《有理数的除法》导学案(有答案)

合集下载

《有理数的除法》教案 (公开课)2022年

 《有理数的除法》教案 (公开课)2022年

2.9 有理数的除法教案教学目标(一)教学知识点(1)理解有理数除法的法那么,会进行有理数的除法运算.(2)会求有理数的倒数.(二)能力训练要求1.理解有理数除法的法那么,会进行有理数的除法运算.2.会求有理数的倒数.(三)情感与价值观要求通过师生相互交流、探讨,激发学生的求知欲望,进一步提高学生灵活解题的能力.教学重点有理数除法法那么的运用,求一个负数的倒数.教学难点除法法那么有两个,在运用时要合理选用法那么1和法那么2,当能整除时用法那么1,在确定符号后,往往采用直接相除;在不能整除的情况下,特别是除数是分数时,用法那么2,把除法转变为乘法比较简便.教学方法师生共同讨论法.与学生展开讨论,从而使学生自己发现规律、总结规律,然后运用规律.教具准备投影片六张第一张:练习(记作§2.8 A)第二张:想一想(记作§2.8 B)第三张:法那么(记作§2.8 C)第四张:例1(记作§2.8 D)第五张:练习(记作§2.8 E)第六张:做一做(记作§2.8 F)教学过程Ⅰ.复习回忆,引入课题[师]上节课我们学习了有理数的乘法,能运用乘法法那么进行计算,谁能表达有理数的乘法法那么呢?[生]两数相乘,同号得正,异号得负,绝对值相乘,任何数与0相乘,积仍为0. [师]好,根据法那么能口答以下各题吗?(出示投影片§2.8 A)(1)(-3)×4; (2)3×(-31); (3)(-9)×(-3);(4)8×(-9); (5)0×(-2); (6)(-8)×(-6);[生](1)-12;(2)-1;(3)27;(4)-72;(5)0;(6)48[师]从答复以下问题中,知道大家已经掌握了有理数乘法法那么,我为此很快乐. 假设:两个因数的积和其中一个因数,要求另一个因数.那么我们用什么运算来计算呢? [生]用除法.[师]对,那我们今天就来研究有理数的除法.Ⅱ.讲授新课[师]除法是两个因数的积及其中一个因数,求另一个因数的运算,那10÷5是什么意思,商为几?0÷5呢?[生]10÷5表示一个数与5的积是10,商为2;0÷5表示一个数与5的积是0,商为0. [师]很好.那(-12)÷(-3)是什么意思呢?商为多少?[生](-12)÷(-3)表示一个数与-3的乘积是-12,商为4,对吧?[师]对,你是怎样考虑的?[生甲](-12)÷(-3)表示一个数与-3的乘积是-12,那什么数与-3的乘积是-12呢?+4.即:4×(-3)=-12.由除法的意义知道,乘法与除法是互为逆运算,所以:(-12)÷(-3)=4.[生乙]老师,我们在小学学过:除以一个数等于乘以这个数的倒数,那么计算(-12)÷(-3)时,就可以转化为(-12)×(-31)即:(-12)÷(-3)=(-12)×(-31)=4.这样可以吗?[师]可以,两位同学的思路都很正确,分析得也很好.那大家现在想一想:(出示投影片§2.8 B)(学生分析、计算、讨论)[生](1)-3;(2)8;(3)0;(4)-8;(5)-3;(6)-25;(7)3;(8)9;(9)-2;(10)3.[师]很好,大家来观察一下算式,看看商的符号及其绝对值与被除数和除数有没有关系?有,总结出规律.[生甲]两个有理数相除.同号得正,异号得负,并把绝对值相除,0除以不为0的数得0.[生乙]两个有理数相除总结出的规律与有理数的乘法法那么类似.都是先确定结果的符号,然后再确定结果的绝对值.老师,是吧?[师]对,大家总结得很好.在两个有理数相除时,首先确定商的符号,假设两个数是同号两数,那么商的符号为“+〞,假设这两个数是异号两数,那么商的符号为“-〞;其次确定商的绝对值,即被除数的绝对值除以除数的绝对值;还有0除以任何非0的数都得0.为什么要除以非0的数呢?[生]因为0不能作除数.[师]很好,这时,我们就总结出有理数的除法法那么:(出示投影片§2.8 C)(学生念一次,背一次)注意:(1)法那么中的“同号得正、异号得负〞是专指“两数相除〞的.(2)0不能作除数.[师]好,接下来我们通过例题来熟悉有理数除法法那么.(出示投影片§2.8 D)下面我们来做一练习.(出示投影片§2.8 E)[师]到现在为止,我们就学了有理数的乘法、除法法那么,在运用这两个法那么进行运算时,首先要确定结果的符号,然后再求结果的绝对值.下面我们做一做(出示投影片§2.8 F)[师]得出计算结果后,比较每一小题两式的结果,有规律吗?[生]结果一样,说明两式相等.