第3章_蛮力法详解
算法设计与分析部分算法伪代码
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
算法设计与分析-第3章-蛮力法
哨兵
0123456789 k 10 15 24 6 12 35 40 98 55
查找方向
i
清华大学出版社
算法设计与分析
算法3.2——改进的顺序查找
int SeqSearch2(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合 { r[0]=k; i=n; while (r[i]!=k)
清华大学出版社
算法设计与分析
第3章 蛮力法
3.1 蛮力法的设计思想 3.2 查找问题中的蛮力法 3.3 排序问题中的蛮力法 3.4 组合问题中的蛮力法 3.5 图问题中的蛮力法 3.6 几何问题中的蛮力法 3.7 实验项目——串匹配问题
清华大学出版社
算法设计与分析
3.1 蛮力法的设计思想
蛮力法的设计思想:直接基于问题的描述。 例:计算an
52 37 65 不可行 不可行 不可行 不可行 不可行
清华大学出版社
算法设计与分析
对于一个具有n个元素的集合,其子集 数量是2n,所以,不论生成子集的算法 效率有多高,蛮力法都会导致一个Ω(2n) 的算法。
清华大学出版社
算法设计与分析
3.4.4 任务分配问题
假设有n个任务需要分配给n个人执行, 每个任务只分配给一个人,每个人只分配一 个任务,且第j个任务分配给第i个人的成本 是C[i, j](1≤i , j≤n),任务分配问题要求 找出总成本最小的分配方案。
用蛮力法解决0/1背包问题,需要考虑给定n个 物品集合的所有子集,找出所有可能的子集(总重 量不超过背包容量的子集),计算每个子集的总价 值,然后在他们中找到价值最大的子集。
清华大学出版社
算法设计与分析
10
TSP问题的解决方案
《算法设计与分析》实验报告一学号:姓名:日期:20161230 得分:一、实验内容:TSP问题二、所用算法的基本思想及复杂度分析:1、蛮力法1)基本思想借助矩阵把问题转换为矩阵中点的求解。
首先构造距离矩阵,任意节点到自身节点的距离为无穷大。
在第一行找到最小项a[1][j],从而跳转到第j行,再找到最小值a[j][k],再到第k行进行查找。
然后构造各行允许数组row[n]={1,1…1},各列允许数组colable[n]={0,1,1….1},其中1表示允许访问,即该节点未被访问;0表示不允许访问,即该节点已经被访问。
如果改行或该列不允许访问,跳过该点访问下一节点。
程序再发问最后一个节点前,所访问的行中至少有1个允许访问的节点,依次访问这些节点找到最小的即可;在访问最后一个节点后,再次访问,会返回k=0,即实现访问源节点,得出一条简单回路。
2)复杂度分析基本语句是访问下一个行列中最小的点,主要操作是求平方,假设有n个点,则计算的次页脚内容1数为n^2-n。
T(n)=n*(n-1)=O(n^2)。
2、动态规划法1)基本思想假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。
推导:(分情况来讨论)①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3->城市0(0为起点城市)。
此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、②如果V’不为空,那么就是对子问题的最优求解。
你必须在V’这个城市集合中,尝试每一个,并求出最优解。
d(i, V’)=min{Cik +d(k, V’-{k})}注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。
综上所述,TSP问题的动态规划方程就出来了:2)复杂度分析和蛮力法相比,动态规划求解tsp问题,把原来时间复杂性O(n!)的排列转化为组合问题,从而降低了时间复杂度,但仍需要指数时间。
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳一、蛮力法蛮力法是一种基础且直接的问题解决策略,通常用于寻找问题的答案或解决方案。
其核心理念在于,通过逐一检查所有可能的解决方案,从而找到问题的答案或找到最佳的解决方案。
在蛮力法中,我们通常需要投入较多的时间和计算资源,尤其是在面对大规模或复杂的问题时。
蛮力法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,对一个数组进行排序,我们可以使用蛮力法,通过比较每对元素并交换它们的位置,使得整个数组有序。
2. 查找问题:例如,在排序数组中查找一个特定的元素,我们可以使用蛮力法,逐一检查数组中的每个元素直到找到目标元素。
