立体几何平行垂直问题专题复习上课讲义
方法技巧专题05立体几何中平行与垂直证明
方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。
一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。
例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。
2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。
3.平行线性质法:利用平行线的性质来证明其他线段平行。
例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。
二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。
例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。
2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。
例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。
3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。
综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。
在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。
第十一讲 立体几何(一) 平行与垂直.
第十一讲立体几何(一)平行与垂直【内容要点】垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.直线与平面是立体几何的核心内容,主要包括:三条公理、三个推论、三线平行公理(公理4)、三垂线定理及其逆定理、三种位置关系(直线与直线、直线与平面、平面与平面)。
其中“平行问题”与“垂直问题”是两类重要的证明问题。
【例题剖析】例1. 如图,已知平面α∥β∥γ,A,C∈α,B,D∈γ,异面直线AB和CD分别与β交于E和G,连结AD和BC分别交β于F,H.(2)判断四边形EFGH是哪一类四边形;(3)若AC=BD=a,求四边形EFGH的周长.需经过分别与AB(或CD)共面的直线(例如AD)进行过渡,再利用平面几何知识达到论证的目标。
(2)在(1)的基础上,不难判断EFGH四边形的类型。
(3)利用(1)、(2)的结果再进一步进行探索。
解:(1)由AB,AD确定的平面,与平行平面β和γ的交线分别为(2)面CBD分别交β,γ于HG和BD.由于β∥γ,所以HG∥BD.同理EH∥AC.故EFGH为平行四边形。
评述此问题的最终解决都是利用平面几何的有关知识进行的,这里利用了辅助平面ABD和ADC是关键所在,本题也是利用线面、面面、线线平行的互相转化这一基本思想得到最后结果的.例2. 正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN 求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC中与MN平行的直线。
证明(一):作NK∥AB交BE于K,作MH∥AB交BC于H∴MH∥NK∵ABCD与ABEF是两个有公共边AB的正方形∴它们是全等正方形∵AM=FN ∴CM=BN又∠HCM=∠KBN,∠HMC=∠KNB∴△HCM≌△KBN ∴MH=NK∴MHKN是平行四边形∴MN∥HK∵HK⊂平面BEC MN⊄平面BEC∴MN∥平面BEC证明(二):分析:利用面面平行⇒线面平行过N作NP∥BE,连MP,∵NP∥AF∴FN/FB=AP/AB∵AM=FN,AC=BF∴FN/FB=AM/AC ∴AP/AB=AM/AC∴MP∥BC ∴平面MNP∥平面BCE∴MN∥平面BCE解题中经常需要作互相平行的直线,为了使作直线的位置符合要求,构造成平行四边形,利用平行四边形对边这一关系是作平行线的依据之一。
高考数学二轮复习 第二编 专题五 立体几何 第2讲 空间中的平行与垂直课件 文
12/13/2021
第十一页,共四十三页。
解析 若 α∥β,a⊂α,b⊂β,则直线 a 与 b 可能平行 或异面,所以 A 错误;若 a∥α,b⊥β,且 α⊥β,则直线 a 与 b 可能平行或相交或异面,所以 B 错误;若 a⊥α,a∥b, b∥β,则 α⊥β,所以 C 正确;若 a⊥b,a⊂α,b⊂β,则 α∩β 或 α∥β,所以 D 错误.故选 C.
∴DE⊥PA. ∵E,H 分别为正方形 ABCD 边 AB,BC 的中点, ∴Rt△ABH≌Rt△DAE, 则∠BAH=∠ADE,∴∠BAH+∠AED=90°, ∴DE⊥AH, ∵PA⊂平面 PAH,AH⊂平面 PAH,PA∩AH=A, ∴DE⊥平面 PAH, ∵DE⊂平面 EFD,∴平面 PAH⊥平面 DEF.
解析 由 AP⊥PB,AP⊥PC 可推出 AP⊥平面 PBC,∴ AP⊥BC,故排除 A;由平面 BPC⊥平面 APC,BC⊥PC 可 推出 BC⊥平面 APC,∴AP⊥BC,故排除 C;由 AP⊥平面 PBC 可推出 AP⊥BC,故排除 D,选 B.
12/13/2021
第三十三页,共四十三页。
3.(2018·北京高考)如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形,平面 PAD⊥平面 ABCD,PA⊥PD,PA=PD, E,F 分别为 AD,PB 的中点.
求证:(1)PE⊥BC; (2)平面 PAB⊥平面 PCD; (3)EF∥平面 PCD.
12/13/2021
第三十四页,共四十三页。
证明 (1)∵PA=PD,且 E 为 AD 的中点,∴PE⊥AD. ∵底面 ABCD 为矩形,∴BC∥AD, ∴PE⊥BC. (2)∵底面 ABCD 为矩形,∴AB⊥AD. ∵平面 PAD⊥平面 ABCD,∴AB⊥平面 PAD. ∴AB⊥PD.又 PA⊥PD, ∴PD⊥平面 PAB,∴平面 PAB⊥平面 PCD.
