代数式化简求值专项训练及答案
代数式化简求值经典17题(各版本通用)
代数式化简求值经典17题(各版本通用)1.当x=-2时,求代数式9x+6x^2-3(x-2x)的值当x=-2时,代数式的值为9(-2)+6(-2)^2-3((-2)-2(-2))=-18+24+12=18.2.当x=111时,求代数式(-4x^2+2x-8)-(x-1)的值当x=111时,代数式的值为(-4(111)^2+2(111)-8)-(111-1)=-493,004.3.当a=-1,b=1时,求代数式(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)的值当a=-1,b=1时,代数式的值为(5(-1)^2-3(1)^2)+((-1)^2+(1)^2)-(5(-1)^2+3(1)^2)=-8.4.当x=-1,y=-2时,求代数式3-2xy+3yx^2+6xy-4x^2y的值当x=-1,y=-2时,代数式的值为3-2(-1)(-2)+3(-2)(-1)^2+6(-1)(-2)-4(-1)^2(-2)=3+4-6+12+8=21.5.当x^2-xy=3a,xy-y^2=-2a时,求代数式x^2-y^2的值将x^2-xy=3a和xy-y^2=-2a相加得到x^2-y^2=a,因此代数式x^2-y^2的值为a。
6.当x=2004,y=-1时,求代数式A=x^2-xy+y^2,B=-x^2+2xy+y^2,A+B的值当x=2004,y=-1时,A=x^2-xy+y^2=2004^2-2004(-1)+(-1)^2=4,017,017;B=-x^2+2xy+y^2=-(2004)^2+2(2004)(-1)+(-1)^2=-4,017,015,因此A+B=2.7.当a=5时,求代数式(6a+2a^2+1)-(a^2-3a)的值当a=5时,代数式的值为(6(5)+2(5)^2+1)-((5)^2-3(5))=62.8.当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值由a-b=4可得a=b+4,代入b+c-(a-d)得到b+c-(b+4-d)=c+d-4,因此代数式的值为-2.9.当a=1/2,b=1时,求代数式a^2+3ab-b^2的值当a=1/2,b=1时,代数式的值为(1/2)^2+3(1/2)(1)-(1)^2=-1/4.10.当a=114,b=73时,求代数式4(b+1)+4(1-a)-4(a+b)的值当a=114,b=73时,代数式的值为4(73+1)+4(1-114)-4(114+73)=-744.11.当x=-2时,求代数式9x+6x^2-3(x-2x)的值同第1题,代数式的值为18.12.当x=5时,求代数式(2x^2-6x-4)-4(-1+x+x^2)的值当x=5时,代数式的值为(2(5)^2-6(5)-4)-4(-1+5+5^2)=-38.13.当x=111时,求代数式(2x^2-x-1)-(x^2-x-1)+(3x^2-3)的值当x=111时,代数式的值为2(111)^2-(111)-1-(111^2-111-1)+(3(111)^2-3)=22,600.14.当x^2+xy=2,y^2+xy=5时,求代数式x^2+2xy+y^2的值将x^2+xy=2和y^2+xy=5相加得到x^2+2xy+y^2=7,因此代数式的值为7.15.当a=-2,b=3时,求代数式a-2(a-b^2)-(a-b^2)的值当a=-2,b=3时,代数式的值为-2-2(-2-3^2)-(-2-3^2)=2.16.当a=1/3时,求代数式1-(2a-1)-3(a+1)的值当a=1/3时,代数式的值为1-(2(1/3)-1)-3(1/3+1)=-25/3.。
化简求值题及答案化简求值50题
化简求值题及答案化简求值50题化简求值50题1、已知2x+y=0,求分式x,2yx~y222.(x+y)的值.2. 先化简,再求值:(2a~2,1)a~aa~422,其中a ~1(2213(已知2x,y 0,求x~2yx,xy2(x~y)2x~4xy,4yx的值(4(已知x2,x~6 0,求代数式x2(x,1)~x(x2~1)~7的值( 5. 已知x2~x 6,求代数式 x(x,1)2~x2(x,1)~2x~8的值(3aa~1aa,1a~1a26、先化简,再求值:(1m1n~) ,其中a=2~27. 已知: ~ 5 ,求代数式3m,12mn~3nm,6mn~n的值.8( 已知2x,2y ~5,求2x2,4xy,2y2~7 的值.23229(已知x~1 0,求代数式x(x~x),x(3x,1),4的值 (2210. 先化简,再求值:x~1x~2x,12,x~2xx~2?x,其中x=223(1 a~4 a,32,11( 先化简,再求值: ,其中a~4a,1 0( 3 a~22~a221 112.(2008年天津市)若 x, 9,则 x~的值为 (x x313.(2008年四川巴中市)若x2y3z40,则2x,3yz14.(2008年四川巴中市)当x 时,分式x~3x~3无意义(15.(08山东省日照市)化简,再求值:1a~b~b?,其中a 1, 22a~2ab,ba,b124,b 1~2(2a a~1 3a~16.(2008年辽宁省十二市)先化简,再求值: ,其中a 2( a a~1a,117.(2008年乐山市)已知x 1,求代数式xx~2(2,x~42~x)的值18. (2008山东德州)先化简,再求值: b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(19. (2008黑龙江黑河)先化简:值( 4~a522a,6a,9a~22a,6,2,再任选一个你喜欢的数代入求20.(2008年陕西省)先化简,再求值: a,1a,2ba,b,a2b222a~b,其中a ~2,b1a13(21.(2008 河南)先化简,再求值:a~1a~2a,112x22((2008 四川泸州)化简 ,261,x1~x,2?,其中a,1,223((2008年浙江省嘉兴市)先化简,再求值: a~2a211, ,其中a ~2( a,1a24((2008北京)已知x~3y 0,求2x,yx~2xy,yxx~1~22(x~y)的值(x,2x,1x,3225((2008湖北咸宁)先化简,再求值:x,3x~1272,其中x 1(26.(2008年江苏省无锡市)(2)先化简,再求值:2x~4x,42x~42(x,2),其中x2327.(2008年山东省枣庄市)先化简,再求值:28((2008 江苏南京)解方程2x,1x~1x~2x,12,x~2xx~2?x,其中x=(-2x,128=0.29((2008湖北黄石)先化简后求值(22aba,b~2,其中a ~1,1,2a~ab 2abab~b,b ~1~30((2008江苏宿迁)先化简,再求值:a,3aa,4a,4,22a,3a,2~2a,2,其中a 2~2(31.(2008 湖南长沙)先化简,再求值:22a29a~41,其中a 1. 2~a232((2008 重庆)先化简,再求值:(a~5a,2a,2,1)a~4a,4a,422,其中a 2,333.(2008 四川广安)先化简再求值:(x~x~4x~3x~)x~4x~332,其中x 5(2334.(2008 湖南怀化)先化简,再求值: x~12,x~1,,x,2,10~1,其中x ~(1 x~2x,135.(2008 河北)已知x ~2,求 1~的值( xx36((08乌兰察布市)先化简,再求值x,1x,122(x,1)43x~1~x~3x,1,其中x ,1.37((08厦门市)先化简,再求值xx~12x,xx2,其中x 2(1138((2008山东东营)先化简,再求值:b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(39((2008泰安)先化简,再求值: 40.