实用闪蒸汽计算方法
闪蒸计算
相当于一块理论板
不同点: 产生气化的原因不同 部分气化或部分冷凝:外界交换热 绝热闪蒸:不与外界换热,焓变为零
可调设计变量不同
气化:除P外还要已知一个条件
绝热闪蒸:给定P,体系就固定了
闪蒸过程的计算方程
(1)物料衡算—M方程: C个
先设定一个e值,代入下式分别计算出G(e)和G`(e)
z (K 1) G(e) (y i x i ) i i e1 i i (K i 1)
2 z ( K 1 ) i i G、 (e) e 1]2 i [(K i 1)
若G(e)偏离0,用牛顿迭代法的计算迭代式迭代修正e
Fzi Lx i Vy i
(2)相平衡—E方程: FH F 此外还有能量衡算
i 1, 2,...C
i 1,2,...C
zi i
1
yi K i xi
Q VH V LH L
3C+3
C个
(3)摩尔分率加和式归一方程: 3个
x
i 1
C
i
1
yi i
1
C
1
C
1
⑤ 利用下式计算汽、液相组成y和x:
yi
成分
K izi
(K i 1) e1
乙烷(1) 0.1512 0.0315
zi xi (K i 1)e 1
丙烷(2) 0.3105 0.1584 丁烷(3) 0.4613 0.5768 戊烷(4) 0.0770 0.2333
汽相组成yi 液相组成xi
XX大学
我们毕业啦
其实是答辩的标题地方
闪蒸计算
作者:XX
lesson 5第二章闪蒸计算
2.5.1等温闪蒸计算
M-eq. Fzi =Lxi + V yi E-eq. yi =Ki xi S-eq. ∑xi =1 ;∑yi =1 MEHS方程组的求解 H-eq. FHF + Q = VHV + LHL
简化计算步骤,方程变形: E方程代入M方程,消去yi ,将L=F-V带入, 并设V/F=ψ,则有:
K i 1 zi f 0 1 K i 1
计算Ki 通用闪蒸式迭代计算ψ
计算x,y
不收敛
比较 x,y 的初值与计算值
收敛,输出
13
等温闪蒸的同时迭代框图
开始,给定F,z,p,T
估计初值 x,y,ψ 计算Ki 通用闪蒸式计算ψ 计算x,y
归一化x,y 比较ψ初值与新值
18
序贯迭代法
(2)窄沸程混合物:各组分沸点相近,热量 恒算主要取决于汽化率ψ,应用热量恒算方 程计算ψ,闪蒸方程计算温度T。由于收敛 的T值对ψ不敏感,作为内层迭代。 窄沸程物系ψ对T敏感 用热量恒算方程迭代ψ;用闪蒸方程迭代T 外层循环 内层循环
19
序贯迭代法
(3)计算前先确定是宽沸程闪蒸还是窄沸 程闪蒸? (4)热量恒算求T时的迭代公式(牛顿法):
/ d
k
其中
d
2
i
i
1 k Ki 1
2
9
2.5.1等温闪蒸计算-MEHS方程组的求解
当ψ值确定后,由(1)式求出xi 、yi , 并用系统总物料恒算求出L和V,然后计 算焓值HV 和HL ,用焓恒算式求出热量Q。 ? ψ值的初值如何确定: 0< ψ <1.0 已知TB <T <TD 闪蒸问题成立,可取: ψ0 =(T-TB)/(TD –TB )
闪蒸过程的计算-分离工程
2.3.1 等温闪蒸
规定: p 、T 计算:Q, V, L, yi, xi
一、汽液平衡常数与组成无关 已知闪蒸温度和压力,Ki值容易确定,所以联立求解上述 (2C+3)个方程比较简单。 具体步骤如下:
将E-方程:
代入M-方程:
消去yi ,得到:
将 L= F -V 代入上式: =
令:
汽化率
代入(2-66)式,得到:
汽 液 相 平 衡 及 其 计 算
B、Margules Equ
C、Wilson Equ.
汽 液 相 平 衡 及 其 计 算
汽 液 相 平 衡 及 其 计 算
三元溶液的活度系数 A、Margules Equ.