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
立体几何中的平行与垂直
立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。
2020届高考数学二轮复习分层讲义(中档):立体几何第一章 空间直线、平面平行垂直
第一章空间直线、平面平行垂直一、考纲解读1.要理解空间直线和平面各种位置关系的定义.2.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定,理解其判定定理与性质定理.二、命题趋势探究有关平行的问题是高考的必考内容,主要分为两大类:一类是空间线面关系的判定和推理;一类是几何量的计算,主要考查学生的空间想象能力,思维能力和解决问题的能力. 平行关系是立体几何中的一种重要位置关系,在高考中,选择题、填空题几乎每年都考,难度一般为中档题,且常常以棱柱、棱锥为背景.(1)高考始终把直线与平面、平面与平面平行的判定与性质作为考查的重点,通常以棱柱、棱锥为背景设计命题.考查的方向是直线与平面、平面与平面的位置关系,结合平面几何有关知识考查.(2)以棱柱、棱锥为依托考查两平行平面的距离,可转化为点面距离,线面距离和两异面直线间的距离问题,通常是算、证结合,考查学生的渗透转化思想.三、知识点精讲(一).直线和平面平行1.定义直线与平面没有公共点,则称此直线l与平面α平行,记作l∥α2.判定方法(文字语言、图形语言、符号语言)(见表8-9)第 1 页共34 页表8-9文字语言图形语言符号语言线∥线⇒线∥面如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行11l ll llααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥面∥面⇒线∥面如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面aaαββα⎫⇒⎬⊂⎭∥∥3.性质定理(文字语言、图形语言、符号语言)(见表8-10)表8-10文字语言图形语言符号语言线∥面⇒线∥线如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ll l llαβαβ⎫⎪'⊂⇒⎬⎪'=⎭I∥∥(二).两个平面平行1.定义第 2 页共34 页没有公共点的两个平面叫作平行平面,用符号表示为:对于平面α和β,若αβφ=I,则α∥β2.判定方法(文字语言、图形语言、符号语言)(见表8-11)表8-11文字语言图形语言符号语言判定定理线∥面⇒面∥面如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行,,a b a b Pαα⊂⊂=Ia bββαβ⇒∥,∥∥线⊥面⇒面∥面如果两个平面同垂直于一条直线,那么这两个平面平行llααβ⊥⎫⇒⎬⊥⎭∥β3.性质定理(文字语言、图形语言、符号语言)(见表8-12)表8-12文字语言图形语言符号语言面//面⇒线//面如果两个平面平行,那么在一个平面中的所有直线都平行于另外一个平面////aaαββα⎫⇒⎬⊂⎭第 3 页共34 页性质定理如果两个平行平面同时和第三个平面相交,那么他们的交线平行(简记为“面面平行⇒线面平行”)////.a a bbαβαγβγ⎫⎪=⇒⎬⎪=⎭II面//面⇒线⊥面如果两个平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线//llαββα⎫⇒⊥⎬⊥⎭(三).线面垂直1.定义:如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.2.判定定理(文字语言、图形语言、符号语言)(见表1)表1文字语言图形语言符号语言判断定理一条直线,a ba llb la b Pαα⊂⎫⎪⊥⎪⇒⊥⎬⊥⎪⎪=⎭I第 4 页共34 页。
立体几何(平行垂直的证明及角)专题辅导
立体几何专题辅导(平行与垂直及角)空间中平行与垂直关系的证明及线面角、二面角的方法总结:(一)线线平行的证明方法:1.垂直于同一平面的两条直线平行2.平行于同一直线的两条直线平行3.三角形的中位线4.平行四边形对边平行5.一个平面与另外两个平行平面相交,那么两条交线也平行6.线面平行的性质7.面面平行的性质 6.向量法:两直线的方向向量共线(二)线面平行的证明方法:1.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行2.面面平行的性质:如果两个平面平行,那么在其中一个平面内的直线和另一个平面平行3.向量法:直线的方向向量与平面的法向量垂直(三)面面平行的证明方法:1.面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2.面面平行的推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行。
3.面面平行的传递性4.垂直于同一条直线的两个平面平行5.向量法(四)线线垂直的证明方法1、等腰三角形底边的中线 2.菱形对角线互相垂直 3.勾股定理 4.直径所对的圆周角为直角 5.三垂线定理及其逆定理 6.线面垂直的性质 7.向量法(五)线面垂直的证明方法1.线面垂直的判定定理2.面面垂直的性质3.向量法(六)面面垂直的证明方法1.面面垂直的判定定理2.证明二面角为直二面角3.向量法(七)空间中的角1.异面直线所成的角范围是0,π2解法:①定义法②向量法:设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2的夹角θ满足cos θ=|cos〈m1,m2〉|.2.直线与平面所成的角:斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.范围是0,π2;解法:①定义法②向量法:设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α的夹角θ满足sin θ=|cos〈m,n〉|.3.二面角的平面角如图在二面角α-l -β的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则∠AOB 叫做二面角的平面角.范围是[0,π].解法:①定义法②三垂线法③射影面积法④向量法:(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.典例分析:1、如图,四棱锥P-ABC D 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB;(II )求直线AN 与平面PMN 所成角的正弦值.2、正△ABC 的边长为2, CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将△ABC 沿CD 翻成直二面角A -DC -B(如图(2)).在图(2)中(1)求证AB ∥平面DEF ;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论;(3)求二面角E-DF-C的余弦值.3、如图,已知△DEF与△ABC分别是边长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,且DE∥BC,BC⊥CD,点G为△ABC的重心,N为AB的中点,AG⊥平面BCDE,M为线段AF上靠近点F的三等分点.(1)求证:GM∥平面DFN;(2)若二面角M-BC-D的余弦值为74,试求异面直线MN与CD所成角的余弦值.4、5、如图,在三棱锥P ABC 中,22AB BC ,4PA PB PC AC ,O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30,求PC 与平面PAM 所成角的正弦值.6、如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP o. (1)证明平面P AB ⊥平面PAD ;(2)若P A=PD=AB=DC ,90APD o,求二面角A-PB-C 的余弦值. 7、.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC.PAO CB M(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判断棱P A 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?若存在,求出AE AP的值;若不存在,请说明理由.8、如图,在四棱锥P ABCD 中,AD BC ∥,AD CD ,3AD ,2CD BC ,点P 在平面ABCD 内的射影恰为BD 的中点,且3PB.(1)求证:平面PAD平面PBC ;(2)求二面角A PB D 的正弦值.9、.