3. 组合与排列问题:例如,计算给定集合的所有可能排列或组合,我们可以使用蛮力法,通过逐一排列或组合所有可能的元素组合得到答案。
二、分治法分治法是一种将复杂问题分解为更小、更易于处理的子问题的方法。
通过将问题分解为独立的子问题,我们可以分别解决每个子问题,然后将这些解决方案组合起来,形成原始问题的解决方案。
这种方法在处理复杂问题时非常有效,因为它可以降低问题的复杂性,使我们可以更有效地解决问题。
分治法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,归并排序就是一种使用分治法的排序算法,它将一个大列表分解为两个小列表,对这两个小列表分别进行排序,然后合并它们以得到有序列表。
2. 搜索问题:例如,二分搜索是一种使用分治法的搜索算法,它将搜索空间一分为二,每次迭代都排除一半的元素,直到找到目标元素或确定元素不存在。
3. 图问题:例如,Dijkstra的算法就是一种使用分治法的图搜索算法,它将图分解为最短路径树,然后通过搜索每个子图的最短路径来解决整个图的最短路径问题。
三、减治法减治法是一种通过减少问题的规模或复杂性来解决问题的方法。
其核心理念在于,通过消除或减少问题的某些部分或特性,从而降低问题的复杂性或规模,使得问题更容易解决。
算法——蛮力法之最近对问题和凸包问题
算法——蛮⼒法之最近对问题和凸包问题 上次的博客写到⼀半宿舍停电了。
然⽽今天想起来补充完的时候发现博客园并没有⾃动保存哦,微笑。
最近对问题 ⾸先来看最近对问题,最近对问题描述的就是在包含n个端的集合中找到距离最近的两个点,当然问题也可以定义在多维空间中,但是这⾥只是跟随书上的思路实现了⼆维情况下的最近对问题。
假设所有讨论的点是以标准的笛卡尔坐标形式(x,y)给出的,那么在两个点P i=(X i,Y i)和P j=(X j,Y j)之间的距离是标准的欧⼏⾥得距离: d(P i,P j)=sqrt( (X1-X2)2+(Y1-Y2)2 )蛮⼒法的思路就是计算出所有的点之间的距离,然后找出距离最⼩的那⼀对,在这⾥增加效率的⼀种⽅式是只计算点下标 i<j 的那些对点之间的距离,这样就避免了重复计算同⼀对点间距离。
下⾯是蛮⼒法解决最近对问题的算法:使⽤蛮⼒法求平⾯中距离最近的两点BruteForceClosetPoints(P)//输⼊:⼀个n(n≥2)的点的列表P,P i=(X i,Y i)//输出:距离最近的两个点的下标index1和index2dmin <— ∞for i <— 1 to n-1 do for j <— i+1 to n do d <— sqrt( (X i-X i)2+(Y j-Y j)2 ) if d<dmin dmin=d; index1=i; index2=j;return index1,index2 该算法的关键步骤是基本操作虽然是计算两个点之间的欧⼏⾥得距离,但是求平⽅根并不是像加法乘法那么简单。
上⾯算法中,开平⽅函数导数恒⼤于0,它是严格递增的,因此我们可以直接只计算(X i-X i)2+(Y j-Y j)2,⽐较d2的⼤⼩关系,这样基本操作就变成了求平⽅。
平⽅操作的执⾏次数是: n(n-1)∈Θ(n2)因此,蛮⼒法解决最近对问题的平均时间复杂度是Θ(n2) 下⾯是该算法的c++代码实现部分,在实现这个算法时,我碰到了三个问题: ⼀是:怎么表⽰⼀个点集,因为最终返回的下标是集合中点的下标,要⽤的数据结构就是⼀维数组,但是点的xy坐标⼜要怎么表⽰呢,这⾥我在头⽂件中创建了struct类型的点结构,该结构拥有的成员变量就是x代表的横坐标和y代表的纵坐标,这样就可以直接创建该结构的⼀位数组进⾏计算了。
实验项目三 用蛮力法、动态规划法和贪心法求解背包问题
实验项目三 用蛮力法、动态规划法和贪心法求解0/1背包问题实验目的1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同;2、对0-1背包问题的算法设计策略对比与分析。
实验内容:0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。
在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。
根据问题的要求,有如下约束条件和目标函数:于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。
背包的数据结构的设计:typedef struct object{int n;//物品的编号int w;//物品的重量int v;//物品的价值}wup;wup wp[N];//物品的数组,N 为物品的个数int c;//背包的总重量1、蛮力法蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。