即:1÷(-52)=1×(-125) 0.8÷(-103)=0.8×(-310) (-41)÷(-601)=(-41)×(-60) 由此得出:除以一个数等于乘以这个数的倒数.[师]对.通过计算总结,又得到有理数的除法的另一法那么,我们可把这个法那么称为法那么二,把前面的那个法那么称为法那么一.这两个运算法那么在本质上是一致的.在计算时,可根据具体的情况选用这两个法那么.一般来说,两数能整除时,应用法那么一较简单;两数不能整除或除数为分数时,应用法那么二.法那么二是除以一个数等于乘以这个数的倒数,那什么叫互为倒数呢? [生]乘积为1的两个有理数是互为倒数.[师]那我们现在回头看刚刚“做一做〞的(1)小题:1÷(-52);它的意思是-52与什么数相乘,积为1呢? [生]-25 [师]那-25与-52是什么数呢? [生]互为倒数. [师]对.因为互为倒数的乘积为1,所以1÷(-52)的商就是-52的倒数.大家再看: 1÷(-78)=1×(-87)=-87 可知:-78与-87是互为倒数,那谁能总结一下怎样求一个负数的倒数呢? [生]1除以这个负数,就等于这个负数的倒数.[师]很好,要求一个负数的倒数,只需要1除以这个负数得到的商就是这个负数的倒数.如果这个负数是分数,那么只需要把这个分数的分子、分母颠倒即可.想一想:正数的倒数是什么数,负数的倒数是什么数?0呢?[生]正数的倒数是正数,负数的倒数是负数,0没有倒数.[师]很好.大家要求一个数的倒数时,一定要注意:(1)0没有倒数.(2)互为倒数的两数为同号.Ⅲ.课堂练习课本P 51随堂练习1.计算: (1)215÷(-71); (2)(-1)÷(-1.5);(3)(-3)÷(-52)÷(-41); (4)(-3)÷[(-52)÷(-41)]. 解:(1)215÷(-71)=-(215×7)=-35 (2)(-1)÷(-1.5)=+(1÷1.5)=+(1×32)=32 (3)(-3)÷(-52)÷(-41)=+(3×25)÷(-41)=215÷(-41)=215×(-4)=-30 (4)(-3)÷[(-52)÷(-41)]=(-3)÷[(-52)×(-4)]=(-3)÷[+(52×4)] =(-3)÷58=(-3)×85=-815. 2.阅读课本P 50~52,然后小结.Ⅳ.课时小结本节课主要学习了有理数的除法运算.有理数除法运算的步骤与有理数加、减、乘一样,都是先确定符号,再确定绝对值,在进行有理数除法运算时,要根据题目的特点,恰当地选择有理数除法法那么进行计算,有理数除法转化为乘法后,可以利用乘法的运算律性质简化运算.Ⅴ.课后作业(一)课本P 52习题2.8 1、2、3、4、5.(二)1.预习内容:P 52~542.预习提纲(1)乘方的概念.(2)如何进行乘方运算.Ⅵ.活动与探究1.假设1059、1417、2312分别被自然数x除时,所得的余数都是y,那么x-y的值等于( )A.15B.1C.164D.179(1999年竞赛)过程:对于除法运算中的整除性与非整除性,小学已初步探讨过.有以下公式:被除数=除数×商被除数=除数×商+余数可以让学生利用此公式进行变化、培养学生灵活解题的能力.设三数被自然数x除时,商分别为自然数a、b、c.那么:ax+y=1059 ①bx+y=1417 ②cx+y=2312 ③②-①得 (b-a)x=358③-①得 (c-a)x=1253③-②得 (c-b)x=895由于:a≠b b≠c c≠a所以,x是358、1253、895的公约数即x=179,由此可得y=164x-y=15结果:选A2.求除以8和9都是余1的所有三位数的和.过程:可以让学生借鉴(1)题来变化、运算.可设三位数为n,它是除以8、9的商分别为x、y余1的数.那么:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.所以满足条件的所有三位数的和为:144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492答案:6492板书设计1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n头,每头卖n元,故共卖得n2元.令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+20ab+b2=10×2a(5a+b)+b2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。