1 2 3
B、Wilson Equation
汽 液 相 平 衡 及 其 计 算
自学例题2-1,2-2
根据其余2个变量的规定方法可将闪蒸计算分为如下五类:
表2-4 闪蒸计算类型
规定变量 p,T
闪蒸形式
输出变量 Q, V, L, yi, xi
√* 等温
绝热√
非绝热 部分冷凝 部分汽化
p,Q=0
p,Q≠0 p,L(或ψ) p(或T),V(或ψ)
T, V, L, yi, xi
T, V, L, yi, xi Q, T, V, yi, xi Q,T(或p),L,yi,xi
14、曾健,胡文励,一种新的泡点计算方法, 天然气化工,1995,(1):52
15、曾健,胡文励,露点计算的一种改进[J]. 天然气化工(C1化学与化工),1999,(5)
16、汪萍,项曙光,一种改进的泡露点计算方 法.化工时刊, 2004年 05期
17、李谦,魏奇业,华贲,基于神经网络的多组 分混合物泡露点.计算机及应用.化学工程 ,2004,
天然气工程-闪蒸计算
3、气、液相组成yi,xi的 计算
y1 0.9959
x1 0.5820
y2 3.89103 x2 0.2670
y3 4.72105 x3 0.1504
3、气、液相组成yi,xi的 计算
气相、液相组成归一化处理:
y1 0.9959 y2 3.89103 y3 4.72105
Vci 99.0 255.0 431.920
烃类相态闪蒸计算
二元交互作用系数kij计算
kij
1
2Vc1i/ 6
Vc1j/ 6
Vc1i/ 3 Vc1j/ 3
e
k ji
kii
1
2Vc1i/ Vc1i/ 3
6 Vc1i/ 6 Vc1i/ 3
3、气、液相组成yi,xi的 计算
液相组成归一化处理:
xi xi / xi
x1 0.5820 x2 0.2670 x3 0.1504
4、计算PR状态方程参数
1)各单组分的引力系数ai、斥力系数bi:
ai
0.45724 R 2Tc2i pci
bi
0.07780 RTci pci
2、气相摩尔分量V 的计算
判断:
abs (Vj1 Vj ) /Vj1 0.001
若满足上述条件,取V=Vj+1;若不满足,重复迭 代计算,直到满足上述条件。
V 0.745
3、气、液相组成yi,xi的 计算
气、液相的组成方程:
yi
1
zi
K
Ki
i 1V
xi
1
2-4闪蒸过程计算(ppt,课件)
宽沸程绝热闪蒸过程计算
所谓宽沸程混合物指的是构成混合物各组分的挥发度相
差悬殊,其中一些很容易挥发,而另一些很难挥发,它的
特点就是离开闪蒸罐时各相的量几乎完全决定于相平衡常 数。
对这类体系,在很宽的温度范围内,易挥发组分主
要集中在汽相中,而液相中则主要集中了难挥发组分。进
料焓值的增加将使温度提高,但是对汽液两相的流率的影
闪蒸计算类型的异同点
相同点:
都是气化过程,说明可按气化公式计算
气液两相平衡
相当于一块理论板
不同点:
产生气化的原因不同
部分气化或部分冷凝:外界交换热 绝热闪蒸:不与外界换热,焓变为零
可调设计变量不同
气化:除P外还要已知一个条件 绝热闪蒸:给定P,体系就固定了
2.3.1 等温闪蒸和部分冷凝过程 规定: P、T 计算:Q, V, L, yi, xi
第四节 闪蒸过程计算
主要内容
闪蒸过程简介 闪蒸过程类型 闪蒸过程计算方程 等温闪蒸过程计算 绝热闪蒸过程计算
闪蒸( Flash Vaporization)
闪蒸过程实质是一种连续单级蒸馏:液体进料流 过阀门等装置,由于压力的突然降低而引起急剧蒸发, 产生部分汽化,形成互成平衡的汽液两相,(也可以 通过汽相部分冷凝或液相的部分汽化产生平衡的两 相)。
在混合物的T-X相图上,闪蒸的状态位于混合物的 泡点线和露点线之间。
通过闪蒸过程可以使易挥发组分在汽相中的浓度提高、 难挥发组分在液相中的浓度相应提高,从而达到分离提浓 的目的。
除非混合物的相对挥发度很大,闪蒸过程获得的分离 程度不高,因此,在工业生产实践中,闪蒸通常是作为进 一步分离的辅助操作。
f ( (k) ) f ' ( (k) )
3 闪蒸计算
例题3-1 通过闪蒸模块求泡露点
• 1)添加组分 • 2)选择热力学模型(Peng-Rob)
第7页
例题 3-1 通过闪蒸模块求泡露点
• 3)绘制模拟流程图(Separators/Flash2)
第8页
例题3-1 通过闪蒸模块求泡露点
• 4)定义进料流股
第9页
例题3-1 通过闪蒸模块求泡露点
点击Temperature单元格,数据被选中,
第19页