蛮力法的关键是依次处理所有的元素。
用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法:⎪⎩⎪⎨⎧≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1)∑=ni i i x v 1max (式2)void force(int a[16][4])//蛮力法产生4个物品的子集{int i,j;int n=16;int m,t;for(i=0;i<16;i++){ t=i;for(j=3;j>=0;j--){m=t%2;a[i][j]=m;t=t/2;}}for(i=0;i<16;i++)//输出保存子集的二维数组{for(j=0;j<4;j++){printf("%d ",a[i][j]);}printf("\n");}}以下要依次判断每个子集的可行性,找出可行解:void panduan(int a[][4],int cw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0{int i,j;int n=16;int sw,sv;for(i=0;i<16;i++){sw=0;sv=0;for(j=0;j<4;j++){sw=sw+wp[j].w*a[i][j];sv=sv+wp[j].v*a[i][j];}if(sw<=c)cw[i]=sv;elsecw[i]=0;}在可行解中找出最优解,即找出可行解中满足目标函数的最优解。
蛮力算法
17
main1( ) { int *a,i,j,n; input(n); a=calloc(n+1,sizeof(int)); //申请存储空间 for (i=1; i<=n;i++) a[i]=1; for (i=1; i<=n;i++) for (j=i; j<=n;j=j+i) a[i]=1-a[i]; for (i=1; i<=n;i++) if (a[i]=0) print(i,”is free.”); } 算法分析1:以一次开关锁计算,算法的时间复杂度为 n(1+1/2+1/3+……+1/n)=O(nlogn)。
3
【例3.1】百钱百鸡问题。中国古代数学家张丘建在《算经》 中提出了著名的“百钱百鸡问题”:鸡翁一,值钱五;鸡母一, 值钱三;鸡雏三,值钱一;百钱买百鸡,翁、母、雏各几何? 算法设计1: 通过对问题的理解,可能会想到列出两个三元一次方程, 去解这个不定解方程,就能找出问题的解。这确实是一种办法, 但这里我们要用“懒惰”的枚举策略进行算法设计: 设x,y,z分别为公鸡、母鸡、小鸡的数量。 尝试范围:由题意给定共100钱要买百鸡,若全买公鸡最多 买100/5=20只,显然x的取值范围1~20之间;同理,y的取值范 围在1~33之间,z的取值范围在1~100之间。 约束条件: x+y+z=100 且 5*x+3*y+z/3=100
附:蛮力法
3.1 字符串匹配 3.2 矩阵相乘 3.3 子集和问题 3.4 冒泡排序 3.5 若干最优化问题
蛮力法
思想:穷尽所有可能的情况来寻找问题的解
优势:思路简单,设计难度低
缺点:运行效率低
适用范围: 1、一些问题只能采用蛮力法求解 2、蛮力法设计简单,用其求解一些小问题 也是可接受的
3.1 字符串匹配
let d = 0; foreach (eL) do
d d + w[e.a, e.b]; d d + w[L.tail, L.head]; if (d < d_best) then
d_best d; L_best L; return L_best; end
O((n+1)!)
课后作业:
1、习题3-15 2、习题3-17 3、习题3-19
[字符串匹配算法] Algorithm Brute_Match(T, P: string) begin let i = 0, n = |T|, m = |P|; while (i ≤ n−m) do
let j = 0; while (j < m) do if (T[i+j] ≠ P[j]) then break; j j + 1; if (j = m) then return i; //匹配成功 i i + 1; return −1; end
O(m(m−n)) 存在改进可能?
3.2 矩阵相乘
输入:m×n型矩阵A和n×p型矩阵B 输出:C = A×B
3.2 矩阵相乘
[矩阵相乘算法]
Algorithm MatrixMultiple(A, B: int[,])
begin
let (m,n) = |A|, (n,p)= |B|, C = new int[m,p];
第三章 蛮力法PPT课件
个定值。设此值为SN ,则不难解
出:SN = N 2 ·(N 2 +1)/2N= N ·(N 2 +1) /2。
.