(2008佛山)(先化简(1,2p~23x x,22~2x,其中x 4~, 2x~2x~4x)?p~pp~4122,再求值(其中P是满足-3 3x,2x241. (2008黑龙江哈尔滨)先化简,再求代数式(1-,2cos60?42.(2008湖北襄樊)化简求值: (x~16x,8x,162008a22-1x,2的值,其中x,4sin45?,xx~4)1x~162,其中x 2,143.(2008湖北孝感)请你先将式子一个数作为a的值代入其中求值.1 1, 化简,然后从1,2,3中选择213a~2a,1 a~144.(2008江苏盐城)先化简,再求值:45.(08年山东省)先化简,再求值:5x,2~x~2 x~2x~3,其中x ~4b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(46.(2008年上海市)解方程:6xx~12,5x~1x,4x,11447.(2008年山东省威海市)先化简,再求值: 1,x2xx~ 1~x 1~x,其中x2(48(49. 50.1x,3x,22,1x,5x,622,1x,7x,1232x,6x,9x,2732215x~5x,6x~4x,4x~82a~b~ca~ab~ac,bc2x~92,2c~a~bc~ac~bc,ab2,2b~c~ab~ab~bc,ac2百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆16。
代数式化简求值专项训练及答案
代数式化简求值专项训练1.先化简,再求值:(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=x .(2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a =23,b =-112。
(3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-.2.已知312=-y x ,2=xy ,求 43342y x y x -的值。
3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值4.已知22==+ab b a ,,求32232121ab b a b a ++的值.5.已知x 2+x -1=0,求x 3+2x 2+3的值.6.已知:222450a b a b ++-+=,求2243a b +-的值.7.已知等腰△ABC 的两边长,a b 满足:222448160a ab b a -+-+=,求△ABC 的周长?8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。
10、若182++ax x 能分解成两个因式的积,求整数a 的值?代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
七年级数学上册化简求值专项训练(带答案)
七年级数学上册化简求值专项训练(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2015年11月14日整式的加减(化简求值)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.30.(2014•咸阳模拟)先化简,再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x),其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2),其中x=,y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2012时,原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2,当m=,n=﹣1时,原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y,∵|x+|+(y﹣)2=0,∴x+=0,y﹣=0,即x=﹣,y=,则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3,当x=﹣,y=4时,原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号,2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号,合并同类项,将复杂整式,化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时,原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号,合并同类项,将整式化为最简式,最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x﹣=0,和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号,化简得x2y+4x2,问题可求.【解答】解:由题意,∵,∴x﹣=0,y+3=0,即x=,y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2),=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2,=x2y+4x2,=x2(y+4),=()2×(﹣3+4),=.【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,原式=﹣3a2+4ab+a2﹣4a﹣4ab,=﹣2a2﹣4a,=﹣2×22﹣4×2,=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵,B=2a2+3a﹣6,C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知,A+B﹣2C=a2+3a﹣,∴当a=﹣2时,原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6,可得2B=2x2+4x﹣12;由C=x3+2x﹣3,可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6,∴2B=2x2+4x﹣12;∵C=x3+2x﹣3,∴3C=3x3+6x﹣9;由题意,得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9),=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9,=4x3﹣4x2+6x+6,=4x2(x﹣1)+6x+6,∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2,b=1时,原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,当a=﹣,b=0.4时,原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6,移项合并得:3m=9,解得:m=3;(2)去括号得:x+1+3﹣=x,去分母得:3x+48﹣30=8x,解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0,求出m,a,再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0,∴2m﹣5=27,n=3,解得m=16,n=3,∴==5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)a