《有理数的除法(1)》教学设计

《有理数的除法(1)》教学设计

《有理数的除法(1)》教学设计一、教材分析1.教学目标、重点、难点教学(1)理解除法是乘法的逆运算.(2)掌握除法法则,会利用有理数除法法则进行简单的有理数除法运算.(3)会用计算器进行有理数除法运算.(4)经历利用已有知识解决新问题的过程,培养学生良好的思维品质.重点:利用有理数除法法则进行简单的有理数除法运算.难点:除法法则的运用.2.例、习题的意图这节课的重点是利用有理数除法法则进行简单的有理数除法运算,在例、习题的设置上围绕这一重点进行安排.例1是针对除法法则1的初步应用而补充的一道例题.通过例1的学习,使学生掌握法则1的转化方法,让学生进一步体验化归思想在数学学习中的重要地位和作用.同时,学生通过对例1结果的观察、类比、分析、讨论和交流,归纳出除法法则2.例2和练习1是对两种法则的对比应用,让学生在掌握两种法则的同时也摸索出两种法则应用范围,为今后恰当的运用法则打下了基础.例3是对除法的分数形式的化简,通过例3的学习引导学生认识除法的三种形式,理解三种形式的内在联系,并掌握利用除法法则进行化简的方法和技巧.通过补充练习2的训练,让学生进一步理解字母表示数的含义同时使学生更为深入的理解法则.使学生深入的理解字母表示数的意义.通过补充练习3的训练,进一步加强学生对除法法则的掌握,提高除法的计算能力.3.认知难点与突破方法认知难点是对有理数除法法则的探究,在处理这一难点时,引导学生利用乘除互为逆运算这一关系,尝试推导出一部分除法运算的结果,再同与之相关的乘法算式进行对比,发现乘除法之间的内在联系,让学生感受到数学的学习过程就是用已有知识解决新问题的过程,逐步让学生体会正确的认知方式.并逐渐尝试用这种认知方式去探究新的知识.法则2的探究,是在法则1的运用的基础上,让学生通过观察(被除数、除数与商之间的关系)、类比(乘法法则中因数与积的关系)、分析(符号与绝对值的特征),总结出来的.使学生在自主经历整个探究过程中,既强化了对法则的认识,又学会了探究、认识新事物的方式方法,落实学生素质和能力的培养.二、新课引入.1.引入:结合教科书P44除法的引入,通过乘除之间的逆运算关系展开探究. 由乘除之间的逆运算关系可知:若求8÷(-4)=? 可利用逆运算的关系求解.只要知道(?)×(-4)=8就可以求出答案.我们知到(-2)×(-4)=8,所以8÷(-4)=-2 尝试计算出(-15)÷3= ; )2()411(-÷-=计算后思考 8×(?)=-2 ;(-15)×(?)=-5 ;45- ×(?)=85.发现8÷(-4)=8×(-1/4) (-15)÷3=(-15)×(1/3))2()411(-÷-=45-×(-1/2)观察;总结规律 2.得出除法法则:除以一个不为0的数等于乘以它的倒数 a ÷b =a ×b13.通过例1的运算结果,引导学生观察,被除数、除数与商之间是否存在类似与乘法的关系.学生通过观察、类比、分析、讨论交流,归纳出除法法则2:两数相除,同号得正,异号得负,并把绝对值相除. 三、例题讲解补充例1运用法则1计算:(+12)÷)61(- (-8)÷)41(- (-15)÷(+3) (-72)÷(-12)分析:1.利用法则1计算时,首先将除法转化成乘法,在转化过程中除数变成其倒数.(注意:互为倒数的两个数符号相同,防止学生出现改变除数符号的问题.)2.让学生感受化归思想.同时注意强调解题步骤及要点. 3.观察商的符号与绝对值同被除数、除数之间的关系. 4.归纳出法则2.例2教科书P44例8分析:两个法则应用在不同情况法则1――应用于不能整除,或分数除法时. 法则2――可整除的情况.引导学生学会审题,根据不同情况选择适当的方法.例3教科书P45例9分析:1.分数可以看做除法的另一种形式.所以分数的化简,可通过除法来完成.2.先把分数转化成除式形式,再根据情况选择合适的法则运算.3.引导学生归纳除法的三种形式即:a ÷b a :bba ,都可应用除法法则进行化简.4.对于分数形式可以利用除法法则符号的规则先化简符号,在通过约分的形式化简.例:4312312-=-=-41512451245==--例4 教科书P46例11分析:1.分组讨论运用计算器进行有理数除法运算,如何操作?并尝试完成计算.2.交流感受,明确操作方法.3.总结经验:可先定符号,再进行绝对值除法,操作更简便. 四、课堂练习: 1. 教科书P45练习.2. 补充练习,用“<、=、>”填空:分析:让学生深入理解除法符号的确定原则,理解字母表示数的意义. 3.补充练习,计算(1)(-256)÷(-16) (2)(-0.009)÷0.03 (3)236- (3))53()52(-÷-4.教科书P47练习.五、课后练习教科书P46习题1.4第4、6、15、10。