19
外延法(由巴谢提出)构造奇阶幻方
.
20
H·Coxeter构造幻方的方法
首先在正方形最上面一 行的正中间的小方格内 填写1,然后到它的左 上方的小格内填写下一 个数(注意:我们认为正 方形的同一行或同一行 的头尾是相连的)。如果 走到某个小方格,而该 格已填了数,那末就改 走到原方格的下面一个 方格。
axbyc13穷举查找14穷举查找15穷举查找分配问题n个任务分配给n个人任务j分配给人i的成本是cij16小结蛮力法是一种简单直接地解决问题的方法通常直接基于问题的描述和所涉及的概念定义
算法分析与设计
Analysis and Design of Computer Algorithms
第三章 蛮力法 Brute Force
.
21
习题3.4-10
.
22
直线方程:ax+by=c a=y2-y1 , b=x1-x2, c=x1y2-y1x2
.
12
旅行商问题
穷举查找
.
13
背包问题
穷举查找
.
14
穷举查找
分配问题
N个任务分配给n个人,任务j分配给人i的成本是C[I,j]
.
15
小结
蛮力法是一种简单直接地解决问题的方法,通常 直接基于问题的描述和所涉及的概念定义。
算法 解决问题的实例很少时,它让你花费较少的代
价 可以解决一些小规模的问题 可以作为其他高效算法的衡量标准
.
3
教学内容
第3章 蛮力法——串的模式匹配
模式匹配——BF算法
例:主串S="ababcabcacbab",模式T="abcac"
i
第 5 趟
a b a b c a b c a c b a b a b c a c
j
i=5,j=1失败 i回溯到6,j回溯到1
模式匹配——BF算法
例:主串S="ababcabcacbab",模式T="abcac"
i i i i i
第 3 趟
a b a b c a b c a c b a b a b c a c
j j j j j
i=7,j=5失败 i回溯到4,j回溯到1
模式匹配——BF算法
例:主串S="ababcabcacbab",模式T="abcac"
i
第 3 趟
a b a b c a b c a c b a b a b c a c
k
算法3.4——KMP算法中求next数组
void GetNext(char T[ ], int next[ ]) { 位置j 1 2 3 4 5 next[1]=0; j=1; k=0; 模式串 a b c a c while (j<T[0]) if ((k= =0)| |(T[j]= =T[k])) j next[j] { j++; 1 0 k++; 2 1 next[j]=k; 3 1 } 4 1 else k=next[k]; } 5 2
next数组的求解方法是: 1、第一位的next值为0,第二位的next值为1,
2、第三位开始首先将当前位的前一位字符与其next值 对应的字符进行比较, 相等:则该位的next值就是前一位的next值加上1;
算法-第3章-蛮力法
for i←0 to n-2 do
for j←0 to n-2-i do if A[j+1]<A[j]
该算法是否稳定?
swap A[j] and A[j+1]
89 45 45 45 45 45 45 45 45 45
?