例题3-2 绘制闪蒸的热力学曲线
在Plot的下拉菜单中单击X-axis Variable,则Temper ature 数据被赋给X作为自变量。
第20页
例题3-2 绘制闪蒸的热力学曲线
同理,点击vapor fraoction单元格,数据被选中 在Plot的下拉菜单中单击Y-axis Variable,则vapor fraoction数据被赋给Y作为因变量。
第13页
例题3-2 绘制闪蒸的热力学曲线
法2 可通过热力学曲线选项 在databrowser/blocks/闪蒸罐单元/Hcurves
第14页
例题3-2 绘制闪蒸的热力学曲线
法2 可通过热力学曲线选项 在databrowser/blocks/闪蒸罐单元/Hcurves
第15页
例题3-2 绘制闪蒸的热力学曲线
法2 可通过热力学曲线选项 在databrowser/blocks/闪蒸罐单元/Hcurves
第16页
例题3-2 绘制闪蒸的热力学曲线
法2 可通过热力学曲线选项 在databrowser/blocks/闪蒸罐单元/Hcurves
第17页
例题3-2 绘制闪蒸的热力学曲线
第18页
例题3-2 绘制闪蒸的热力学曲线
多级闪蒸热力学计算
多级闪蒸热力学计算多级闪蒸热力学计算是一种常用的热力学计算方法,广泛应用于工业生产和热能利用领域。
本文将介绍多级闪蒸热力学计算的原理、方法和应用。
多级闪蒸是指在连续的闪蒸过程中,将高压液体通过多级减压,从而实现液体的闪蒸和汽液分离。
多级闪蒸的目的是利用多个级数的减压,使闪蒸过程中的能量损失最小化,提高蒸汽的干度和回收液体的热能。
多级闪蒸热力学计算的核心是通过热力学参数的计算和分析,确定闪蒸过程中的各级压力、温度和流量等关键参数。
这些参数的准确计算对于多级闪蒸的设计和优化至关重要。
多级闪蒸热力学计算的步骤如下:第一步是确定闪蒸过程中的初始条件,包括进料温度、压力和流量等。
这些参数将影响到后续的计算结果。
第二步是通过热力学软件或手动计算,确定各级闪蒸器的蒸汽量、回收液体流量和温度等参数。
这些参数通常通过热力学方程和实验数据进行计算和验证。
第三步是根据闪蒸过程中的能量守恒原理,计算各级闪蒸器的热损失和能量回收情况。
热损失的计算可以通过闪蒸器的热平衡方程和传热原理进行推导和计算。
第四步是根据计算结果,对多级闪蒸系统进行优化设计。
优化的目标是使闪蒸过程中的能量损失最小化,提高蒸汽的干度和回收液体的热能。
多级闪蒸热力学计算的应用非常广泛。
在石油化工行业中,多级闪蒸常用于原油蒸馏和石化过程中的热能回收。
在电力工业中,多级闪蒸则常用于汽轮机的凝汽系统中,以提高发电效率。
此外,多级闪蒸还广泛应用于食品、制药等行业中的热能利用和回收过程中。
多级闪蒸热力学计算是一种重要的热力学计算方法,可以帮助工程师和研究人员优化设计和改进热能系统。
通过准确计算和分析,可以最大限度地提高能源利用效率,实现可持续发展的目标。
多级闪蒸热力学计算的研究和应用将在未来的工程领域中发挥越来越重要的作用。
06化工分离工程-闪蒸计算
C
(T , P ) (T , P )
纯组分摩尔焓
2.3.3 等温闪蒸
一、K 与组成无关的计算
首先需判断闪蒸过程是否可行
方法一:已知P
对Z i 进行泡点计算: f (TB ) K i Z i 1 0 试差泡点TB
i 1 C
对Z i 进行露点计算: C Z f (TD ) ( i) 1 0 试差露点TD i 1 K i
K i Zi 1 Zi 若 同时成立,闪蒸问题有解。 K 1 i
例 液体混合物的汽化(烃类物系)
丙烷30 %,正丁烷10%,正戊烷15 %,正己 烷及45 %的混合物(摩尔百分数) 1000kmol/h,在50℃,200kPa下闪蒸的汽 液相组成及流率
例5 解:1.核实问题是否成立
对汽液平衡常数与组成有关的闪蒸计算
对 , x i , yi 分层迭代:
开始 给定F,Z,P,T 估计初值x,y 由(2—57),(5—58) 计算x,y 比较 x,y的估计值和 计算值 不 收 敛 收敛 输出
如果不直接 迭代,重新 估计x,y值
计算 K i k i (T , P , x i , yi )
V 令汽相分率: F 有: VV 有: F F L (1 )F i 1, 2 , C FZ i L (1 ) F 试差 (1 ) Fx FK x FZ i i i i (1 ) Fx FK x 使 xi 1及 yi 1
c
( k 1) ( k )
f ( ( k ) ) f ( ( k ) )