如图,四棱锥P ABCD 中,PD ABCD 平面,底面ABCD 是梯形,AB ∥CD ,BC CD ,AB=PD=4,CD=2,22AD ,M 为CD 的中点,N 为PB 上一点,且(01)PNPB uu u r u u u r . (1)若14时,求证:MN ∥平面P AD ;(2)若直线AN 与平面PBC 所成角的正弦值为255,求异面直线AD 与直线CN 所成角的余弦值.10、.如图,在四棱锥P ABCD 中,底面ABCD 是平行四边形,2ABAC ,22AD ,32PB ,PB AC .(1)求证:平面PAB 平面PAC ;(2)若45PBA ,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33,若存在,求出AEAP 的值;若不存在,请说明理由.11、如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C到达点P 的位置,且PF BF .(1)证明:平面PEF平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.12、如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PACPBC 平面平面;(II)2.AB ACPA C PB A 若,1,1,求证:二面角的余弦值13、如图,ABC 和BCD 所在平面互相垂直,且2AB BC BD ,0120ABC DBC ,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ;(2)求二面角E BFC 的正弦值.。
立体几何中的向量方法:平行与垂直讲解
3.2 立体几何中的向量方法 3.2.1 平行与垂直关系【基础知识在线】知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系知识点三 线线、线面、面面垂直的向量表示★★★★★考点:利用线线、线面、面面垂直的向量表示证明垂直关系【解密重点·难点·疑点】问题一:空间的方向向量与平面的法向量1. 空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向,这个向量a 叫做直线的方向向量.2. 直线α⊥l ,取直线l 的方向向量a ,则向量a 称为平面α的法向量.(1)平面α的一个法向量垂直于与平面α共面的所有向量. (2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法(1)已知平面的垂线时,在垂线上取一非零向量即可.(2)已知平面内两不共线向量()()321321,,,,,b b b b a a a a ==时,常用待定系数法:设法向量(),,,z y x u =由⎪⎩⎪⎨⎧=⋅=⋅,00n b n a 得⎩⎨⎧=++=++,00321321z b y b x b z a y a x a 在此方程组中,对z y x ,,中的任一个赋值,求出另两个,所得u 即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.4.用向量语言表述线面之间的平行与垂直关系 :设直线m l ,的方向向量分别为b a ,,平面βα,的法向量分别为v u ,,则 线线平行:;,////R k b k a b a m l ∈=⇔⇔ 即:两直线平行或重合⇔两直线的方向向量共线. 线线垂直:;0=⋅⇔⊥⇔⊥b a b a m l即:两直线垂直⇔两直线的方向向量垂直. 线面平行:;0//=⋅⇔⊥⇔u a u a l α 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外.线面垂直:;,//R k u k a u a l ∈=⇔⇔⊥α即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.面面平行:;,////R k v k u v u ∈=⇔⇔βα 即:两平面平行⇔两平面的法向量共线. 面面垂直:.0=⋅⇔⊥⇔⊥v u v u βα即:两平面垂直两平面的法向量垂直.问题二:空间中线线、线面、面面平行的向量坐标表示1. 设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线平行:().,,////212121R k kc c kb b ka a b k a b a m l ∈===⇔=⇔⇔2. 设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面平行:.00//212121=++⇔=⋅⇔⊥⇔c c b b a a u a u a l α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==,面面平行:().,,,////212121R k kc c kb b ka a v k u v u ∈===⇔=⇔⇔βα问题三:空间中线线、线面、面面垂直的向量表示1.设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a b a b a m l2.设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面垂直:().,,,//212121R k kc c kb b ka a u k a u a l ∈===⇔=⇔⇔⊥α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==, 面面垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a v u v u βα【点拨思维·方法技巧】 一.求平面的法向量例1已知平面α经过三点()()()0,2,3,1,0,2,3,2,1--C B A ,试求平面α的一个法向量. 【思维分析】先求出,,AC AB ,设出平面α的法向量为()z y x u ,,=,结合向量垂直时数量积为零的性质,联立方程组解题. [解析]()()()0,2,3,1,0,2,3,2,1--C B A ,()(),3,4,2,4,2,1-=--=∴AC AB ,设平面α的法向量为()z y x u ,,=, 依题意,⎪⎩⎪⎨⎧=⋅=⋅00AC u ABu即⎩⎨⎧=--=--0342042z y x z y x ,解得⎩⎨⎧==02z y x .令2,1==x y 则.∴平面α的一个法向量为()0,1,2=u .【评析】用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,设出平面的法向量,列出方程组,求出的三个坐标不是具体的值,而是比例关系,取其中一组解(非零向量)即可.变式训练1.在正方体1111D C B A ABCD -中,F E ,分别是DCBB ,1AEF D A 11的法向量.证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21,1,0,21,1,1,0,0,1AE E A ,图3-2-1()(),01,1,0,21,0,01,011=⎪⎭⎫⎝⎛=A F D()0,0,1,1,21,0111-=⎪⎭⎫⎝⎛-=D A F D .0,02121111=⋅=-=⋅D A AE F D AE ,111,D A AE F D AE ⊥⊥ , 又1111D D A F D = ,⊥∴AE 平面FD A 11AE ∴是平面F D A 11的法向量.. 二.证明平行问题例2在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:C B 1∥平面1ODC . 【思维分析】在平面内找与向量C B 1平行的向量D A 1,由向量的相等,得线线平行,从尔的线面平行.也可建立空间直角坐标系,求C B 1的方向向量和平面1ODC 的法向量,利用向量的垂直,可得线面平行.证明 方法一1B C =1A D ,又D A B 11∉,D A C B 11//∴,又⊂D A 1平面1ODC , C B 1∴∥平面1ODC .方法二建系如图,设正方体的棱长为1,则可得()()()1,1,0,1,21,21,0,1,0,1,1,111C O C B ⎪⎭⎫⎝⎛,图3-2-2()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛---=--=0,21,21,1,21,21,1,0,111OC OD C B .设平面1ODC 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅001OC n OD n , 得⎪⎩⎪⎨⎧=+-=---0212102121y x z y x ,令1=x ,得1,1-==z y ,()1,1,1-=n .()()01110111=-⨯-+⨯+⨯-=⋅∴n C B , n C B ⊥∴1,C B 1∴∥平面1ODC .【评析】 向量法证明几何中的平行问题,可以有两个途径,一是在平面内找一向量与已知直线的方向向量共线;二是通过建立空间直角坐标系,依托直线的方向向量和平面的法向量的垂直,来证明平行.