n=0,21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0,必须都为0得出a+2=0,b+1=0,c﹣=0,求出a b c的值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴三个非负数的和为0,必须都为0,即a+2=0,b+1=0,c﹣=0,解得:a=﹣2,b=﹣1,c=,5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2,当a=﹣2,b=﹣1,c=时,原式=8×(﹣2)×(﹣1)×﹣(﹣2)2×(﹣1)﹣4×(﹣2)×(﹣1)2=+4+8=17.【点评】本题考查了求代数式的值,整式的加减,非负数的性质等知识点,关键是正确化简和求出a b c的值,题目比较典型,但是一道比较容易出错的题目.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.【考点】合并同类项;多项式.【分析】由于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+4=0,解方程即可求出m,n,然后把m、n的值代入n m,即可求出代数式的值.【解答】解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=4.【点评】考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.【考点】整式的加减—化简求值.【分析】(1)根据非负数的性质得到a,b的值,再把a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2去括号、合并同类项进行化简后代值计算即可求解;(2)先把多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)合并同类项,再把a﹣b=2整体代入即可求解;(3)先把代数式2(4a﹣3b﹣2ab)﹣3(2a﹣)化简,再根据a+b=﹣2,a﹣b=﹣3,得到ab的值,最后整体代入即可求解.【解答】解:(1)∵(a+2)2+|b﹣|=0,∴a+2=0,解得a=﹣2,b﹣=0,解得b=;a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2=a2b﹣[2a2﹣2ab2+4a2b﹣4]﹣2ab2=a2b﹣2a2+2ab2﹣4a2b+4﹣2ab2=﹣3a2b﹣2a2+4=﹣6﹣8+4=﹣10.(2)∵a﹣b=2,(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)=﹣(a﹣b)2﹣4(a﹣b)=﹣1﹣8=﹣9.(3)∵a+b=﹣2,a﹣b=﹣3,∴(a+b)2﹣(a+b)2=a2+2ab+b2﹣a2+2ab﹣b2=4ab=4﹣9=﹣5,∴ab=﹣1.25,∴2(4a﹣3b﹣2ab)﹣3(2a﹣)=8a﹣6b﹣4ab﹣6a+8b+ab=2a+2b﹣3ab=2(a+b)﹣3ab=﹣4+3.75=﹣0.25.【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费24元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)【考点】整式的加减;列代数式.【专题】应用题.【分析】(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.【解答】解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.【点评】本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)先将原式去括号、合并同类项,再把a=﹣1代入化简后的式子,计算即可;(2)先将原式合并同类项,再把x=﹣1,y=代入化简后的式子,计算即可.【解答】解:(1)原式=3a﹣4a2+1+2a3+a﹣5a2﹣3a3=﹣a3﹣9a2+4a+1,当a=﹣1时,原式=1﹣9×1﹣4+1=﹣11;(2)原式=0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y=0.6x2y﹣0.5xy2,当x=﹣1,y=时,原式=0.6×1×﹣0.5×(﹣1)×=+=.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.【考点】同类项.【专题】计算题.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解答】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【点评】本题考查同类项的知识,属于基础题,注意掌握同类项的定义.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式合并同类项得到结果不含b,则有b的取值无关.【解答】解:原式=4a2,当a=﹣1,b=时,原式=4,与b的值无关.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【考点】整式的加减.【专题】应用题.【分析】首先将原代数式去括号,合并同类项,化为最简整式为﹣2y3,与x无关;所以甲同学把“”错抄成“”,但他计算的结果也是正确的.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.【点评】整式的加减运算实际上就是去括号、合并同类项.注意去括号时符号的变化.21。
化简求值经典练习五十题(带答案解析)
化简求值经典练习五十题(带答案解析)化简求值经典练习五十题一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.7 二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b ﹣(2ab﹣a2b)﹣其中a=﹣1,b=﹣2.第1页(共20页)4a2]﹣ab2,5.(2017秋•巢湖市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),个中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),个中a=﹣2,b=3.第2页(共20页)9.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),个中x=﹣1.11.(2015秋•淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),个中12.(2015秋•包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],个中a=﹣3.13.(2014秋•成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.