Q 的计算
Q FH F VHV LH L
Q—吸热为正,移热为负 H—混合物的摩尔焓 对于理想混合:
闪蒸过程的计算
第三节 闪蒸过程的计算2.3 等温闪蒸和部分冷凝过程流程示意图:闪蒸过程的计算方程(MESH ) ⑴物料衡算----M 方程: C 个⑵相平衡--------E 方程: C 个⑶摩尔分率加和式---S 方程: 2个⑷热量平衡式-------H 方程: 1个变量数:3C+8个 (F, F T ,F P ,T,P,V ,L,Q,i i i x y z ,,)方程总数:2C+3个 需规定变量数:C+5个其中进料变量数:C+3个(F, F T ,F P ,i z )根据其余2个变量的规定方法可将闪蒸计算分为如下五类:11=∑=Ci ix11=∑=Ci iy,...C,i Vy Lx Fz i i i 21 =+=Ci x K y i i i ,...2,1 ==LV F LH VH Q FH +=+表2-4闪蒸计算类型2.3.1 等温闪蒸规定:p 、T计算:Q, V , L,i i x y ,一、汽液平衡常数与组成无关 ()P T f K i ,=已知闪蒸温度和压力,i K 值容易确定,所以联立求解上述(2C+3)个方程比较简单。
具体步骤如下: 1. 输出变量求解将E---方程:代入M —方程: 消去i y ,得到: 将L=F-V 代入上式:汽化率代入(2-66)式,得到:Ci VK V F Fz x iii ,...2,1 =+-=(2-66))1(1-+=i ii K z x ψ(2-67) Ci x K y i i i ,...2,1 ==,...C ,i Vy Lx Fz i i i 21 =+=C i x VK Lx Fz i i i i ,...2,1 =+=FV /=ψ将(2-67)和(2-68)式代入S---方程,得到:两式相减,得:0)1(1)1()(=-+-=∑i ii K z K f ψψ--------------------------闪蒸方程0)1(1)1()(=-+-=∑i ii K z K f ψψ (2-71))1(1-+=i ii K z x ψ i i i x K y = F=V+L L V F LH VH Q FH +=+通过闪蒸方程(2-71)求出汽化率ψ后,由(2-67)和(2-68)式可分别求出i i y x 和,进而由总物料衡算式(2-64)可求出V 和L,由热量衡算式(2-65)可求出Q汽化率ψ的迭代: 设ψ初值,计算:)(ψf可采用Newton-Raphson 法迭代ψ:(2-68))1(1-+==i ii i i i K z K x K y ψ1)1(11=-+∑=Ci i iK z ψ(2-69)(2-70)1)1(11=-+∑=Ci i ii K z K ψ0)1(1)1()(1=-+-=∑=Ci i ii K z K f ψψ(2-71)2. Q 的计算L V F LH VH Q FH +=+Q-----吸热为正,移热为负H-----混合物的摩尔焓对于理想混合:3. 判断闪蒸过程是否可行的方法 方法一:已知T 、P对i Z 进行泡点计算:∑==-=Ci i i B Z K T f 101)( 试差泡点B T对i Z 进行露点计算:∑=⎪⎪⎭⎫⎝⎛=-=Ci i i D K Z T f 101)( 试差露点D T 判断:若D B T T T 闪蒸问题成立方法二:对i Z 在T 、P 下进行露点计算:对i Z 在T 、P 下进行泡点计算:—i Ci P T Li iL Ci P T Vi iV H Hx H Hy H ∑∑====1),(1),(纯组分摩尔焓判断:若 同时成立,闪蒸问题有解闪蒸过程计算框图:开始打印 BD BT T T T --=ψ输入T,P,F,Z ()()∑-+-=)1(11i i i k k Z f ψψ计算计算泡点B T []打印,结束−→−<YF εψ)(计算露点D T []22)1(1)1()('-+-∑-=i i i k k Z f ψψ)(')(1ψψψψf f k k -=+汽液平衡常数与组成有关的闪蒸计算 对i i y x ,,ψ分层迭代:开始给定F,Z,P,T估计初值x,y ψ计算()i i i i y x P T k K ,,,=),(p T F k i =打印过冷液体−→−>YB T T 过热蒸汽−→−<YD T T 由(2-67),(2-68)计算x,y 归一化i i y x ,比较:估计和归一化值 比较:k k ψψ和)1(+如果不直接迭代,重新估计x,y 值 由Rachford-Rice 方程迭代()1+k ψ思考题1、相平衡关系可用几种方法来表达。