变式训练2.已知正方体1111D C B A ABCD -中,F E ,分别在C D DB 1,上,且a F D DE 321==,其中a 为正方体棱长. 求证:EF ∥平面C C BB 11. 证明如图所示,建立空间直角坐标系xyz D -,则,32,3,0,0,3,3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a F a a E 故⎪⎭⎫⎝⎛--=3,0,32a a EF ,又()0,,0a AB =显然为平面C C BB 11的一个法向量, 而()03,0,320,,0=⎪⎭⎫ ⎝⎛--⋅=⋅a aa EF AB ,图3-2-3∴AE ⊥EF .又∉E 平面C C BB 11,因此EF ∥平面C C BB 11. 三.证明垂直问题例3.已知正方体1111D C B A ABCD -中,E 为棱1CC 上的动点.(1)求证:BD E A ⊥1;(2)若平面⊥BD A 1平面EBD ,试确定点E 的位置.【思维分析】正方体为建立空间直角坐标系提供了有利条件,对于(1),110A E BD A E BD =⇒⊥;对于(2),利用已知条件平面⊥BD A 1平面EBD ,通过垂直条件下的向量数量积等于0,求得点E 的位置;取BD 的中点O ,易证OE A 1∠是二面角E BD A --1的平面角,利用向量数量积证明10AO EO =即可.[解析]以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,设棱长为a . (1)()()()()()a a C a a A a C a a B a A ,,0,,0,,0,,0,0,,,0,0,11, 设()m a E ,,0,则()()0,,,,,1a a BD a m a a E A --=--=,22100A E BD a a =-+=,所以BD E A ⊥1,即BD E A ⊥1.(2)法一:设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,,2,2a a BD m a a OE --=⎪⎭⎫⎝⎛-=, 因为BCE ∆≌DCE ∆,所以EB ED =,所以BD OE ⊥,图3-2-4又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为平面⊥BD A 1平面EBD ,所以21π=∠OE A , 所以10OA OE =,即2,04422a m am a a =∴=+--. 故当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD . 法二:E 为1CC 的中点,证明如下:由E 为1CC 的中点得⎪⎭⎫ ⎝⎛2,,0a a E , 设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,2,2,2a a BD a a a OE --=⎪⎭⎫⎝⎛-=,则0O EB D =,BD OE ⊥,即BD OE ⊥.又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为22210442a a a OA OE =--+=,所以OE OA ⊥1, 故OE OA ⊥1,即21π=∠OE A ,所以平面⊥BD A 1平面EBD . 所以当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD .【评析】利用向量解决立体几何中的线线,线面,面面的位置关系问题一般经过以下几个步骤:恰当建系,求相关点的坐标,求相关向量坐标,向量运算,将向量运算结果还原成立体几何问题或结论.变式训练3. 在正棱锥ABC P -中,三条侧棱两两互相垂直,G 是PAB ∆的重心,F E ,分别为PB BC ,上的点,且2:1::==FB PF EC BE . 求证:平面GEF ⊥平面PBC . 证明 (1)方法一如图3-2-5所示,以三棱锥的顶点P 为原点,建立空间直角坐标系. 令3===PC PB PA ,则()()()()1,2,0,3,0,0,0,3,0,0,0,3E C B A , ()()()0,0,0,0,1,1,0,1,0P G F .()()0,0,1,0,0,3==∴FG PA , FG PA FG PA //,3∴=∴ .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又⊂FG 平面GEF ,∴平面GEF ⊥平面PBC . 方法二 :同方法一,建立空间直角坐标系,则()()()0,1,1,0,1,0,1,2,0G F E ,()(),1,1,1,1,1,0--=--=EG EF设平面GEF 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅00EG n EF n , 得0,0,y z x y z +=⎧⎨--=⎩,令1=y ,得0,1=-=x z ,()1,1,0-=n . 而显然()0,0,3=PA 是平面PBC 的一个法向量. 又PA n PA n ⊥∴=⋅,0,即平面PBC 的法向量与平面GEF 的法向量互相垂直,∴平面GEF ⊥平面PBC . 【课后习题答案】 练习(第104页)1.(1)答案:平行.提示:()()a b 32,1,236,3,6=--=--=.(2)答案:垂直.提示:()()()()02232212,3,22,2,1=⨯-+⨯+-⨯=-⋅-=⋅b a ,b a ⊥. (3)答案:平行.提示:()()a b 31,0,033,0,0-=-=-=.图3-2-52.提示:(1).,,0βα⊥∴⊥∴=⋅v u v u (2).//,//βα∴v u (3)u 与v 不垂直,也不平行,α∴与β相交.【自主探究提升】夯实基础1.已知()(),5,6,2,,3,8b n a m ==若m ∥n ,则b a +的值为( ) A.0 B.25 C.221 D.8答案:C . 提示:m ∥n ,()(),5,6,2,3,8b k a =∴即ka k bk 5,63,28===21=∴k 故8,25==b a ,221825=+=+b a .2. 已知()(),2,2,,2,5,1+=-=a a n m 若⊥m n ,则a 的值为( ) A.0B.6C.-6D.±6答案:B. 提示: ⊥m n ,()022251=+⨯-⨯+⨯∴m m ,6=∴m .3.平面α的一个法向量为()0,2,1,平面β的一个法向量为()0,1,2-,则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案: C.提示: ()()00,1,20,2,1=-⋅ , ∴两法向量垂直,从而两平面也垂直.4.已知()()y x b a ,,3,5,4,2==分别是直线21,l l 的方向向量,若1l ∥2l ,则( ) A .15,6==y x B .215,3==y xC .15,3==y xD .215,6==y x答案:D提示:1l ∥2l ,b a //∴, 则有yx 5432==,解方程得215,6==y x .5. 在正三棱柱111C B A ABC -中,B A C B 11⊥. 求证:B A AC 11⊥.证明: 建立空间直角坐标系xyz C -1, 设b CC a AB ==1,, 则()(),0,,0,,,0,0,2,23,,2,2311a B b a B a a A b a a A ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛()()0,0,0,,0,01C b C , ()⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎭⎫ ⎝⎛-=∴b aa ACb a C B b a a B A ,2,23,,,0,,2,23111. B A C B 11⊥ ,022211=+-=⋅∴b a B A C B ,而022211=-=⋅b a B A AC , B A AC 11⊥∴,即B A AC 11⊥.拓展延伸6.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g答案:D. 提示:2//;3//;b a a b d c d c =-⇒=-⇒而零向量与任何向量都平行.7.若直线l 的方向向量为()2,0,1=a ,平面α的法向量为()4,0,2--=u ,则( ) A .l ∥α B .l ⊥αC .α⊂lD .l 与α斜交图3-2-6答案: B. 提示:()()a u 22,0,124,0,2-=-=--= ,a u //∴,l ∴⊥α.8.已知()()1,3,2,1,1,1B A -,则直线AB 的模为1的方向向量是________________. 答案:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛32,32,31,32,32,31 . 提示:()3,2,2,1==AB AB , 直线AB 的模为1的方向向量是()2,2,131±=±AB AB. 9.