第3页(共20页),.14.(2014秋•合肥期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4双方同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)假如a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.第4页(共20页)18.(2013秋•蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),个中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),个中x=20.(2013秋•包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,个中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.第5页(共20页).23.(2012秋•包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b ﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y 的值见数轴表示:第6页(共20页)28.(2012秋•泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式31.(2010秋•包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:第7页(共20页)与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn),y=﹣3.32.(2008秋•牡丹江期末)先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.第8页(共20页)36.(2017秋•利辛县期末)先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),个中x=,y=﹣137.(2017秋•鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋•埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),个中x=﹣5,y=﹣.39.(2017秋•南平期末)先化简,再求值:(5x+y)﹣(3x+4y),个中x=,y=.40.(2016秋•武安市期末)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y的值,个中第9页(共20页).41.(2016秋•崇安区期末)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.第10页(共20页)46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a2﹣2b+4ab的值.47.(2017秋•岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右匍匐2个单元长度抵达点B,点A透露表现的数n为﹣,设点B所透露表现的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.第11页(共20页)参考谜底与试题剖析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2 =4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.第12页(共20页)=.5.解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.第13页(共20页)10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣当x=﹣2,y=﹣2时,原式=17.解:(1)∵a2+a=0,第14页(共20页)x+y2,.∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.第15页(共20页)25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;时,原式=﹣42+4×﹣6=﹣21.xy+y2,(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).第16页(共20页)∵x=﹣2,∴原式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式∴m=2,n=3,与﹣2xmy3是同类项,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:原式=3a﹣3a+abc﹣c2+c2﹣c第17页(共20页)=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=第18页(共20页).40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计较的成效也是精确的.45.解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;第19页(共20页)(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn。
初中数学代数式化简求值练习题(含答案)
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
代数式求值经典题型(含详细答案)
代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。
解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。
2、已知a+b=3ab,求代数式a+b的值。
解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。
解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。
解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。
化简求值练习题及答案
化简求值练习题及答案化简求值练习题及答案在数学学习中,化简求值是一个重要的环节。
通过化简求值,我们可以将复杂的表达式简化为更简单的形式,并得出准确的结果。
本文将为大家提供一些化简求值练习题及答案,希望能帮助大家更好地掌握这一技巧。
一、整数运算1. 化简求值:(-8) + (-3) - (-5) + 2解答:根据整数的加减法规则,负数相加等于它们的绝对值相加,并保留原来的符号。
所以,(-8) + (-3) - (-5) + 2 = -8 - 3 + 5 + 2 = -42. 化简求值:(-9) × 4 ÷ (-2)解答:根据整数的乘除法规则,两个负数相乘等于它们的绝对值相乘,并保留正号;负数除以正数等于它们的绝对值相除,并保留负号。
所以,(-9) × 4 ÷ (-2) = 36 ÷ (-2) = -18二、分数运算1. 化简求值:(3/4) + (5/6) - (1/2)解答:首先需要找到这三个分数的最小公倍数,即12。