闪蒸过程计算
闪蒸形式 等温 绝热 非绝热
部分冷凝 部分汽化
输出变量 Q, V, L, yi, xi T, V, L, yi, xi T, V, L, yi, xi Q, T, V, yi, xi Q, T(或p), L, yi, xi
大家有疑问的,可以询问和交流
窄沸程绝热闪蒸得序贯迭代法
对窄沸程绝热闪蒸过程,与等温闪蒸一样采用 Rachord-Rice 方程,迭代T:
T ( k 1)
T (k)
G(T (k ) ) G ' (T (k ) )
其中
G(T (k ) ) H v (1 )H L H F
G(T (k ) ) T
dHV dT
(1 ) dH L
xi
zi
1 (Ki
1)
yi
zi Ki
1 (Ki
1)
(k1) (k)
f ( (k) ) f ' ( (k) )
xi
zi
1 (Ki
1)
yi
zi Ki
1 (Ki
1)
闪蒸计算举例
由乙烷(1)、丙烷(2)、正丁烷(3)和正戊烷(4) 组成得料液以500kmol/h得流率加入闪蒸室。 闪蒸室得压力为1、38MPa(13、6atm),温度为 82、5℃。料液得组成为:
闪蒸过程计算
主要内容
闪蒸过程简介 闪蒸过程类型 闪蒸过程计算方程 等温闪蒸过程计算 绝热闪蒸过程计算
闪蒸( Flash Vaporization)
闪蒸过程实质就是一种连续单级蒸馏:液体进料流 过阀门等装置,由于压力得突然降低而引起急剧蒸发,产 生部分汽化,形成互成平衡得汽液两相,(也可以通过汽 相部分冷凝或液相得部分汽化产生平衡得两相)。
闪蒸过程计算
闪蒸形式 等温 绝热 非绝热
部分冷凝 部分汽化
输出变量 Q, V, L, yi, xi T, V, L, yi, xi T, V, L, yi, xi Q, T, V, yi, xi Q, T(或p), L, yi, xi
闪蒸计算类型的异同点
相同点:
都是气化过程,说明可按气化公式计算
气液两相平衡
相当于一块理论板
i 1
露点验证:
4 zi 0.0 80.2 20.5 30.1 71.3> 017
i 1K i 4.8 1.960.8 0.33
可见两者都大于1,说明料液的泡点Tb<82.5℃,露点Td>82.5 ℃, 因此在给定温度和压力下,料液将分成汽、液两相,属于闪蒸计算
问题。
③ 迭代计算料液的汽化率ψ : 先设定一个ψ值,代入下式分别计算出f和f’
在混合物的T-X相图上,闪蒸的状态位于混合物的 泡点线和露点线之间。
通过闪蒸过程可以使易挥发组分在汽相中的浓度提高、 难挥发组分在液相中的浓度相应提高,从而达到分离提浓 的目的。
除非混合物的相对挥发度很大,闪蒸过程获得的分离 程度不高,因此,在工业生产实践中,闪蒸通常是作为进 一步分离的辅助操作。
宽沸程绝热闪蒸过程计算
所谓宽沸程混合物指的是构成混合物各组分的挥发度相 差悬殊,其中一些很容易挥发,而另一些很难挥发,它的 特点就是离开闪蒸罐时各相的量几乎完全决定于相平衡常 数。
对这类体系,在很宽的温度范围内,易挥发组分主
要集中在汽相中,而液相中则主要集中了难挥发组分。进
料焓值的增加将使温度提高,但是对汽液两相的流率的影
宽沸程绝热闪蒸过程计算框图
选择T初值
选择ψ初值
计算 函数 f(ψ)
闪蒸过程计算
闪蒸过程计算内容-3
等温闪蒸计算 (Isothermal flash) 中文名称:冷凝和气化 即计算一定温度和压力下的闪蒸过程; 已知条件:进料温度、压力、流量及组成; 闪蒸的温度和压力; 计算结果:闪蒸后气、液相的流量、组成; 闪蒸所需的热负荷;
闪蒸过程计算内容-4
绝热闪蒸计算 (adiabatic flash) 中文又称等焓节流; 即计算物料节流到一定压力下的闪蒸过程; 已知条件:进料温度、压力、流量及组成; 闪蒸后的压力; 计算结果:闪蒸后气、液相的温度、流量、组成; 过程特点:虽然通常节流后会降温,但热负荷为0;
泡点迭代计算步骤
已知P, Xi ; 泡点温度判据? 达到泡点温度时,必有ΣYi=1; 若ΣYi>1,温度高于泡点温度; 若ΣYi<1,温度低于泡点温度; (为什么?)
泡点迭代计算步骤
①假设温度初值T0 ; ②根据P, Xi, T0 计算Ki; ③由Yi=KiXi,计算Yi; ④判断ΣYi=1?若满足,则计算结束; ⑤判断式不满足,修改T0,得到T1,返回②继 续迭代,直至满足 ΣYi=1 ; 思考:如何修改T0,得到T1?