已知平面α经过点()0,0,0O ,且()1,1,1=u 是α的法向量,()z y x N ,,是平面α内任意一点,则z y x ,,满足的关系式是________________.答案: 0=++z y x . 提示:由题意()()0,,1,1,1=⋅=⋅z y x ON u ,即0=++z y x .10.若直线b a ,是两条异面直线,它们的方向向量分别是()1,1,1和()2,3,2--,则直线b a ,的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案:()5,4,1- (答案不唯一).提示: 设直线b a ,的公垂线的一个方向向量为()z y x u ,,=,b a ,的方向向量分别为b a ,,由题意得⎪⎩⎪⎨⎧=⋅=⋅00b u a u ,即⎩⎨⎧=--=++02320z y x z y x , 令1=x ,得5,4-==z y ,()5,4,1-=∴u .11.若19(0,2,)8A ,5(1,1,)8B -,5(2,1,)8C -是平面α内的三点,设平面α的法向量),,(z y x a = ,则=z y x ::________________.答案:2:3:(4)-. 提示: 77(1,3,),(2,1,),0,0,44AB AC AB AC αα=--=---== 2243,::::()2:3:(4)4333x y x y z y y y z y ⎧=⎪⎪=-=-⎨⎪=-⎪⎩12.若非零向量()(),,,,,,222111z y x b z y x a ==则212121z z y y x x ==是a 与b 同向或反向的( )A.充分不必要条件B.C.充要条件D.不充分不必要条件答案:A.212121z z y y x x ==,则a 与b 同向或反向,反之不成立.13.如图3-2-7(a)所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,090=∠=∠CEF BCF ,2,3==EF AD .求证:AE ∥平面DCF.证明: 如图3-2-7(b )所示,以点C 为坐标原点,建立空间直角坐标系xyz C -.设c CF b BE a AB ===,,,则()()()0,0,3,,0,3,0,0,0B a A C , ()()0,,0,0,,3c F b E , ()()(),0,,0,0,0,3,,,0b BE CB a b AE ==-=∴0,0=⋅=⋅∴BE CB AE CB ,BE CB AE CB ⊥⊥∴,.⊥∴CB 平面ABE ,又⊥CB 平面DCF ,∴平面ABE ∥平面DCF ,故AE ∥平面DCF .14. 在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一图3-2-7(a ) (b)点M ,使得M D 1⊥平面1EFB .解析:建立空间直角坐标系x y z D -,设正方体的棱长为2,则()()()()2,2,2,2,0,0,0,2,1,0,1,211B D F E .设()m M ,2,2,则()()()2,2,2,2,1,0,0,1,111-=---=-=m M D E B EF , ∵M D 1⊥平面1EFB∴ 1D M ⊥EF ,1D M ⊥E B1,0,0111=⋅=⋅∴E B M D EF MD于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩()1,2,2,1M m ∴=∴,即M 为棱1BB 的中点.图3-2-8。
立体几何平行问题与垂直教案
β.b bβα⎪=⎪⎪⊂⇒⎬⎪⊥⎪⎪⎭1. 公理4 :平行于同一条直线的两条直线互相平行。
2.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
1.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
3.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线 是异面直线。
4.两异面直线所成的角:过空间任意一点引两条直线分别平行(或重合)于两条异面直线,它们所成的锐角(或直角)。
范围为 ( 0°,90°]5.斜线线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
直线和平面所成角的取值范围为 [0°,90°]6.二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
7、各种角的范围1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,02、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,03、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0a'OaαAB CP(第1题)D随堂练习:1.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,BC //平面P AD ,PBC ∠90=, 90PBA ∠≠.求证:(1)//AD 平面PBC ; (2)平面PBC ⊥平面PAB .2.如图,在五面体ABCDEF 中,四边形ABCD 是矩形,DE ⊥平面ABCD . (1)求证:AB ∥EF ;(2)求证:平面BCF ⊥平面CDEF .CE ABDF(第2题)BCA 1B 1C 1MN A3.三棱柱ABC —A 1B 1C 1的侧面AA 1B 1B 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1 = 60°,AB ⊥B 1C .(1)求证:平面AA 1B 1B ⊥平面BB 1C 1C ; (2)若AB =2,求三棱柱ABC A 1B 1C 1的体积.4.如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ACC 1是边长为2的菱形,∠A 1AC =60o .在面ABC 中,AB =32,BC =4,M 为BC 的中点,过A 1,B 1,M 三点的平面交AC 于点N . (1)求证:N 为AC 中点; (2)平面A 1B 1MN ⊥平面A 1ACC 1.111B C A CBAPABCDE(第5题)ABC C 1B 1A 1FD E(第6题)O M5.在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点.求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .6.直三棱柱111ABC A B C -中,D 、E 分别是棱BC 、AB 的中点,点F 在棱1CC 上,已知AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ;(2)设点M 在棱1BB 上,当BM 为何值时,平面CAM ⊥平面ADF ?7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =. (Ⅰ)求证:BD PC ⊥; (Ⅱ)求证://MN 平面PDC ; (Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.8.如图,已知BC 是半径为1的半圆O 的直径,A 是半圆周 上不同于B ,C 的点,F 为⌒AC 的中点.梯形ACDE 中,DE ∥AC , 且AC =2DE ,平面ACDE ⊥平面ABC .求证:(1)平面ABE ⊥平面ACDE ; (2)平面OFD ∥平面BAE .F EOACBD。
立体几何平行垂直问题专题复习
立体几何平行、垂直问题【基础知识点】一、平行问题1.直线与平面平行的判定与性质2.面面平行的判定与性质平行问题的转化关系:二、垂直问题一、直线与平面垂直1.直线和平面垂直的定义:直线l与平面a内的 ____________ 都垂直,就说直线丨与平面a互相垂直.2.直线与平面垂直的判定定理及推论该直线与此平面垂直推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线与平面垂直的性质定理文字语言图形语言付号语言性质定理垂直于同一个平面的两条直线平行4.直线和平面垂直的常用性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.二、平面与平面垂直1.平面与平面垂直的判定定理文字语言图形语言付号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直2.平面与平面垂直的性质定理文字语言图形语言付号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面【典例探究】 类型一、平行与垂直例1、如图,已知三棱锥A BPC 中,APPC, ACBC, M 为AB 中点,D 为PB中点,且△ PMB 为正三角形。
