投放足够长时间后,鱼饵能够落到水面的最大面积S 是多少?
【答案】gR ;(2)3mgR ;(3)28.25R π 【解析】 【分析】 【详解】
(1)质量为m 的鱼饵到达管口C 时做圆周运动的向心力,完全由重力提供,则
R
可以解得
1v =
(2)从弹簧释放到最高点C 的过程中,弹簧的弹性势能全部转化为鱼饵的机械能,由系统的机械能守恒定律有
2
1102
F G W W mv +=
- 即
()2
1
2.502
F W mg R m
-=-

3F W mgR =
故弹簧弹性势能为E p =3mgR
(3)不考虑因缓慢转动装置对鱼饵速度大小的影响,质量为m 的鱼饵离开管口C 后做平抛运动,设经过t 时间落到水面上,得
t =
= 离OO'的水平距离为x 1,鱼饵的质量为m 时
113x v t R ==
鱼饵的质量为
2
3
m 时,由动能定理 ()()2
1
2122.50323F W mg R m v ⎛⎫-=- '⎪⎝⎭
整理得:
1
v ' 同理:
21
6x v t R ='= 114r x r R =+= 227r x r R =+=
鱼饵能够落到水面的最大面积S 是
()
222211
8.254
S r r R πππ=
-= 【点睛】
本题考查了圆周运动最高点的动力学方程和平抛运动规律,转轴转过90°鱼饵在水平面上
形成圆周是解决问题的关键,这是一道比较困难的好题.
5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:
()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;
()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距
离;
()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.
【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】
(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;
(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;
(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】
(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有
2A
mv mg R
=, 所以,2/A v gR m s =
=;
那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:
2211222
B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力
26B
N mv F mg N R
=+=,方向竖直向上;
故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:
22
1122
C B mgL mv mv μ-=
-,
所以,2/C v m s ==;
设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:2
12
h gt =