然后将每个分数的分子乘以12除以分母,得到通分后的分数。
所以,(3/4) + (5/6) - (1/2) = (9/12) + (10/12) - (6/12) = 13/122. 化简求值:(2/5) × (3/8) ÷ (4/9)解答:分数的乘除法规则很简单,分别将分子相乘或相除,分母相乘或相除即可。
所以,(2/5) × (3/8) ÷ (4/9) = (2 × 3) / (5 × 8) ÷ (4/9) = 6/40 ÷ (4/9) = (6/40) × (9/4) = 54/160 = 27/80三、代数式运算1. 化简求值:2x + 3y - x + 4y解答:根据代数式的加减法规则,相同字母项的系数相加或相减,字母部分保持不变。
所以,2x + 3y - x + 4y = x + 7y2. 化简求值:3(x - 2) - 2(3x + 1)解答:根据代数式的乘法规则,将括号内的表达式乘以外面的系数。
初三30道化简求值带答案
初三30道化简求值带答案1、(3X+2Y)+(4X+3Y)其中X=5,Y=3解:原式=3X+2Y+4X+3Y=7X+5Y当X=5,Y=3时原式=5*7+(-3)*5=202、(5a²-3b²)+(a²+b²)-(5a²+3b²),其中a=-1,b=1=5a²-3b²+a²+b²-5a²-3b²=a²-5b²=(-1) ²-5*1²=1-5=-43、2 (3a- ab) -3 (2a ² - ab),其中 a= - 2,b=3. 原式=6a ²- 2ab - 6a ²+3ab=ab,当a=-2,b=3时,原式=ab= - 2×3=-6.4、9x+6x ² -3(x-2/3x ²).其中x=-29x+6x² -3(x-2/3x²)=9x+6x²-3x+2x²=8x²+6x=8×(-2)²+6×(-2)=32-12=205、a²-ab+2b²=3 求2ab-2a²-4b²-7的值解:2ab-2a²-4b²-7=2(ab-a²-2b²)-7=-2(a²-ab+2b²)-7=(-2)*3-7=-6-7=-136、1/4(-4x²+2x-8)-(1/2x-1),其中x=1/21/4(-4x²+2x-8)-(1/2x-1)=-x²+1/2x-2-1/2x+1=-x²-1=-(1/2)²-1=-1/4-1=-5/47、2(a²b+ab²)-2(a²b-1)-2ab²-2其中a=-2,b=2=2a²b+2ab²-2a²b+2-2ab²-2=08、6a²b - ( - 3a²b+5ab²) -2 (5a²b - 3ab²),其中a= - 2,b=1/2原式=6a²b+3a²b - 5ab² - 10a²b+6ab²= - ab+ab²把a= - 2, b=1/2代入上式得:原式= (-2)²*1/2+(-2)*1/2²=-5/29、3x²y² - [5xy² - (4xy² - 3)+2x²y²],其中x=- 3,y=2原式=3x²y² - 5xy²+4xy² - 3- 2x²y²=x²y²- xy²- 3当x=- 3,y=2时,原式=4510、2x-3(2x-x)+(2y-y),其中x=1,y=2解;原式=2x-3x+y当x=1,y=2时原式=2*1-3*1+2=2-3+2=111、5ab²+3a²b - 3 (a²b - ab²),其中a=2,b= - 1原式=5ab²+3a²b - 3a²b+2ab²=7ab²当a=2,b=- 1时,原式=7×2×( -1)2=1412、2a-(3a-2b+2)+(3a-4b-1),其中a=5 b=-3=2a-3a+2b-2+3a-4b-1=(2-3+3)a+(2-4)b+(-2-1)=2a-2b-3=10-(-6)-3=10+6-3=1313、5-(1-x)-1-(x-1)-2x+(-5y),其中x=2,y=2x=4-2x-5y=4-4-20=-2014、2x-(x+3y)-(-x-y)-(x-y),其中x=3,y=-3=2x-x+3y+x+y-x+y=x+5y=3-15=-1215、-ab+3ba-(-2ab),其中a=2,b=1=-ab+3ba+2ab=2ab+2ab=4ab=4*2*1=816、-m-[-(2m-3n)]+[-(-3m)-4n],其中m=2,n=1 =-m-(-2m+3n)+3m-4n=-m-4m+2m-3n+3m=-3n=-3*1=-317、2(2a+2ab)-2(2ab-1)-2ab-2,其中a=-2 b=2 =4a+4ab-4ab+2-2ab-2=4a-2ab=4*(-2)-2*(-2)*2=-8-(-8)=-8+8=018、3ab-4ab+8ab-7ab+ab,其中a=-2,b=3=-8ab+9ab=ab=-2*3=-619、2x²- y²+ (2y² - x²) - 3 (x²+2y²),其中 x=3,y= - 2原式=2x² - y²+2y² - x² - 3x² - 6y²= - 2x²- 5y²当x=3,y=-2时,原式=– 18- 20= - 3820、5x²- [x² +(5x²- 2x) - 2 (X²- 3x)],其中x=1.原式=5x² - (x²+5x²- 2x - 2x²+6x) =x ² - 4x当x=1/2时,原式=7/421、( 6a²- 6ab - 12b²) - 3 (2a²- 4b²),其中 a=-1/2, b=- 8. 原式=6a² - 6ab - 12b² - 6a²+12b3²= - 6ab,当a=-1/2, b=-8时,原式=-6x( -1/2) ×( -8) =- 24 22、x²y - (2xy - x²y)+xy,其中x=- 1,y= - 2.原式=x²y - 2xy+x²y+xy=2x²y - xy,当x= - 1,y=-2时,原式=2*( - 1) ²* ( -2) - ( -1) *( - 2) = - 623、当|a|=3,b=a -2时,化简代数式1- {a - b - [a - (b - a)+b]}后,再求这个代数式的值.原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=-3时,b=- 5,代数式的值为–724、- 2(ab - 3a²) - [a²- 5 (ab - a²) +6ab],其中 a=2,b=- 3原式= -2ab+6a² - (a² - 5ab+5a² +6ab) = - 2ab+6a² - a² +5ab - 5a² - 6ab= - 3ab;当a=2,b=-3时,原式=–3×2×( -3) =1825、( a² - 3ab - 2b²) - (a² - 2b²),其中a= - 1/2. b= - 8原式=a²- 3ab - 2b² - a²+2b²= - 3ab,当a=-1/2 ,b=-8时,原式= -3×( -1/2) ×( -8)= - 1226、8mn - [4m²n - ( 6mn² +mn) ] - 29mn²,其中 m= - 1,n=1/2原式=8mn - [4m²n - 6mn²- mn] - 29mn²=8mn - 4m²n+6mn²+mn - 29mn²=9mn - 4m²n - 23mn²当m=- l,n=1/2时,原式=9× ( - 1)×1/2-4×1²×1/2- 23x ( - 1)×1/4=-9/2-2+23/4=-3/427、(3X+2Y)+(4X+3Y)其中X=5,Y+3原式=3X+2Y+4X+3Y=7X+5Y当X=5,Y=3时原式=5*7+(-3)*5+20=35-15+20=4028、2x-3(2x-x)+(2y-y),其中x=1,y=2解;原式=2x-3x+y当x=1,y=2时原式=2*1-3*1+2=2-3+2=129、2a-(3a-2b+2)+(3a-4b-1),其中a=5 b=-3 =2a-3a+2b-2+3a-4b-1=(2-3+3)a+(2-4)b+(-2-1)=2a-2b-3=10-(-6)-3=10+6-3=1330、2x-(x+3y)-(-x-y)-(x-y),其中x=3,y=-3=2x-x+3y+x+y-x+y=x+5y=3-15=-12。