45 68 90 29 34 17 ? 89 68 90 29 34 17 ? ? 68 89 90 29 34 17 ? 68 89 29 90 34 17 ? 68 89 29 34 90 17 68 89 29 34 17 90 68 68 68 68
3.2.1 顺序查找 该算法只是简单地将给定列表中的连续元素和给定的 查找键作比较,直到遇到一个匹配的元素(查找成 功),或者在遇到元素前就遍历了整个列表(失败查 找) 算法 SequentialSearch2(A[0..n],K) //顺序查找的算法实现,它用了查找键来做限位器 //输入:一个n个元素的数组A和一个查找键K //输出:第一个值等于K的元素的位置,如果找不到这样 的元素,返回-1
n m
p(i 1 m ) i
0
1
n m
(i 1 m ) 1i
0
n m
n m
2
1 (n m )
3.3 最近对和凸包问题的蛮力算法
3.3.1 最近对问题 最近对问题要求找出一个包含n个点的集合中 距离最近的两个点。两个点Pi=(xi,yi)和Pj=(xj,yj) 这间的距离是标准的欧几里得距离:
所以如果我们用dsqr←(xi-xj)2+(yi-yj)2代替 d←sqrt(xi-xj)2+(yi-yj)2,该算法的基本操作就是求 平方。平方操作的执行次数可以这样计算:
蛮力法 (2)
11
【例】贴纸问题 有A、B、C、D、E五人,每人额头上都帖了一张黑或白的纸。五人对 坐,每人都可以看到其他人额头上的纸的颜色。五人相互观察后, A说:“我看见有三人额头上帖的是白纸,一人额头上帖的是黑纸” B说:“我看见其他四人额头上帖的都是黑纸” C说:“我看见有一人额头上帖的是白纸,其他三人额头上帖的是黑纸” D说:“我看见其他四人额头上帖的都是白纸” E说:什么也没有说 现在已知额头上帖黑纸的人说的都是谎话,额头上贴白纸的人说的都 是实话,请你编写程序,求出这五个人谁的额头上帖的白纸,谁的额 头上帖的黑纸。
蛮力算法的优缺点:
(1)可以用来解决广阔领域的问题; (2)算法设计思想简单明了; (3)可以解决一些小规模的问题; (4)算法的效率不高,随着问题规模的增大,算法效率急剧下降; (5)问题规模过大时,在时间上,有些蛮力算法不可行。
15
作业1:用蛮力算法求解古堡问题
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式: ABCDE * ? = EDCBA 他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!” 华生:“我猜也是!” 于是,两人沉默了好久,还是没有算出合适的结果来。 请你利用计算机的优势,找到破解的答案。 把 ABCDE 所代表的数字写出来。
蛮力法
1
蛮力法
蛮力法是基于计算机运算速度快这一特性,在解决问题 时采取的一种“懒惰” 策略。这种策略不经过(或者说经过 很少)思考,把问题所有情况或所有过程交给计算机去一 一尝试,从中找出问题的解。 蛮力策略应用:选择排序、冒泡排序、插入排序、顺序 查找、朴素的字符串匹配等。比较常用还有枚举法、盲目
搜索算法等。
2
1 枚举法
枚举法(穷举法)是蛮力策略的一种表现形式,根据问题 中条件将可能情况一一列举出来,逐一尝试从中找出满足 问题条件的解。但有时一一列举出的情况数目很大,则需 要进一步考虑,排除一些明显不合理的情况,尽可能减少 问题可能解的列举数目。 通常从两个方面进行算法设计: 1)找出枚举范围:分析问题所涉及的各种情况。 2)找出约束条件:分析问题的解需要满足的条件,并 用逻辑表达式表示。
蛮力法
算法设计2: 在公鸡(x)、母鸡(y)的数量确定后,小 鸡 的数量 z就固定为100-x-y,无需再进行枚举了 此时约束条件只有一个:5*x+3*y+z/3=100 算法2如下:
8
Z能被3整除时,才会判断“5*x+3*y+z/3=100
main( ) 枚举尝试20*33=660次 { int x,y,z; for(x=1;x<=20;x=x+1) for(y=1;y<=33;y=y+1) { z=100-x-y; if(z%3==0&&5*x+3*y+z/3==100) { print("the cock number is",x);
蛮力字符串匹配:即朴素模式串匹配
4
蛮力法解题步骤
根据问题中的条件将可能的情况一一列举出 来,逐一尝试从中找出满足问题条件的解。但有 时一一列举出的情况数目很大,如果超过了我们 所能忍受的范围,则需要进一步考虑,排除一些 明显不合理的情况,尽可能减少问题可能解的列 举数目。 用蛮力法解决问题,通常可以从两个方面进行算 法设计:
16
1)找出枚举范围:分析问题所涉及的各种情况。
2)找出约束条件:分析问题的解需要满足的条件,并用 逻辑表达式表示。
5
例1 百钱百鸡问题。中国古代数学家张丘建在他的 《算经》中提出了著名的“百钱百鸡问题”:鸡翁一, 值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买 百鸡,翁、母、雏各几何?