人教版数学(五四制)六年级下册 课时四 有理数的乘除法导学案

人教版数学(五四制)六年级下册 课时四 有理数的乘除法导学案

第四课时有理数的乘除法有理数的乘法(1)1.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数3.已知两个有理数a,b,如果ab<0,且a+b<0,那么()A.a>0,b>0B.a<0,b>0C.a,b 异号D.a,b 异号,且负数的绝对值较大4.32-的倒数的相反数是.5.(1)5×(-4)=;(2)(-6)×4=;(3)(-7)×(-1)=;(4)(-5)×0=;(5)=-⨯)23(94;(6))32()61(-⨯-=;(7)(-3)×31(-=.(8)=-⨯)8.0(2.1.6.(1)-7的倒数是,它的相反数是,它的绝对值是;(2)522-的倒数是,-2.5的倒数是;(3)倒数等于它本身的有理数是.5.计算:(1)32(109(45)2(-⨯-⨯⨯-(2)(-6)×5×72)67(⨯-(3)(-4)×7×(-1)×(-0.25)(4)41)23(158245(⨯-⨯⨯-有理数的乘法(2)1.若ab b a ,2,5-==>0,则=+b a .2.计算:(1))5(252449-⨯(2)125)5.2()2.7()8(⨯-⨯-⨯-(3)6.190)1.8(8.7-⨯⨯-⨯-(4))251(4)5(25.0-⨯⨯-⨯--(5))8141121()8(+-⨯-(6))48(6143361121(-⨯-+--(7)543()411(-⨯-(8)34.075)13(317234.03213⨯--⨯+⨯-⨯-3.已知,032=-++y x 求xy y x 435212+--的值.4.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值.有理数的除法(1)1、填空:(1)=÷-9)27(;(2)103()259(-÷-=;(3)=-÷)9(1;(4)=-÷)7(0;(5)=-÷)1(34;(6)=÷-4325.0.2.化简下列分数:(1)216-(2)4812-(3)654--(4)3.09--3.计算:(1)4)11312(÷-(2)511()2()24(-÷-÷-(3))3.0(45)75.0(-÷÷-(4))11()31()33.0(-÷-÷-有理数的除法(2)1.如果b a ÷()0≠b 的商是负数,那么()A.b a ,异号B.b a ,同为正数C.b a ,同为负数D.b a ,同号2.下列结论错误的是()A.若b a ,异号,则b a ⋅<0,ba<0 B.若b a ,同号,则b a ⋅>0,ba >0C.bab a b a -=-=- D.bab a -=--3.计算:(1)41(855.2-⨯÷-(2))24(9441227-÷⨯÷-(3)3411(213()53(÷-÷-⨯-(4)221(214⨯-÷⨯-(5)7412(54721(5÷-⨯⨯-÷-(6)213443811-⨯⨯÷-(1))2(66-÷+-(2))12(60)4()3(-÷--⨯-(3))6(61(51-⨯-÷+-(4)101411)2131(÷÷-(5))425(327261(-÷+-(6)]51)31(71[1051---÷(7)313(24(5)864+-⨯÷-(8)411(113)2131(215-÷⨯-⨯-1.对整数10,6,3,2-(每个数只用一次)进行加减乘除四则运算,使其运算结果等于24,运算式可以是、、.2.已知a <0,且1a <,那么11--a a 的值是()A.等于1B.小于零C.等于1- D.大于零3.若实数y x ,满足0≠xy ,则yy x xm +=的最大值是.4.计算:251522-+⨯-5.