化简求值专项练习20题带答案
化简求值专项练习20题带答案1.化简后代入a=-2,b=3,得:2(3*(-2)-(-2*3))-3(2*(-2)-(-2*3))=-242.化简后代入a=-2,b=2,得:6*(-2)-(-3*2+5*2)-2(5*(-2)-3*(-2))=-303.化简后代入x=-3,y=2,得:3*(-3)-[5*2-(4*(-3)-3)+2*2]=-254.化简后代入a=2,b=-1,得:5*2+3*(-1)-3(2-(-1))=105.化简后代入x=3,y=-2,得:2*3-(-2)+(2*(-2)-3*(3+2*(-2)))=-176.化简后代入x=2,得:5*2-[2+3*(2-2*(2-3*2))]=-77.化简后代入a=-1/2,b=-8,得:(6*(-1/2)-6*(-1/2)*(-8)-12*(-8))-3(2*(-1/2)-4*(-8))=468.化简后代入x=-1,y=-2,得:-(-2)-2*(-1)*(-2)+(-1)*(-2)=09.化简后代入x=1/2,y=-1,得:5(1/2*(-1)+3*1/2-2*(-1))-3(1/2*(-1)+5*1/2-2*(-1))=-11/210.代入a=3,b=a-2=1,化简得:1-3-[(3-(1-3)+1)]=-111.化简后代入a=3,b=-2,得:3-(2*3+2*3*(-2)-(-2))+(3*2-3*(-2)-(-2))=1812.化简后代入a=-1,b=2,得:3*(-1)-(2*(-1)*2+2)-(1-2*(-1)*2+2*2)=113.代入a=-2,b=-1,c=3,化简得:5*(-2)*(-1)*3-2*(-2)*(-1)-[(4*(-2)*(-1)-(-2)*3*3)-3*(-2)*(-1)*3]=2314.化简后代入a=2,b=-3,得:-2(2*(-3)-3)-(2-5*(2*(-3)-2*2)+6*(-3)*(-2))=-415.化简后代入a=2,b=-1,得:3*2-[(2-3*(-1)+(6-7)*2)]-2*(2-3*2-4*2-(-1))=-2316.化简后代入a=-2,b=3,得:(5*(-2)*3+4*3-2*(-2)*3+3*(-2))-(2*(-2)-5*3+3*3+2*(-2)*3)=-3217.化简后代入a=-2,b=-8,得:(-2*(-8)-3*(-2)*(-8)-2*(-2))-(-2*(-8))=018.化简后代入m=-1,n=2,得:8*(-1)*2-[4*(-1)*2-(6*(-1)*2+(-1)*2)]-29*(-1)*2=-4819.化简后代入x=3,y=1,得:3*(3-2-3)-2*(3-3+3)=020.化简后代入x=2,y=-5,得:3*(-10)-2*(-10)+3*(-10)=-501.原式=6a-2ab-6a+3ab=ab,当a=-2,b=3时,原式=ab=-2×3=-6.2.原式=6ab+3ab-5ab-10ab+6ab=-ab+ab,把a=-2,b=2代入上式得:原式=-(-2)×2+(-2)×2=-2-4=-6.3.原式=3xy-5xy+4xy-3-2xy=xy-xy-3,当x=-3,y=2时,原式=4×2-3=-5.4.原式=5ab+3ab-3ab+2ab=7ab,当a=2,b=-1时,原式=7×2×(-1)=-14.5.原式=2x-y+2y-x-3x-6y=-2x-5y,当x=3,y=-2时,原式=-6-(-10)=4.6.原式=5x-(x+5x-2x-2x+6x)=x-4x,当x=0时,原式=0-0=0.7.原式=6a-6ab-12b-6a+12b=-6ab,当a=-2,b=-8时,原式=-6×(-2)×(-8)=24.8.原式=xy-2xy+xy+xy=2xy-xy,当x=-1,y=-2时,原式=2×(-1)×(-2)-(-1)×(-2)=6.9.原式=5xy+15x-10y-3xy-15x+6y=2xy-4y,当x=1,y=-1时,原式=2×1×(-1)-4×(-1)=6.10.原式=1+a+b,当a=3时,b=1,代数式的值为5;当a=-3时,b=-5,代数式的值为-7.11.原式=-a-2a-2ab+b+a-ab-b=-a-3ab,当a=3,b=-2时,原式=-3-3×3×(-2)=15.12.原式=2a-ab+b,当a=-1,b=2时,原式=2×(-1)-(-1)×2+2=8.13.原式=5abc-2ab-4ab+ab+3abc=8abc-ab-4ab,a=-2,b=-1,c=3时,原式=8×2×1×3-4×(-1)-4×(-2)×1=60.14.原式=-2ab+6a-(a-5ab+5a+6ab)=-2ab+6a-a+5ab-5a-6ab=-3ab,当a=2,b=-3时,原式=-3×2×(-3)=18.19.原式为3x-6y-3xy-3x+6y-2xy=-5xy。
专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)
专题04代数式化简求值的三种考法类型一、整体代入求值【变式训练3】已知a+b=2ab,那么=()a ab b-+A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,【变式训练2】若6543210,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,令x =1,代入等式中得到:65432101①=++++++ a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++ a a a a a a a ,将①式减去②式,得到:65311(3)2()--+=+a a a ,∴536113)3642(-+=+=-a a a ,∴53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∴223x x -=-,∴3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020=x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029故答案为:2029.【分析】根据已知得到2232022x x -=,再将所求式子变形为()()22232320222020x x x x x x =-+---,整体代入计算即可.【详解】解:∵22320220x x --=,∴2232022x x -=,∴32220252020x x x ---322232*********x x x x x =-+---()()22232320222020x x x x x x =-+---2022202220222020x x =+--2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∴2232x x -=∴2695x x --()23235x x =--325=⨯-1=,故答案为:1.【变式训练3】已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∴230x x x --=,∴32210x x -+-=,∴3221x x -+=,∴3222021120212022x x -++=+=,故答案为:2022.1.