闪蒸过程计算内容-2
露点计算(dew point) 什么是露点? 气相混合物在一定压力下降温,当出现第一 个微小的液滴,且该液滴的产生并不改变相 的组成,该温度称为露点温度; 已知条件:物料压力(或温度)、组成; 计算结果:露点温度或压力;
闪蒸过程计算内容-2
思考: 露点计算判据? 判据 ΣXi=1; 若ΣXi>1,温度低于露点温度; 若ΣXi<1,温度高于露点温度;
闪蒸过程数学模型
混合物在压力P, 温度T 下进行部分冷凝,或绝 热闪蒸;求液化率,气、液 相量及组成或闪蒸后温度; 进料:F, Zi 出料:V, Yi; L, Xi;
[指南]第三节闪蒸过程的计算
第三节 闪蒸过程的计算2.3 等温闪蒸和部分冷凝过程流程示意图:闪蒸过程的计算方程(MESH )⑴物料衡算----M 方程: C 个⑵相平衡--------E 方程: C 个⑶摩尔分率加和式---S 方程: 2个⑷热量平衡式-------H 方程: 1个变量数:3C+8个 (F, F T ,F P ,T,P ,V ,L,Q,i i i x y z ,,)方程总数:2C+3个需规定变量数:C+5个 其中进料变量数:C+3个(F, F T ,F P ,i z ) 根据其余2个变量的规定方法可将闪蒸计算分为如下五类:11=∑=Ci ix11=∑=Ci iy,...C,i Vy Lx Fz i i i 21 =+=Ci x K y i i i ,...2,1 ==LV F LH VH Q FH +=+表2-4闪蒸计算类型2.3.1 等温闪蒸规定:p 、T计算:Q, V , L,ii x y ,一、汽液平衡常数与组成无关 ()P T f K i ,=已知闪蒸温度和压力,i K 值容易确定,所以联立求解上述(2C+3)个方程比较简单。
具体步骤如下: 1. 输出变量求解将E---方程:代入M —方程: 消去i y ,得到: 将L=F-V 代入上式:汽化率 代入(2-66)式,得到:Ci V K V F Fz x iii ,...2,1 =+-=(2-66))1(1-+=i ii K z x ψ(2-67)Ci x K y i i i ,...2,1 ==,...C,i Vy Lx Fz i i i 21 =+=Ci x VK Lx Fz i i i i ,...2,1 =+=FV /=ψ将(2-67)和(2-68)式代入S---方程,得到:两式相减,得:0)1(1)1()(=-+-=∑i ii K z K f ψψ--------------------------闪蒸方程0)1(1)1()(=-+-=∑i ii K z K f ψψ (2-71))1(1-+=i ii K z x ψ i i i x K y = F=V+L LV F LH VH Q FH +=+通过闪蒸方程(2-71)求出汽化率ψ后,由(2-67)和(2-68)式可分别求出i i y x 和,进而由总物料衡算式(2-64)可求出V 和L,由热量衡算式(2-65)可求出Q汽化率ψ的迭代:设ψ初值,计算:)(ψf可采用Newton-Raphson 法迭代ψ:(2-68))1(1-+==i ii i i i K z K x K y ψ1)1(11=-+∑=Ci i iK z ψ(2-69)(2-70)1)1(11=-+∑=Ci i ii K z K ψ0)1(1)1()(1=-+-=∑=Ci i ii K z K f ψψ(2-71)2. Q 的计算L V F LH VH Q FH +=+Q-----吸热为正,移热为负H-----混合物的摩尔焓对于理想混合:3. 判断闪蒸过程是否可行的方法方法一:已知T 、P对i Z 进行泡点计算:∑==-=Ci i i B Z K T f 101)( 试差泡点BT对i Z 进行露点计算:∑=⎪⎪⎭⎫⎝⎛=-=Ci i i D K Z T f 101)( 试差露点DT判断:若D B T T T 闪蒸问题成立方法二:对i Z 在T 、P 下进行露点计算:—i Ci P T Li iL Ci P T Vi iV H Hx H Hy H ∑∑====1),(1),(纯组分摩尔焓对i Z 在T 、P 下进行泡点计算:判断:若 同时成立,闪蒸问题有解闪蒸过程计算框图:开始打印 BD BT T T T --=ψ输入T,P,F,Z ()()∑-+-=)1(11i i i k k Z f ψψ计算计算泡点B T []打印,结束−→−<YF εψ)(计算露点D T []22)1(1)1()('-+-∑-=i i i k k Z f ψψ)(')(1ψψψψf f k k -=+汽液平衡常数与组成有关的闪蒸计算对i i y x ,,ψ分层迭代:开始给定F,Z,P,T),(p T F k i =打印过冷液体−→−>Y B T T 过热蒸汽−→−<YD T T 由(2-67),(2-68)计算x,y估计初值x,y ψ计算()i i i i y x P T k K ,,,=如果不直接迭代,重新估计x,y 值 由Rachford-Rice 方程迭代()1+k ψ思考题1、相平衡关系可用几种方法来表达。
实用闪蒸汽计算方法