(I)求证: DM //平面 APC ;(U)求证:平面 ABC 平面APC ;(川)若BC 4,AB 20,求三棱锥 D BCM 的体积。
例2.如图,已知三棱柱 ABC A ,BQ 中,AA ,底面ABC ,AC BC 2,AA , 4, AB 22,M占八、、・(I)求证:CN 平面ABB iA ; (U)求证:CN // 平面 AMB ,;(川)求三棱锥的体积.【变式1】•如图,三棱柱ABC A 1B 1C 1中,侧棱AA i 平面ABC , ABC 为等 腰直角三角形, BAC 90,且 AB AA 1, D,E,F 分别是 B 1A,CC 1,BC 的中点。
(1)求证:DE//平面ABC ; 2)求证:B 1F 平面AEF ; (3)设AB a ,求三棱锥D AEF 的体积。
福建省福清市高考数学二轮复习专题五立体几何第二讲空间中的平行及垂直课件
角形,且与底面 ABCD 垂直,E 为 PA 的中点.
(1)求证:DE∥平面 PBC;
(2)求三棱锥 A-PBC 的体积.
第十五页,共34页。
考点(kǎo
diǎn)1
考点
(kǎo
diǎn)2
考点(kǎo
简单命
题.
第三页,共34页。
1.直线与平面的位置关系
(1)线面平行
①线面平行的判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面
z
平行.
②线面平行的性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面
的交线和该直线平行.
(2)线面垂直
z
①线面垂直的判定定理:如果一条直线和一个平面内的两条相交(xiāngjiāo)直线都垂直,那么这
ABCD,AD∥BC,平面 BCEF∩平面 ADEF=EF,∠
BAD=60°,AB=2,DE=EF=1.
(1)求证:BC∥EF;
(2)求三棱锥 B-DEF 的体积.
思路分析:(1)由 AD∥BC,可证 BC∥平面 ADEF,进而可证 BC∥EF;(2)
在平面 ABCD 内作 BH⊥AD 于点 H,先证
diǎn)3
考点4
(1)证明:如图,取 AB 的中点 F,连接 DF,EF.
在直角梯形 ABCD 中,CD∥AB,且 AB=4,CD=2,
∴BF∥CD 且 BF=CD.
∴四边形 BCDF 为平行四边形.
∴DF∥BC.
在△PAB 中,PE=EA,AF=FB,∴EF∥PB.
又∵DF∩EF=F,PB∩BC=B,
专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)
立体几何(平行垂直的证明及角)专题辅导
立体几何专题辅导(平行与垂直及角)空间中平行与垂直关系的证明及线面角、二面角的方法总结:(一)线线平行的证明方法:1.垂直于同一平面的两条直线平行2.平行于同一直线的两条直线平行3.三角形的中位线4.平行四边形对边平行5.一个平面与另外两个平行平面相交,那么两条交线也平行6.线面平行的性质7.面面平行的性质 6.向量法:两直线的方向向量共线(二)线面平行的证明方法:1.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行2.面面平行的性质:如果两个平面平行,那么在其中一个平面内的直线和另一个平面平行3.向量法:直线的方向向量与平面的法向量垂直(三)面面平行的证明方法:1.面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2.面面平行的推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行。
3.面面平行的传递性4.垂直于同一条直线的两个平面平行5.向量法(四)线线垂直的证明方法1、等腰三角形底边的中线 2.菱形对角线互相垂直 3.勾股定理 4.直径所对的圆周角为直角 5.三垂线定理及其逆定理 6.线面垂直的性质 7.向量法(五)线面垂直的证明方法1.线面垂直的判定定理2.面面垂直的性质3.向量法(六)面面垂直的证明方法1.面面垂直的判定定理2.证明二面角为直二面角3.向量法(七)空间中的角1.异面直线所成的角 范围是⎝ ⎛⎥⎤0,π2 解法:①定义法 ②向量法:设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.2.直线与平面所成的角:斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角. 范围是⎣⎢⎡⎦⎥⎤0,π2; 解法:①定义法 ②向量法:设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.3.二面角的平面角如图在二面角αl β的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则∠AOB 叫做二面角的平面角. 范围是[0,π].解法:①定义法 ②三垂线法 ③射影面积法 ④向量法:(ⅰ)如图①,AB 、CD 是二面角αl β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.典例分析:1、如图,四棱锥P−ABC D 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求直线AN 与平面PMN 所成角的正弦值.2、正△ABC 的边长为2, CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将△ABC 沿CD 翻成直二面角A -DC -B (如图(2)).在图(2)中(1)求证 AB ∥平面DEF ;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论;(3)求二面角E-DF-C的余弦值.3、如图,已知△DEF与△ABC分别是边长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,且DE∥BC,BC⊥CD,点G为△ABC的重心,N为AB的中点,AG⊥平面BCDE,M为线段AF上靠近点F的三等分点.(1)求证:GM∥平面DFN;(2)若二面角M-BC-D的余弦值为74,试求异面直线MN与CD所成角的余弦值.4、5、如图,在三棱锥P ABC -中,22ABBC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.6、如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明 平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7、.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .P O M(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判断棱P A 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?若存在,求出AE AP 的值;若不存在,请说明理由.8、如图,在四棱锥P ABCD -中,AD BC ∥,AD CD ⊥,3AD =,2CD BC ==,点P 在平面ABCD内的射影恰为BD 的中点,且3PB =.(1)求证:平面PAD ⊥平面PBC ;(2)求二面角A PB D --的正弦值.9、.如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,22AD =,M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r .(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBC 所成角的正弦值为255,求异面直线AD 与直线CN 所成角的余弦值.10、.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,2AB AC ==,22AD =,32PB =,PB AC ⊥. (1)求证:平面PAB ⊥平面PAC ;(2)若45PBA ∠=︒,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33,若存在, 求出AE AP的值;若不存在,请说明理由.11、如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.12、如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值13、如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.。
高考数学一轮复习 第八章 立体几何 第6讲 平行、垂直的综合问题课件 文
可得 S△ABC=12·AB·AC·sin 60°= 23. 由 PA⊥平面 ABC,可知 PA 是三棱锥 P-ABC 的高.