已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2【详解】解:()2120x y -++= ,()21020x y -≥+≥,.10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.2.已知23a bc +=,222b bc -=-.则22543a b bc +-的值是()A .23-B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++-,再整体代入计算.【详解】解:∵23a bc +=,222b bc -=-,∴22543a b bc+-225548a bc b bc =+-+()()22254a bc b bc =+-+()5342=⨯+⨯-158=-7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用.3.已知21a a +=,那么3222023a a ++的值是()A .2021B .2022C .2023D .2024【答案】D【分析】先将3a 降次为2a a -+,然后代入代数式,再根据已知条件即可求解.【详解】解:∵21a a +=,∴21a a =-+,则32a a a =-+,∴3222023a a ++2222023a a a =-+++22023a a =++12023=+已知2,【答案】1或-3【详解】∵24a +=,()214b -=,∴a +2=±4,b −1=±2,∴a =2或a =−6,b =3或b =−1;∵0ab <,∴a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。
代数式的化简求值问题(含答案)
第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
化简求值习题及答案
整式加减---先化简再求值1、 已知22x y -=-,则32x y -+的值是( )A . 0B .1C .3D .52、当12a <<时,代数式21a a -+-的值是( )A . -1B .1C .3D .-33、代数式2346x x -+的值为9,则2463x x -+的值为( ) B .18 C .12 D .94、 已知2221,15m mn mn n -=-=-,求222m mn n -+的值5、已知210x x +-=,求3219983996x x +的值6、先化简下列各式,再求值:已知22,51A a a B a =-=-+,求当12a =时,321A B -+7、已知250,x y -+-=求()()2523260x y x y ----的值8、 已知3,,2a a b c ==求a b c a b c +++-的值9、 已知222321,A x xy y B x xy x =+--=-+-,且36A B +的值与x 的取值无关,求y 的值10、3223225115225363363a b a b ab a b ab ba --+-+++,其中2,27a b =-=-11、1110.50.20.3n n n n n x x x x x +++--+- , 其中 1x =-12、()()()()()223523x y y x y x x y x y +---+++-+,其中1,2x y =-=13、求多项式222775566a ab c c a c +--+的值,期中1,2,36a b c =-==-的值14、已知()2230m n mn +-++=,求()()()22323m n mn m n m n mn +-++++-⎡⎤⎡⎤⎣⎦⎣⎦的值15、当13x -<<时,化简:13x x +--;16、当13x -<<时,化简:213324x x x +--++17、 当a b a b-+=3时,求代数式5()a b a b -+-3()a b a b +-的值18、求()2225234abc a b abc ab a b ⎡⎤⎡⎤----⎣⎦⎣⎦,其中a 是最小的正整数,b 是绝对值最小的负整数,18c =,且0abc > 19、多项式23232421a x ax x x x +-+++是关于x 的二次多项式,求221a a a++的值 20、已知013=-x ,求代数式)1(6)13)(13()1(32-+-+--x x x x x 的值.参考答案1、D2、B3、A4、365、19986、47、808、1159、25y 10、13929411、n 为偶数时,为;n 为奇数时为-12、2 13、2 14、45 15、22x 16、73x 17、1418、-2 19、25944或 20、0。
初三代数式化简求值练习题
初三代数式化简求值练习题1. 将下列代数式化简,并求值:a) 4a + 3b - 2a + 7bb) 5(x + 2y) - 2(3x - 5y)c) 3(x - 4) - x(2x - 3)d) 2(x + y) - 3(x - y) - 4x + 5ye) 2a(4b - 3c) - 3b(2a - c)2. 解答思路:在进行代数式的化简和求值时,需要注意以下几个步骤:步骤一:合并同类项,即将具有相同字母和相同幂数的项合并。
步骤二:根据乘法分配律,将括号内的式子与外部的系数进行分配。
步骤三:将得到的化简后的式子进行进一步计算,得到最终结果。
以下是对上述每个代数式化简和求值的详细步骤:3. 解题过程:a) 4a + 3b - 2a + 7b= (4a - 2a) + (3b + 7b)= 2a + 10bb) 5(x + 2y) - 2(3x - 5y)= 5x + 10y - 6x + 10y= -x + 20yc) 3(x - 4) - x(2x - 3)= 3x - 12 - 2x^2 + 3x= -2x^2 + 6x - 12d) 2(x + y) - 3(x - y) - 4x + 5y= 2x + 2y - 3x + 3y - 4x + 5y= -5x + 10ye) 2a(4b - 3c) - 3b(2a - c)= 8ab - 6ac - 6ab + 3bc= 2ab - 6ac + 3bc4. 结论:a) 4a + 3b - 2a + 7b = 2a + 10bb) 5(x + 2y) - 2(3x - 5y) = -x + 20yc) 3(x - 4) - x(2x - 3) = -2x^2 + 6x - 12d) 2(x + y) - 3(x - y) - 4x + 5y = -5x + 10ye) 2a(4b - 3c) - 3b(2a - c) = 2ab - 6ac + 3bc以上是对初三代数式化简求值练习题的解答过程和结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式化简求值专项训练
1.先化简,再求值:
(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=
x .
(2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a =
23,b =-112。
(3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-.
2.已知312=
-y x ,2=xy ,求 43342y x y x -的值。
3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
4.已知22==+ab b a ,,求
32232
121ab b a b a ++的值.