实用闪蒸汽计算方法(总1页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除闪蒸蒸汽(二次蒸汽)什么是闪蒸蒸汽?当一定压力下的热凝结水或锅炉水被降压,部分水分会二次蒸发,所得到的蒸汽即为闪蒸蒸汽。
为什么闪蒸蒸汽很重要?因为它包含可以使工厂经济运行的热量,不利用它,能源就会被白白浪费。
闪蒸蒸汽是怎样形成的?当水在大气压力下被加热时,100℃是该压力下液体水所能允许的最高温度。
再加热也不能提高水的温度,而只能将水转化成蒸汽。
水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。
在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。
在一般场合下,热的单位用千焦表示,它是指将1 kg水在1个大气压力下升高0.24℃所需要的热量。
然而,如果在一定压力下加热水,那么水的沸点就要比100℃高,所以就要求有更多的显热。
压力越高,水的沸点就高,热含量亦越高。
压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。
曲线图CG-3.饱和凝结水减压时形成的闪蒸蒸汽百分比如0.689 MPa的蒸汽压力温度下的凝结水的热含量是718.89?kJ/kg(参见蒸汽特性数据表第4栏)。
如果这时将该凝结水排放到大气压力下(0 MPa),它的热则马上降到419.20?kJ/kg。
剩下的299.69?kJ/kg热量则将部分凝结水二次蒸发或闪蒸。
使用下列公式可以计算出闪蒸蒸汽的百分比%闪蒸蒸汽=HSLSH-×100%SH = 排放前高压下凝结水中的显热。
SL= 排放时低压下凝结水中的显热。
H= 低压下蒸汽中的潜热。
%闪蒸蒸汽=2258.94720.1989.18-×100%=13.3%为方便起见,曲线图CG-3给出了不同压力下排放凝结水时所形成的二次闪蒸蒸汽的分比。
其它实用图表见CG-53。
曲线图CG-4.每m3凝结水在大气压下排放时形成的闪蒸蒸汽量3。
闪蒸蒸汽
压蒸汽用于同一台产生高压冷凝水的设备上,仅需要把闪蒸蒸汽输送回到用汽设备上。 如图14.6.5所示,该设备为多组空气加热器,向制程供应高温空气,该设备即可使用回收的闪蒸蒸汽,
例14.6.4根据如下条件确定闪蒸罐的大小。 疏水阀前的压力为12 bar g,冷凝水量为2500 kg/h,闪蒸蒸汽的压力为1 bar g
方法: 1. 由疏水阀前的压力12 bar g作水平线和1 bar g的闪蒸蒸汽曲线相交于A点。 2. 由A点做垂线和2500kg/h的流量曲线相交于B点,并沿该曲线找到C点; 3. 由C点作水平线和1 bar g的闪蒸蒸汽线相交于D点; 4. 由D点向上确定闪蒸罐的大小。
例14.6.1 - 考虑图14.6.1所示的夹套加热槽 饱和的冷凝水进入疏水阀,其压力为7 bar g,温度为170℃,该压力下冷凝水的热量为721 kJ/kg。经
过疏水阀排放到压力为0 bar g的冷凝水回收管中,该压力下冷凝水的热量为419kJ/kg,最高温度为100℃,有 302kJ/kg的多余热量,从而使得一些冷凝水闪蒸成了蒸汽,闪蒸蒸汽的量按下式计算:
一级盘管 二级盘管
回水入口
蒸汽和冷凝水系统手册
图14.6.7 容积式换热器安装二级盘管利用闪蒸蒸汽
14.6.7
第14章 冷凝水回收
闪蒸蒸汽 章节14.6
图14.6.8是另一个典型应用,一个普通的汽水加热器产生的冷凝水通过疏水阀排到较小的管壳式换
热器(又称闪蒸蒸汽冷凝器),在这里闪蒸蒸汽冷凝成温度更低的冷凝水,管壳式换热器二次侧和加热器
因为在该例中排放的冷凝水温度由于比饱和温度低,所以闪蒸蒸汽的比例也从13.4%降到了10.4%。
第二章 2.3 闪蒸
T TB
0
1
xA
闪蒸成立的条件:TB<T<TD
1. 核实闪蒸问题是否成立 TB<T<TD
TD
T
TB
核实方法:
第一步:确定是否T >TB
0
1
xA
假设闪蒸温度为进料的泡点
温度,则Kizi=1
若Kizi>1,说明T >TB 。
第二步:确定是否T <TD
假设闪蒸温度为进料的露点温
度,则(zi/Ki)=1
若(zi/Ki)>1,说明T <TD 。
1. 核实闪蒸问题是否成立
反之,若Kizi<1,则为过冷液体; 若(zi/Ki)<1,则为过热蒸汽。
TD
T TB
过热蒸气 过冷液体
0
1
xA
小结
核实闪蒸问题是否成立
zi ,T, p
TD
T TB
0
1
xA
c
Ki zi 1 T TB
i 1
c
(2-54)
通过闪蒸方程(2-61)求出汽化率后,由 (2-57)和(2-58)式可分别求出xi 和yi , 进而由总物料衡算式(2-53)可求出V 和 L,
由热量衡算式(2-54)可求出Q。
汽化率 的迭代:
设 初值,计算f():
C
f ( )
(Ki 1)zi
0
i1 1 (K i 1)
部分冷凝 露点气体
过热气体
例1
• 进料流率为1000kmol/h的轻烃混合物,其 摩尔组成为:丙烯(1)30%,丙烷(2)35%, 异丁烷(3)35%。在900kPa和40℃下闪蒸问 题是否成立?