已知03=++-y x y ,求xyyx -的值.6.若0,0≠≠b a ,≠c 0,求bba a+c c +的可能取值.课后巩固四1.实数b a ,在数轴上的位置如图所示,则下列结论正确的是()A.0a b +> B.0a b -> C.0a b ⋅> D.0a b>2.若0≠a ,求aa 的值.3.有两个数-4和+6,它们相反数的和除以它们倒数的和的值为多少?4.一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是4-℃,小丽此时在山脚测得温度是6℃.已知该地区高度每增加100米,气温大约降低8.0℃,这个山峰的高度大约是多少米?5.计算(1))12()9()15(8---+---(2))1()2.3(7)56(-+----(3)21)41(6132-----(4))2.4(3112)527(3211(------(5)41()52[()3(-÷-÷-(6)3411(213()53(÷-÷-⨯-(7))5(910(101(212(-÷-÷-⨯-(8)74)431()1651()56(⨯-÷-⨯-。

6有理数的除法导学案(1)

6有理数的除法导学案(1)

有理数的除法(第一课时)[学习目标]1、了解有理数除法的定义2、会化简分数一. 预习新知 课本34-35页二. 新知探究(1)小红从家里到学校,每分钟走50米,共走了20分钟。

问小红家离学校有( )米,列出的算式为:________________(2)放学时,小红仍然以每分钟20米的速度回家,应该走( )分钟。

列出的算式为__________从上面这个例子你可以发现,有理数除法与乘法之间的关系是________(3)计算: ① 8÷(-4) ②(-15)÷3 ③(一1)÷(一2)(4)写出下列各数的倒数-4 的倒数________ ,3的倒数________,-2的倒数________;(5)计算 ① 8×(一);②(-15)×;③(-1)×(一); 讲一讲,你发现了什么?(小组展示,然后,相互交流、并与小学里学习的乘除方法进行类比与对比)三.探究学习想一想1 (1)()()315-÷- (2);611312⎪⎭⎫ ⎝⎛-÷ (3)25.11212÷⎪⎭⎫ ⎝⎛-想一想2 ()()10012112-÷⎪⎭⎫ ⎝⎛-÷-想一想:还有没有其他解法? 1414131412想一想3 化简下列各分式(1)945- (2)1339-- (3)1428- (4)436--四.巩固学习 1. 下列计算正确的是( )A.31545=÷-B.()()2168=-÷-C.()23812-=÷- D.3)23(69=-÷ 2. 如果()22-=÷,那么( )内的数应为( ) A.4 B.-4 C.-1 D.21- 3. 下列说法正确的是( )A. 0除以任何数都等于0A. 一个数与它的相反数的商等于-1B. 两个数的商为-1,则这两个数互为相反数C. 两个数相除,商一定小于被除数4. 计算:(1);7276⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛- (2);67624÷⎪⎭⎫ ⎝⎛- (3)()⎪⎭⎫ ⎝⎛-÷-÷⎪⎭⎫ ⎝⎛-496435. 化简下列分数(1)721- (2)124- (3)516-- (4)3.06--五.扩展延伸1.若0>nm ,那么一定有( ) A.0>+n m B.0<+n m C.0>mn D.n m ,异号2.若a 为有理数,且1-=a a,则a 为( )有理数的除法(第2课时)[学习目标]1、掌握有理数加减乘除运算的法则、运算顺序,能够熟练运算.2、能运用法则解决实际问题一、预习新知 阅读课本第35-36页二、新知探究有理数乘除混合运算先将除法化成 ,然后确定符号,最后写出结果。