又
PA=1,所以三棱锥
12/8/2021
P-ABC
的体积
V=13·S△ABC·PA=
63.
第二十页,共二十四页。
(2)在平面 ABC 内,过点 B 作 BN⊥AC,垂足为 N,在平面 PAC 内,过点 N 作 MN∥PA
12/8/2021
第八页,共二十四页。
空间中的翻折问题(师生共研) (2019·高考全国卷Ⅲ)图 1 是由矩形 ADEB,Rt△ABC 和菱形 BFGC 组成的一个平 面图形,其中 AB=1,BE=BF=2,∠FBC=60°.将其沿 AB,BC 折起使得 BE 与 BF 重合,连接 DG,如图 2. (1)证明:图 2 中的 A,C,G,D 四点共面,且平面 ABC⊥平面 BCGE; (2)求图 2 中的四边形 ACGD 的面积.
12/8/2021
第六页,共二十四页。
(2020·重庆市学业质量调研)如图所示,在四棱锥 P-ABCD 中,∠CAD=∠ABC=90°,∠BAC=∠ADC=30°, PA⊥平面 ABCD,E 为 PD 的中点,AC=2. (1)求证:AE∥平面 PBC;
(2)若四面体 PABC 的体积为 33,求△PCD 的面积. 解:(1)证明:如图,取 CD 的中点 F,连接 EF,AF, 则 EF∥PC, 又易知∠BCD=∠AFD=120°,所以 AF∥BC, 又 EF∩AF=F,PC∩BC=C,所以平面 AEF∥平面 PBC. 又 AE⊂平面 AEF,所以 AE∥平面 PBC.
12/8/2021
第七页,共二十四页。
(2)由已知得,V 四面体 PABC=13·12AB·BC·PA= 33,可得 PA=2. 过点 A 作 AQ⊥CD 于点 Q,连接 PQ,在△ACD 中, AC=2,∠CAD=90°,∠ADC=30°, 所以 CD=4,AQ=2×42 3= 3, 则 PQ= 22+3= 7. 因为 PA⊥平面 ABCD,所以 PA⊥CD. 又 AQ∩PA=A, 所以 CD⊥平面 PAQ,CD⊥PQ. 所以 S△PCD=12×4× 7=2 7.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何平行垂直问题专题复习立体几何平行、垂直问题【基础知识点】一、平行问题1.直线与平面平行的判定与性质定义判定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的判定与性质判定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线与平面垂直1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线与平面垂直的性质定理文字语言 图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线和平面垂直的常用性质①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直1.平面与平面垂直的判定定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直2.平面与平面垂直的性质定理文字语言 图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面【典例探究】 类型一、平行与垂直例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。
(Ⅰ)求证:DM ∥平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。
MDAPBC例2. 如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,AB =M ,N 分别是棱1CC ,AB 中点.(Ⅰ)求证:CN ⊥平面11ABB A ; (Ⅱ)求证://CN 平面1AMB ;(Ⅲ)求三棱锥1B AMN -的体积.【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。
(1)求证://DE 平面ABC ; (2)求证:⊥F B 1平面AEF ;(3)设AB a =,求三棱锥D AEF -的体积。
A B CA 1B 1C 1MN二、线面平行与垂直的性质例3、如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,225AB DC == (1)求证:BD ⊥平面PAD ; (2)求三棱锥A PCD -的体积.例4、如图,四棱锥P —ABCD 中,⊥PD 平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.31CB CG = (I )求证:PC BC ⊥; (II )求三棱锥C —DEG 的体积;(III )AD 边上是否存在一点M ,使得//PA 平面MEG 。
若存在,求AM 的长;否则,说明理由。
【变式2】直棱柱ABCD-A1B1C1D1底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.(Ⅰ)求证:AC 平面BB1C1C;(Ⅱ) A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.三、三视图与折叠问题例5、如图是一几何体的直观图、正视图、侧视图、俯视图。
若F 为PD 的中点,求证:AF ⊥面PCD ; (1) 证明:BD ∥面PEC ; (2) 求三棱锥E PBC -的体积。
例6.已知四边形ABCD 是等腰梯形,AB DE BAD DC AB ⊥︒=∠==,45,1,3(如图1)。
现将ADE ∆沿DE 折起,使得EB AE ⊥(如图2),连结AB AC ,。
(I )求证:平面⊥ADE 平面ACD ;(II )试在棱AB 上确定一点M ,使截面EMC 把几何体分成两部分的体积比1:2:=MECB ADCME V V ;(III )在点M 满足(II )的情况下,判断直线AD 是否平行于平面EMC ,并说明理由。
ABE PDC【变式3】一个四棱锥的直观图和三视图如下图所示,E 为PD 中点.(I )求证:PB//平面AEC ;(II )求四棱锥C PAB -的体积;(Ⅲ)若F 为侧棱PA 上一点,且λ=FAPF,则λ为何值时,⊥PA 平面BDF.【变式4】如图1所示,正ABC ∆的边长为2a ,CD 是AB边上的高,E ,F 分别是AC ,BC 的中点。