闪蒸蒸汽与蒸汽泄漏
闪蒸蒸汽与蒸汽泄漏闪蒸蒸汽指的是从冷凝水排放孔流出时和冷凝水从蒸汽疏水阀向外界排放时产生的二次蒸汽。
那么,水是怎样不额外增加热量而变成蒸汽的呢?闪蒸蒸汽发生于当高压的水(水温高于低压液体的饱和温度)变为低压的时候。
相反的,如果高压水的温度低于低压水的饱和温度,那么闪蒸蒸汽就不会产生。
当冷凝水从蒸汽疏水阀经过的时候,通常上游温度足够高,就会产生闪蒸蒸汽。
举例,1千克冷凝水(5bar g)饱和温度为159°C ,通过蒸汽疏水阀后压力为0 bar g,1千克冷凝水在5 bar g时具有的能量是671 kJ,根据热力学第一定律,低压侧的冷凝水含有的能量与高压侧的能量必然相同,遵守能量转化定律。
因此,低压侧的冷凝水的能量同样也是671KJ,但是,0bar g的水中最多含有419KJ热量,这样,低压侧的能量就与高压侧不平衡,多余671 – 419 = 252 kJ,这样,对水来说,就会产生过热。
这些过剩的热量就会使部分冷凝水达到沸点形成闪蒸蒸汽,这个沸腾的过程就叫闪蒸。
因此,原来存在于高压侧冷凝水中的能量现在就存在于低压侧的水和蒸汽的混合物之中了。
在压力P2下产生的闪蒸蒸汽的量可以用公式来计算:一定量的水在5 bar g压力时,含有671 kJ/kg热量,其饱和温度为159°C,如果此时压力降为大气压力(0 bar g),此时,水仅能存在于100°C,含有419 kJ/kg热量。
其间的差额671 - 419 = 252 kJ/kg热量,就会在大气压力下产生闪整蒸汽,产生的闪整蒸汽的比例可以认为是过剩的热量与最终压力下的蒸发焓的比率。
但是,高压冷凝水的温度为90°C,低于大气压力下的饱和温度100°C,注意:实际中很少有与饱和温度相差如此大的温度(159°C 到90°C)。
1千克不饱和冷凝水在5bar g及90°C的液体焓为377 kJ,这个焓值小于大气压力下的饱和水的焓值,因此没有过多的热量去产生闪蒸蒸汽,冷凝水仅简单地以液态从疏水阀中通过,仅压力较低而已,本例中为大气压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闪蒸蒸汽(二次蒸汽)
什么是闪蒸蒸汽?当一定压力下的热凝结水或锅炉水被降压,部分水分会二次蒸发,所得到的蒸汽即为闪蒸蒸汽。
为什么闪蒸蒸汽很重要?因为它包含可以使工厂经济运行的热量,不利用它,能源就会被白白浪费。
闪蒸蒸汽是怎样形成的?当水在大气压力下被加热时,100℃是该压力下液体水所能允许的最高温度。
再加热也不能提高水的温度,而只能将水转化成蒸汽。
水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。
在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。
在一般场合下,热的单位用千焦表示,它是指将1 kg 水在1个大气压力下升高0.24℃所需要的热量。
然而,如果在一定压力下加热水,那么水的沸点就要比100℃高,所以就要求有更多的显热。
压力越高,水的沸点就高,热含量亦越高。
压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。
曲线图CG-3.
饱和凝结水减压时形成的闪蒸蒸汽百分比
如0.689 MPa的蒸汽压力温度下的凝结水的热含量是718.89 kJ/kg(参见蒸汽特性数据表第4栏)。
如果这时将该凝结水排放到大气压力下(0 MPa),它的热则马上降到419.20 kJ/kg。
剩下的299.69 kJ/kg热量则将部分凝结水二次蒸发或闪蒸。
使用下列公式可以计算出闪蒸蒸汽的百分比
%闪蒸蒸汽=
H
SL
SH-
×100%
SH = 排放前高压下凝结水中的显热。
SL= 排放时低压下凝结水中的显热。
H = 低压下蒸汽中的潜热。
%闪蒸蒸汽=
2258.9
4
720
.
19
89
.
18-
×100%=13.3%
为方便起见,曲线图CG-3给出了不同压力下排放凝结水时所形成的二次闪蒸蒸汽的分比。
其它实用图表见CG-53。
曲线图CG-4.
每m3凝结水在大气压下排放时形成的闪蒸蒸汽量。