算法设计1:
通过对问题的理解,可能会想到列出两个三元一次方程, 去解这个不定解方程,就能找出问题的解。这确实是一种 办法,但这里我们要用“懒惰”的枚举策略进行算法设计: 设x,y,z分别为公鸡、母鸡、小鸡的数量。
第3章 蛮力法
4 组合问题中的蛮力法—任务分配问题
可以用一个 n 元组(j1, j2, …, jn)来描述任务分配问题的一个可能 解,其中第 i 个分量ji(1≤i≤n)表示在第 i 行中选择的列号,因 此用蛮力法解决任务分配问题要求生成整数1~n的全排列,然后 把成本矩阵中相应元素相加来求得每种分配方案的总成本,最 后选出具有最小和的方案。
交换
r1 ≤r2 … … ≤ri-1 ri ri+1 … rmin … rn
有序区 已经位于最终位置 无序区 rmin为无序区的最小记录
3 排序问题中的蛮力法—选择排序
void SelectSort(int r[ ], int n) {
for (i=1; i<=n-1; i++) { index=i; for (j=i+1; j<=n; j++) if (r[j]<r[index]) index=j; if (index!=i) r[i]←→r[index]; }
用蛮力法解决问题,通常可以从两个方面进行算法 设计:
1)找出枚举范围:分析问题所涉及的各种情况。 2)找出约束条件:分析问题的解需要满足的条件,并用逻 辑表达式表示。
思考下面问题:找出枚举范围和约束条件
求所有的三位数,它除以11所得的余数等于它的 三个数字的平方和.
思路: 枚举范围:100—999,共900个。 约束条件:设三位数的百位、十位、个位的数字分别为x,y, z。则有x2+y2+z2≤10,进而1≤x≤3, 0≤y≤3, 0≤z≤3。 解:所求三位数必在以下数中: 100,101,102,103,110,111,112, 120,121,122,130,200,201,202, 211,212,220,221,300,301,310。 不难验证只有100,101两个数符合要求。
蛮力法详解
算法3.1——顺序查找
int SeqSearch1(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合
{ i=n;
基本语句 ?
while (i>0 && r[i]!=k)
i--;
return i;
}
算法3.1的基本语句是i>0和r[i]!=k,其执行次数为:
n
2020/6/14
Chapter 3 Brute force method
教学要求 理解 掌握
√
√ √ √
√ √ √
熟练掌握 √ √
√
4
3.1 概述:蛮力法的设计思想
蛮力法中“力”是指计算机的“计算能 力”,不是人的智“力”。
蛮力法的设计思想:直接基于问题的描述, 从有限集合中,逐一列举集合的所有元素, 对每一个元素逐一判断和处理,从而找出 问题的解。
如已知:公钥为:KU={e, n},私钥为: KR={d, n},则 对明文m的加密/解密算法如下:
加密 明文: M<n 密文: C=Me (mod n)
密文: 明文:
解密 C M=Cd (mod n)
注:计算an算法的效率直接影响到RSA算法的性能
2020/6/14
Chapter 3 Brute force method
2020/6/14
Chapter 3 Brute force method
7
蛮力法的设计思想
因要穷举待处理的元素,故蛮力法的时间性能往往最低, 但基于以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题(例如排序、查找等)蛮力法 可以产生一些合理的算法,他们具备一些实用价值,而且 不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能(不是复杂性, 两者恰好相反)的下界,来衡量同样问题的更高效算法。
关于算法--蛮力法--字符与字符串匹配
关于算法--蛮⼒法--字符与字符串匹配⼀、顺序查找1、步骤:简单的将给定列表中的连续元素与给定的查找键作⽐较,直到遇到⼀个匹配的元素或遇到匹配元素前就遍历了整个列表2、JavaScript代码实现1 <!DOCTYPE html>2 <html lang="en">3 <head>4 <meta charset="UTF-8">5 <title>SelectionFind</title>6 </head>7 <body>89 </body>10 <script type="text/javascript">11var search = function(arr, k) {12var n = arr.length;13 arr[n] = k;14var i = 0;15while(arr[i] != k){16 i ++;17 }18if( i < n){19return i;20 }else{21return -1;22 }2324 };25var num = search(['a','b','c','d','e','f','g'], 'b');26 console.log(num);27 </script>28 </html>3、算法分析:顺序查找算法具有蛮⼒法的优点(简单)和缺点(效率低),是⼀个线型算法⼀、蛮⼒字符串匹配1、步骤(需要从m个“⽂本”中取出n个“模式”字符串) a、将模式对准⽂本的前m个字符,从左向右匹配每⼀对响应的字符,直到m对字符全部匹配(此时算法停⽌)或者遇不到⼀对匹配的字符串 b、在后⼀种情况下,模式向右移⼀位,然后从模式的第⼀个字符开始,继续把模式和⽂本中的对应字符作⽐较2、JavaScript代码实现1 <!DOCTYPE html>2 <html lang="en">3 <head>4 <meta charset="UTF-8">5 <title>蛮⼒法字符串匹配</title>6 </head>7 <body>89 </body>10 <script type="text/javascript">11var search = function(arrT, arrP) {12var m = arrT.length;13var n = arrP.length;14for(var i = 0; i < m - n ; i++){15var j = 0;16while(( j < m ) && (arrP[j] == arrT[j + i])){17 j++;18 }19if(j == n){20return i;21 }22 }23return -1;24 };25 console.log(search(['a','b','c','d','e','f','g'],['c','d','e']));26 </script>27 </html>3、算法分析移动“模式”之前,可能做⾜m次⽐较,⽽n-m+1次尝试都有可能出现,最坏的情况下,算法属于Θ(mn),平均效率下,算法属于Θ(m+n)=Θ(m)。
蛮力法
蛮力法
设计与开发大赛
一、蛮力法概述
蛮力法(也叫穷举法、暴力法)它 要求设计者找出所有可能的方法,然后 选择其中的一种方法,若该方法不可行 则试探下一种可能的方法。 显然蛮力法(也叫穷举法)不是一 个最好的算法选择,但当我们想不出别 的更好的办法时,它也是一种有效的解 决问题的方法。
2
14
常州大学信息学院
设计与开发大赛
蛮力法的一般模式
1、问题解的可能搜索范围: 用循环或循环嵌套结构实现。 2、写出符合问题解的条件: 用条件语句实现判断。 3、对程序做一些优化,以便 缩小搜索范围,减少程序运行时间。
15
常州大学信息学院
设计与开发大赛
四、蛮力法练习
练习 1:36块砖,36个人搬。男搬 4,女搬3,两个小儿抬一砖。要求 一次搬完。问需男、女、小儿个若 干(必须都有)? 类似问题:一张100元,换成20, 10,5,1面值的零钞,每种至少一 张,共有哪些换法?总计多少种换 法?
设计与开发大赛
for(i=1;A<=5;i=i+1) { G2=G1; E1=E1/10; G1=E1%10; if(G1<>G2) break; } If(i==6) printf(“%d*%d=%d”F,A,E); }
12
常州大学信息学院
设计与开发大赛
算法优化:将算式由乘变为除。 算法优化 DDDDDD/A = ABCAB 尝试范围:3≤A≤9;1≤D≤9; 尝试范围 约束条件:每次除法所得的商的万 约束条件 位、十位与除数相同,商的千位与 个位相同。
8
常州大学信息学院
设计与开发大赛
例 2:编写算法解如下数字迷。 A B C A B × A D D D D D D
《算法设计与分析》蛮力法32页PPT
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
《算法设计与分析》蛮力法
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自ቤተ መጻሕፍቲ ባይዱ己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•分治法。将复杂问题分解成若干独立的子问题,通过求解子问题 并将解合并得到原问题的解。 •减治法。同样分解问题,但只需求解某个子问题,也无须合并解, 退化的分治法。 •动态规划。将复杂问题分解成若干相互重叠的子问题,通过保存 和重复利用重叠的子问题的解来减少计算量。 •贪心法。把复杂问题分解为一系列较为简单的局部最优选择,每 一步选择都是对当前解的扩展,直到获得问题的完备解。 •基于搜索的思想:回溯法、分支限界法
算法设计与分析—本科生课程
Design and Analysis of Algorithm
第3章 蛮力法
Brute force method
海南大学信息科学技术学院 College of Information Science and Technology, Hainan University
基本的算法设计技术
2. {
3. int a,b,c;
4. k = 0;
5. for (a=0;a<=n;a++)
6.
for (b=0;b<=n;b++)
7.
for (c=0;c<=n;c++) {
8.
if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) {
9.
g[k] = a;
10.