5.已知x 2+x -1=0,求x 3+2x 2+3的值.
6.已知:222450a b a b ++-+=,求2243a b +-的值.
7.已知等腰△ABC 的两边长,a b 满足:22
2448160a ab b a -+-+=,求△ABC 的周长?
8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.
9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。
10、若182++ax x 能分解成两个因式的积,求整数a 的值?
代数式典型例题30题参考答案:
1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.
故选C
2.解:题中的代数式有:﹣x+1,π+3,共3个.
故选C.
3.解:①1x分数不能为假分数;
②2?3数与数相乘不能用“?”;
③20%x,书写正确;
④a﹣b÷c不能出现除号;
⑤,书写正确;
⑥x﹣5,书写正确,
不符合代数式书写要求的有①②④共3个.
故选:C
4.解:“负x的平方”记作(﹣x)2;
“x的3倍”记作3x;
“y与的积”记作y.
故选B
5.解:A、x是代数式,0也是代数式,故选项错误;
B、表示a与b的积的代数式为ab,故选项错误;
C、正确;
D、意义是:a与b的和除y的商,故选项错误.
故选C
6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元
7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;
(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.
故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;
(2)这件商品打八折后的价格
8.解:根据题意得此三位数=2×100+x=200+x
9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.
故答案为:.
11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则
未读完的页数是n
12.解:(1)∵a﹣b=3,
∴3a﹣3b=3,
5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;
(2)∵x+5y﹣2=0,
∴x+5y=2,
∴2x+3+10y=2(x+5y)+3=2×2+3=7;
(3)∵3x2﹣6x+8=0,
∴x2﹣2x=﹣,
∴x2﹣2x+8=﹣+8=.
故答案为:(1)3,1;(2)7;(3)
13.解:
因为a,b互为倒数,c,d互为相反数,
所以ab=1,c+d=0,
所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,
故答案为:﹣9
14.解:由题意知:﹣a﹣b=5
所以a+b=﹣5;
则当x=1时,ax3+bx=a+b=﹣5
15.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.
故答案为:5x3y,12x3y,20x3y
16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,
结果为9.
答:(﹣n)m值是9
17.解:两个单项式的和是单项式,则它们是同类项,
则2m+3=4,m=;n=3.
则(4m﹣n)n=(4×﹣3)3=﹣1.
答:(4m﹣n)n=﹣1
18.解:x5y n与﹣3x2m+1y3n﹣2是同类项,
2m+1=5,n=3n﹣2,
m=2,n=1,
m+n=2+1=3,
故答案为:3
19.解:(1)∵其余三面留出宽都是x米的小路,
∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;
(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,
所以菜地的面积为S=(18﹣2x)?(10﹣x);
(3)由(2)得菜地的面积为:S=(18﹣2x)?(10﹣x),
当x=1时,S=(18﹣2)(10﹣1)=144m2.
故答案分别为:(1)18﹣2x,10﹣x;
(2)(18﹣2x)(10﹣x);
(3)144m2
20.解:∵﹣3x4+m y与x4y3n是同类项,
∴4+m=4,3n=1,
∴m=0,n=,
∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1
21.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,
即二次项系数为0,
即m﹣2=0,
∴m=2;
∴2n+4=0,
∴n=﹣2,
把m、n的值代入n m中,得原式=4
22.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,
∴5﹣2R=0,解得R=
23.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,
∵不含x,y的乘积项,
∴x,y的乘积项的系数为0,
∴﹣2k+6=0,
∴2k=6,
∴k=3.
∴当k=3时,已知多项式不含x,y的乘积项
24.(1)﹣3(2s﹣5)+6s
=﹣6s+15+6s
=15;
(2)3x﹣[5x﹣(x﹣4)]
=3x﹣[5x﹣x+4]
=3x﹣5x+x﹣4
=﹣x+4;
(3)6a2﹣4ab﹣4(2a2+ab)
=6a2﹣4ab﹣8a2﹣2ab
=﹣2a2﹣6ab;
(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)
=﹣6x2+3xy+4x2+4xy﹣24
=﹣2x2+7xy﹣24
25.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;
(2)原式=a﹣a﹣﹣+b2=;
(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;
(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},
=﹣3{9(2x+x2)+9(x﹣x2)+9},
=﹣27(2x+x2)﹣27(x﹣x2)﹣27,
=﹣54x﹣27x2﹣27x+27x2﹣27,
=﹣81x﹣27
26.解:(1)﹣;
(2)原式=1﹣+﹣++…+﹣=1﹣=
27.解:(1)∵第n个数是(﹣1)n,
∴第7个,第8个,第9个数分别是﹣,,﹣.
(2),最后与0越来越接近
28.解:通过图案观察可知,
当n=1时,点的个数是12=1;
当n=2时,点的个数是22=4;
当n=3时,点的个数是32=9;
当n=4时,点的个数是42=16,
…
∴第n个正方形点阵中有n2个点,
∴第n个正方形点阵中的规律是=n2.
29.解:根据图案可知,
(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;
当n=2时,火柴的根数是3×2+1=7;
当n=3时,火柴的根数是3×3+1=10;
所以第n个图形中火柴有3n+1.
(3)当n=2008时,3n+1=3×2008+1=6025
30.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,
(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,
(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。