2014-2015学年苏科版七年级上2.6有理数的乘法与除法(3)导学案

2014-2015学年苏科版七年级上2.6有理数的乘法与除法(3)导学案

2014-2015学年度第一学期七年级数学导学案(16)2.6有理数的乘法与除法(3)编写:罗俊 审阅:高黄星 2014-9-25班级 学号 姓名【学习目标】1.使学生掌握有理数的除法法则,能熟练地进行除法运算;2.培养学生观察、归纳、概括及运算能力【重、难点】有理数的除法【新知预习】1.现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日 周一 周二 周三 周四 周五 周六-3℃ -3℃ -2℃ -3℃ 0℃ -2℃ -1℃问:这周每天上午8时的平均气温是多少?请用算式表示.2.计算:8×9= 72÷9=(-4)×2= (-8)÷(-4)=2×(-3)= (-6)÷2=(-4)×(-3)= 12÷(-4)=0×(-6)= 0÷(-6)=【导学过程】活动:1.小丽根据(除法是乘法的逆运算)什么乘以7等于-14?小明把小学里学习的“除以一个数等于乘以这个数的倒数”,直接应用到有理数除法运算中,由 (-14)×71求得结果。

小丽与小明的算法正确吗? 2.计算:①(-10)÷2 ②24÷(-8) ③(-12) ÷(-4)3.有理数的除法法则:除以一个 的数,等于乘这个数的 .两个 的数相除,同号得 ,异号得 ,并把 . 0除以 ,都得 .例1.计算:(1)36÷(-9)(2)(-48)÷6 (3)0÷(-8)(4)(-21)÷(-32) (5)0.25÷(-0.5) (6))25.2()833(-÷-例2.计算:(1)(-32)÷4×(-8) (2) 17×(-6)÷3 (3) (-81)÷49×94÷(-16)【反馈练习】1.填空:-1÷(-221)= ,0÷(-6)= :52÷(-4)= , 1÷(-5)= , 0÷(21-)= ,(-91)÷13= (-63)÷(-9)= . 2.选择题:(1)如果两个有理数在数轴上的对应点分别在原点的两侧,那么这两个数的商( )A 、必为正数B 、必为负数C 、为-1D 、可能为正数,也可能为负数(2)下列说法中,正确的是( )A 、任何有理数都有倒数B 、一个数的倒数一定小于这个数C 、0除以任何数都得0D 、乘积是1的两个数互为倒数3.计算:(1)(34-)÷(43-) (2)0.25÷(83-) (3)12×(-3)÷(-4)(4)(-6)÷2×(21-) (5)(-5)÷(-51)×5 (6)(-2)÷(-10)×(313-)★4.王明同学在电脑中设置了一个有理数的运算程序:输入数“a ”加“*”键,再输入b ,就可以得到运算a ﹡b =)2()2(b a b a -÷-.求31)3(*-的值.【课后作业】P 48 5 、 6 5. (1) (2) (3) 6.(1) (2) (3)(4) (5) (6) (4) (5) (6)。