0.8C x d v t v m +===, 所以,0.2d m =;
(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离
0.6 1.6m s m ≤≤;
故平抛运动的初速度
'C s v t
=
= 所以,1.5/'4/C m s v m s ≤≤;
又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:
()2201122'22
C mg R r mgL mv mv μ--=
-; 所以,
0/v s ==,
0//s v s ≤
≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.
6.如图所示,半径为0. 5m 的光滑细圆管轨道竖直固定,底端分别与两侧的直轨道相切.物块A 以v 0=6m/s 的速度进入圆轨道,滑过最高点P 再沿圆轨道滑出,之后与静止于直轨道上Q 处的物块B 碰撞;A 、B 碰撞时间极短,碰撞后二者粘在一起.已知Q 点左侧轨道均光滑,Q 点右侧轨道与两物块间的动摩擦因数均为μ=0.1.物块AB 的质量均为1kg,且均可视为质点.取g =10m/s 2.求:
(1)物块A经过P点时的速度大小;
(2)物块A经过P点时受到的弹力大小和方向;
(3)在碰撞后,物块A、B最终停止运动处距Q点的距离.【答案】(1)4m/s (2) 22N;方向竖直向下 (3)4.5m
【解析】
【详解】
(1)物块A进入圆轨道到达P点的过程中,根据动能定理
-2mgR=1
2
m2p v-
1
2
m2
v
代入数据解得
v p=4m/s (2)物块A经过P点时,根据牛顿第二定律
F N+mg=m
2 p v R
代入数据解得弹力大小
F N=22N
方向竖直向下
(3)物块A与物块B碰撞前,物块A的速度大小v A=v0=6m/s 两物块在碰撞过程中,根据动量守恒定律
m A v0=(m A+m B)v
两物块碰撞后一起向右滑动
由动能定理
-μ(m A+m B)gs=0-1
2
(m A+m B)v2
解得
s=4.5m
7.某同学设计出如图所示实验装置,将一质量为0.2kg的小球(可视为质点)放置于水平弹射器内,压缩弹簧并锁定,此时小球恰好在弹射口,弹射口与水平面AB相切于A 点.AB为粗糙水平面,小球与水平面间动摩擦因数μ=0.5,弹射器可沿水平方向左右移动;BC为一段光滑圆弧轨道.O/为圆心,半径R=0.5m,O/C与O/B之间夹角为
θ=37°.以C为原点,在C的右侧空间建立竖直平面内的直角坐标系xOy,在该平面内有
一水平放置开口向左且直径稍大于小球的接收器D .(sin37°=0.6,cos37°=0.8,g 取10m/s 2)
(1)某次实验中该同学使弹射口距离B 处L 1=1.6m 处固定,解开锁定释放小球,小球刚好到达C 处,求弹射器释放的弹性势能?
(2)求上一问中,小球到达圆弧轨道的B 点时对轨道的压力?
(3)把小球放回弹射器原处并锁定,将弹射器水平向右移动至离B 处L 2=0.8m 处固定弹射器并解开锁定释放小球,小球将从C 处射出,恰好水平进入接收器D ,求D 处坐标?
【答案】(1)1.8J(2)2.8N(3) (0.144,0.384) 【解析】 【详解】
(1)从A 到C 的过程中,由定能定理得:
W 弹-μmgL 1-mgR (1-cosθ)=0
解得:
W 弹=1.8J .
根据能量守恒定律得:
E P =W 弹=1.8J ;
(2)从B 到C 由动能定理:
021(1cos37)2
B mgR mv -=
在B 点由牛顿第二定律:
2B
NB v F mg m R
-=
带入数据联立解得:
F NB =2.8N
(3)小球从C 处飞出后,由动能定理得:
W 弹-μmgL 2-mgR (1-cosθ)=
1
2
mv C 2-0, 解得:
v C 2m/s
方向与水平方向成37°角,
由于小球刚好被D 接收,其在空中的运动可看成从D 点平抛运动的逆过程,
v Cx =v C cos37°= 82m/s v Cy =v C sin37°=
62m/s , 由v Cy =gt 解得 t =0.122s
则D 点的坐标:
x =v Cx t
y =
12v Cy t , 解得:
x =0.144m ,y =0.384m
即D 处坐标为:(0.144m ,0.384m ).
【点睛】
本题考查了动能定理的应用,小球的运动过程较复杂,分析清楚小球的运动过程是解题的前提与关键,分析清楚小球的运动过程后,应用动能定理、平抛运动规律可以解题.
8.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)
【答案】300.4R m <≤或 31.027.9m R m ≤≤
【解析】
【分析】
【详解】
设小球在第二个圆轨道的最高点的速度为v 2,由题意
222v mg m R = ① ()22122011222
mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③
要保证小球不脱离轨道,可分两种情况进行讨论:
I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足
233
v mg m R = ④ ()221330112222
mg L L mgR mv mv μ-+-=
- ⑤ 由④⑤得30.4R m = ⑥ II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理
()213012202
mg L L mgR mv μ-+-=- ⑦ 解得 3 1.0R m = ⑧
为了保证圆轨道不重叠,R 3最大值应满足
()()2
222332R R L R R +=+- ⑨ 解得:R 3=27.9m ⑩
综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件
300.4R m <≤或 31.027.9m R m ≤≤ ⑾
【点睛】
本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.
9.
如图所示,位于竖直平面内的光滑有轨道,由一段倾斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R .一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度).求物块初始位置相对于圆形轨道底部的高度h 的取值范围.
【答案】2.5R≤h≤5R
【解析】
试题分析:要求物块相对于圆轨道底部的高度,必须求出物块到达圆轨道最高点的速度,在最高点,物体做圆周运动的向心力由重力和轨道对物体的压力提供,当压力恰好为0时,h 最小;当压力最大时,h 最大.由机械能守恒定律和牛顿第二定律结合解答. 设物块在圆形轨道最高点的速度为v ,由机械能守恒得:
2122
mgh mgR mv =+ 物块在最高点受的力为重力mg ,轨道的压力N F ,重力与压力的合力提供向心力,有
2
N v mg F m R
+= 物块能通过最高点的条件是0N F ≥
由以上式得v ≥联立以上各式得52
h R ≥ 根据题目要求5N F mg ≤
由以上各式得v ≤由此可得5h R ≤
所以h 的取值范围是552
h R ≤≤ 点睛:物体在竖直平面内做圆周运动的过程中在最高点的最小速度必须满足重力等于向心力,这是我们解决此类问题的突破口.要知道小球做圆周运动时,由指向圆心的合力充当向心力.
10.如图所示,一个可视为质点,质量2m kg =的木块从P 点以初速度05/v m s =向右运动,木块与水平面间的动摩擦因数为0.2,木块运动到M 点后水平抛出,恰好沿竖直的粗糙圆弧AB 的A 点的切线方向进入圆弧(不计空气阻力)。

已知圆弧的半径0.5R m =,半径OA 与竖直半径OB 间的夹角53θ︒=,木块到达A 点时的速度大小5/A v m s =。

已知
sin 530.8cos530.6︒︒==
,210/.g m s =求:
(1)P 到M 的距离L ;
(2)M 、A 间的距离s ;
(3)若木块到达圆弧底端B 点时速度大小5/B v m s =,求此时木块对轨道的压力。

【答案】(1)4m ;(2213;(3)120N 、方向竖直向下; 【解析】
【详解】 (1)平抛的初速度,即为木块在M 点的速度为:
v x =v A cosθ=5×0.6=3m/s
P 到M 由牛顿第二定律:
μmg=ma ,
a=μg =2m/s 2
由运动学公式知:
2203355m 4m 22
2x v v L a -⨯-⨯==-⨯-= (2)物体到达A 点时竖直方向上的速度为
v y =v •sinθ=5×0.8=4m/s
则下落时间为
40.4s 10
y v t g =
== 则水平位移为 x =v x t =3×0.4=1.2m
竖直方向上的距离为
244 0.8m 220
m y v y g ⨯=
== M 、A 间的距离 2213m 5
s x y +== (3)由牛顿第二定律: 2B v N mg m
R -=

2252102N=120N 0.5
B v N mg m R =+=⨯+⨯ 根据牛顿第三定律可知,此时木块对轨道的压力为120N 、方向竖直向下;。

相关文档
最新文档