现将ABC ∆沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2)(1)试判断翻折后直线AB 与平面DEF 的位置关系,并说明理由; (2)求三棱锥C-DEF 的体积。
ECADBP四、立体几何中的最值问题例7.图4,A 1A 是圆柱的母线,AB 是圆柱底面圆的直径, C 是底面圆周上异于A ,B 的任意一点,A 1A= AB=2. (1)求证: BC ⊥平面A 1AC ;(2)求三棱锥A 1-ABC 的体积的最大值.图(2)图(1)BCD图4ABC A 1例8. 如图,在=2,2ABC B AB BC P AB π∆∠==中,,为边上一动点,PD//BC 交AC 于 点D,现将'',PDA .PDA PD PDA PBCD ∆∆⊥沿翻折至使平面平面(1)当棱锥'A PBCD -的体积最大时,求PA 的长;(2)若点P 为AB 的中点,E 为''.ACB DE ⊥的中点,求证:A【变式5】如图3,已知在∆A B C 中,∠=︒C 90,P A ⊥平面ABC ,A E P B ⊥于E ,A F P C⊥于F ,A P A B ==2,∠=A E F θ,当θ变化时,求三棱锥PA E F-体积的最大值。
高三文科数学专题复习:立体几何平行、垂直问题(答案)【典例探究】例1解:(Ⅰ)∵M AB 为中点,D 为PB 中点, ∴MD ∥AP ,又∴MD APC ⊄平面 ∴DM ∥APC 平面(Ⅱ)∵△PMB 为正三角形,且D 为PB 中点,∴MD PB ⊥又由(1)∴知,MD AP ⊥ ∴AP PB ⊥ 又已知AP PC ⊥ ∴AP PBC ⊥平面, ∴AP BC ⊥,又∵AC BC ⊥∴BC APC ⊥平面,∴平面ABC ⊥平面PAC , (Ⅲ)∵20AB =,∴10MB =,∴10PB = 又4BC =,PC ===∴1114244BDC PBC S S PC BC ∆∆==•=⨯⨯=12MD AP ===又∴1133D BCM M BCD BDC V V S DM --∆==•=⨯=例2.(Ⅰ)证明:因为三棱柱111ABC A B C -中,1AA ⊥底面ABC又因为CN ⊂平面ABC , 所以1AA CN ⊥. ……………………… 1分 因为2AC BC ==,N 是AB 中点, 所以CN AB ⊥. ………………………………………… 2分因为1AA AB A =, …………………………………………… 3分A 1B 1C 1M所以CN ⊥平面11ABB A . …………………………………………… 4分 (Ⅱ)证明:取1AB 的中点G ,连结MG ,NG ,因为N ,G 分别是棱AB ,1AB 中点,所以1//NG BB ,112NG BB =. 又因为1//CM BB ,112CM BB =,所以//CM NG ,CM NG =.所以四边形CNGM 是平行四边形. ………………………………………… 6分 所以//CN MG . …………………………………………………………… 7分 因为CN ⊄平面1AMB ,GM ⊂平面1AMB , …………………………… 8分 所以//CN 平面1AMB . ……………………………………………………… 9分 (Ⅲ)由(Ⅱ)知GM ⊥平面1AB N . …………………………………………… 10分所以11MN M N 1124423223B A AB V V --==⨯⨯⨯⨯=. ………………………… 13分变式1.(1)根据中点寻找平行线即可;(2)易证1AF B F ⊥,在根据勾股定理的逆定理证明1B F EF ⊥;(3)由于点D 是线段1AB 的中点,故点D 到平面AEF 的距离是点1B 到平面AEF 距离的12,求出高按照三棱锥的体积公式计算即可。
【解析】(1)取AB 中点O ,连接DO CO ,∴=∴=,,//,21,//11CE DO CE DO AA DO AA DO 平行四边形DOCE ,⊄∴DE CO DE ,//平面ABC ,⊂CO 平面ABC ,//DE ∴平面ABC 。
(4分)(2)等腰直角三角形ABC ∆中F 为斜边的中点,BC AF ⊥∴ 又 直三棱柱111C B A ABC -,∴面⊥ABC 面C C BB 11, ⊥∴AF 面B C 1,F B AF 1⊥∴设EF F B E B EF F B E B EF F B AA AB ⊥∴=+∴===∴==121221111,,23,23,26,1 又,F EF AF = ⊥∴F B 1面AEF 。
(8分)O PD C A(3)由于点D 是线段1AB 的中点,故点D 到平面AEF 的距离是点1B 到平面AEF 距离的12。
1B F ==,所以三棱锥D AEF -的高为4a ;在Rt AEF ∆中,,22EF AF a ==,所以三棱锥D AEF -的底面面积为28,故三棱锥D AEF -的体积为231138416a a a ⨯⨯=。
(12分) 二、线面平行与垂直的性质例3.(1)证明:在ABD △中,由于2AD =,4BD =,AB =∴222AD BD AB +=. …… 2分∴ AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , ∴BD ⊥平面PAD . …… 4分 (2)解:过P 作PO AD ⊥交AD 于O .又平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD . …… 6分 ∵PAD △是边长为2的等边三角形,∴PO =由(1)知,AD BD ⊥,在Rt ABD △中,斜边AB边上的高为AD BD h AB ⨯==. …… 8分∵AB DC ∥,∴11222ACD S CD h =⨯==△. …… 10分∴112333A PCD P ACD ACD V V S PO --==⨯=⨯=△. …… 14分例4、(I )证明:⊥PD 平面ABCD ,BC PD ⊥∴ 又∵ABCD 是正方形,∴BC ⊥CD , ∵PDICE=D , ∴BC ⊥平面PCD又∵PC ⊂面PBC ,∴PC ⊥BC(II )解:∵BC ⊥平面PCD ,∴GC 是三棱锥G —DEC 的高。