七年级数学上册 第一章 有理数 有理数的除法导学案 (新版)新人教版

七年级数学上册 第一章 有理数 有理数的除法导学案 (新版)新人教版

有理数的除法【学习目标】1.理解有理数除法的意义,熟练掌握有理数除法法则.2.根据有理数的除法法则,熟练进行除法及乘除混合运算.3.通过将除法运算转化为乘法运算,培养学生的转化思想;通过运算,培养学生的运算能力.【学习重点】有理数的除法法则.【学习难点】 灵活运用运算律进行有理数的乘除混合运算.行为提示:点燃激情,引发学生思考本节课学什么.情景导入 生成问题旧知回顾:乘积是1的两个数互为倒数.说出下列各数的倒数:-4,3,-2,-25,115.解:上面各数的倒数分别是-14,13,-12,-52,56.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.注意:1.0不能作除数,0作除数无意义;2.对于除法的两个法则,在不能整除时可选用法则1,能整除时一般选用法则2.注意:有理数的乘除混合运算,按照从左到右的顺序进行.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力知识模块一 有理数的除法法则【自主学习】阅读课本P 34~P 35,探究有理数的除法法则.归纳:有理数的除法法则:(1)除以一个不等于0的数,等于乘以这个数的倒数,即a ÷b =a ×1b ;(2)两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不为0的数都得0.【合作探究】1.计算:(1)(-6.5)÷0.13; (2)-65÷⎝ ⎛⎭⎪⎫-25.解:原式=-6.5×10013=-50; 解:原式=65×52=3.2.化简:(1)-729; (2)-30-45; (3)-123.解:原式=-8; 解:原式=23; 解:原式=-16.知识模块二 有理数的乘除混合运算【自主学习】认真学习课本P 35例7,完成下面的内容:归纳:乘除混合运算往往先将除法转化成乘法,然后确定积的符号,最后求出结果.练习:计算:(1)(-12)÷(-4)÷⎝ ⎛⎭⎪⎫-115; (2)⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-85÷(0.25). 解:原式=-12×14×56=-52; 解:原式=23×85×4=6415. 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 有理数的除法法则知识模块二 有理数的乘除混合运算检测反馈 达成目标【当堂检测】1.(1)若a +b<0,b a>0,则下列成立的是( B ) A .a>0,b>0 B .a<0,b<0C .a>0,b<0D .a<0,b>0(2)a 、b 互为倒数,则3ab =3.2.计算.(1)⎝ ⎛⎭⎪⎫-217÷⎝ ⎛⎭⎪⎫-514=6; (2)3.5÷78÷⎝ ⎛⎭⎪⎫-117=-72; (3)-32÷(-7)÷⎝ ⎛⎭⎪⎫-514=-35; (4)(-1)÷⎝ ⎛⎭⎪⎫+35÷⎝ ⎛⎭⎪⎫-37=359. 【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

初中数学最新版《分数化简及有理数的乘除混合运算》精品导学案(2022年版)

初中数学最新版《分数化简及有理数的乘除混合运算》精品导学案(2022年版)