2
第3章 蛮力法
本章要点:
3.1 概述:蛮力法的设计思想 3.2 查找问题中的蛮力法(顺序查找、串匹配问题) 3.3 排序问题中的蛮力法(选择排序、起泡排序) 3.4 组合问题中的蛮力法(0/1背包、任务分配) 3.5 图问题中的蛮力法(哈密尔顿回路、TSP问题) 3.6 几何问题中的蛮力法(最近对、凸包问题) 阅读材料——KMP算法中next值的计算
m[k] = b;
11.
s[k] = c;
12.
k++;
13.
}
14. } } }
17. }
2020/3/7
Chapter 3 Brute force method
11
蛮力法的设计思想
6
蛮力法的设计思想
蛮力法所依赖的基本技术——遍历(扫描)技术 关键——依次处理所有元素 遍历技术:可确保处理过的元素不再被处理)
(1)集合的遍历:按集合中元素序号的顺序处理各元素 (2)线性表的遍历:以数组形式存储,按下标顺序处理 (3)树的遍历:对二叉树,包括前序、中序、后序和层序 (4)图的遍历:深度优先、广度优先
2020/3/7
Chapter 3 Brute force method
3
第3章 蛮力法
教学重点
蛮力法的设计思想,各种经典问题的蛮力思想
教学难点
串匹配问题,凸包问题
教学内容及目 知识点 标
了解
蛮力法设计思想
顺序查找
串匹配问题
选择排序和起泡排序
0/1背包问题
任务分配问题
哈密尔顿回路
TSP问题 最近对问题 凸包问题
a+b+c=n
(4)
5a+3b+c/3=n
(5)
输入:所购买的三种鸡的总数目n
输出:满足问题的解的数目k,公鸡,母鸡,小鸡的 只数g[ ], m[ ], s[ ]
2020/3/7
Chapter 3 Brute force method
10
蛮力法的设计思想
1. void chicken_question(int n,int &k,int g[],int m[],int s[])
如已知:公钥为:KU={e, n},私钥为: KR={d, n},则 对明文m的加密/解密算法如下:
加密 明文: M<n 密文: C=Me (mod n)
密文: 明文:
解密 C M=Cd (mod n)
注:计算an算法的效率直接影响到RSA算法的性能
2020/3/7
Chapter 3 Brute force method
例:计算an
an=a×a×…×a
n次 注:最简单的想法就是把 a 和 a 相乘 n 次。
2020/3/7
Chapter 3 Brute force method
5
蛮力法的设计思想
一个RSA算法应用实例
a n 值的计算是非对称加密算法RSA的重要组成部分。RSA 的加密/解密过程都需要求一个整数的的整数次幂再取模。
2020/3/7
Chapter 3 Brute force method
7
蛮力法的设计思想
因要穷举待处理的元素,故蛮力法的时间性能往往最低, 但基于以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题(例如排序、查找等)蛮力法 可以产生一些合理的算法,他们具备一些实用价值,而且 不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能(不是复杂性, 两者恰好相反)的下界,来衡量同样问题的更高效算法。
2020/3/7
Chapter 3 Brute force method
8Байду номын сангаас
蛮力法的设计思想
例 百鸡问题。
“鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱 一。百钱买百鸡,问鸡翁、母、雏各几何?”
a:公鸡只数,b:母鸡只数,c:小鸡只数。约束方程:
a+b+c=100
(1)
5a+3b+c/3=100
(2)
C%3=0
(3)
2020/3/7
Chapter 3 Brute force method
9
蛮力法的设计思想
解法1:
a、b、c的可能取值范围:0 ~ 100,对在此范 围内的,a、b、c的所有组合进行测试,凡是满 足上述三个约束方程的组合,都是问题的解。
把问题转化为用n元钱买n只鸡,n为任意正整数, 则方程(1)与(2)转换为:
2020/3/7
Chapter 3 Brute force method
教学要求 理解 掌握
√
√ √ √
√ √ √
熟练掌握 √ √
√
4
3.1 概述:蛮力法的设计思想
蛮力法中“力”是指计算机的“计算能 力”,不是人的智“力”。
蛮力法的设计思想:直接基于问题的描述, 从有限集合中,逐一列举集合的所有元素, 对每一个元素逐一判断和处理,从而找出 问题的解。