1.4.2 有理数的除法第2课时 分数化简及有理数的乘除混合运算一、导学1.课题导入:小学里我们学过,除号与分数线可以互相转换,利用这个关系,你能将以下分数化简吗?4515-- ,1236-,714-,这节课我们继续学习有理数的除法运算. 2.学习目标:〔1〕知识与技能①学会化简分子、分母中含有“-〞号的分数.②熟练地进行有理数的乘除混合运算.〔2〕过程与方法经历分数化简及进行有理数乘除混合运算的过程,培养学生解决复杂问题的能力.〔3〕情感态度敢于面对数学活动中的困难,能独立思考,也能交流合作.3.学习重、难点:重点:有理数乘、除混合运算.难点:能准确、迅速地进行有理数乘、除混合运算.4.自学指导:〔1〕自学内容:教材第35页例6、例7.〔2〕自学时间:6分钟.〔3〕自学要求:独立学习与小组合作学习相结合.注意例7第〔1〕小题中的拆分技巧,思考其依据.〔4〕自学参考提纲:①化简分数的方法是怎样的?分子分母同时除以它们的最大公约数.②化简以下分数4515-- ,1236-,714-,-512--,3,-13,-12,-10 ③分数的乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.④按例7的计算方法计算:〔1〕12317÷〔-3〕;〔2〕〔-0.75〕×165÷〔-1.2〕. 〔1〕12317÷〔-3〕=〔123+17〕×-13=123×(-13)+17×〔-13〕 =(-41)+(-121)=-41121. 〔2〕〔-0.75〕×165÷〔-1.2〕=(-34)×165×(-56)=2. ⑤以下计算正确吗?为什么?-3÷(-13)×(-3)=-3÷1=-3不对,没按照运算顺序来.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:教师巡视课堂收集学生自学中存在的问题.〔2〕差异指导:对个别学法和法那么运用不当的学生进行指导或引导讨论.2.生助生:学生通过交流相互帮助解决一些自学中的疑难问题.四、强化1.化简分数,可依据除法法那么:两数相除,同号得正,异号得负,并把绝对值相除.2.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积〔或商〕的符号;③适当运用运算律;④假设出现带分数要化为假分数,小数可化为分数计算;⑤注意运算顺序.3.练习:计算:〔1〕(-23)×(-85)÷(-0.25);〔2〕〔-12〕÷〔-4〕÷〔-115〕;〔3〕〔-36911〕÷9解:〔1〕-6415;〔2〕-52;〔3〕-4111五、评价1.学生的自我评价〔围绕三维目标〕:交流自己在本节课学习中的得失.2.教师对学生的评价:〔1〕表现性评价:对学生的学习态度、方法和成果进行点评. 〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:有理数的乘除混合运算的教学是在前面已学过的知识上的延伸,教学时,要与前面学过的运算法那么结合,并注意指导学生弥补运算能力存在的缺乏和缺漏,使学生完整系统的掌握好计算规那么.一、根底稳固〔第1、2、3题每题10分,第4题20分,共50分〕1.〔30分〕化简以下分数:〔1〕-217〔2〕336-〔3〕548-〔4〕60.3--解:〔1〕-3;〔2〕-112;〔3〕274;〔4〕202.〔40分〕计算:〔1〕-2×3×(-4) 〔2〕-6×(-5)×(-7) 〔3〕(-825)××(-8)÷(-0.001)÷(-1) (5)-34×(-112)÷(-214)(6)-6×(-0.25)×1114(7) -7×(-56)×0÷(-13)(8)-9×(-11)÷3÷(-3)解:〔1〕24;〔2〕-210;〔3〕165;〔4〕100;〔5〕-12;〔6〕3328;〔7〕0;〔8〕-11二、综合应用〔每题15分,共30分〕3.〔20分〕计算:〔1〕(-5)÷(-10)×〔-2〕〔2〕23÷-16÷4×14〔3〕(-1018)÷94×49÷〔-2〕〔4〕〔-81〕÷214×49÷〔-16〕解:〔1〕-1;〔2〕-14;〔3〕1;〔4〕1.三、拓展延伸〔20分〕4.〔10分〕计算:(-4)÷2,4÷(-2),(-4)÷(-2)联系这类具体的数的除法,你认为以下式子是否成立(a、b是有理数,b ≠0)?从它们可以总结什么规律?〔1〕a b -=a b -=-a b〔2〕a b --=a b 解:-2,-2,2.〔1〕〔2〕均成立.规律:两数相乘,同号得正,异号得负,或者说分子、分母以及分数这三者的符号,改变其中两个,分数的值不变. 第2课时教学目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. 重点难点1.重点:〔1〕多边形的内角和公式.〔2〕多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果. 从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n 边形的一个顶点出发,可以引几条对角线?它们将n 边形分成几个三角形?n 边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n ,那么n 边形的内角和等于〔n 一2〕·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理〞来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n 边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:〔以五边形为例〕分法一:在五边形ABCDE 内任取一点O ,连结OA 、OB 、OC 、OD 、OE ,那么得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=〔5—2〕×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=〔n一2〕×180°.分法二:在边AB上取一点O,连OE、OD、OC,那么可以〔5-1〕个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为〔5—1〕×180°一180°=〔5—2〕×180°用同样的方法,也可以把n边形分成〔n一1〕个三角形,把不是n边形内角的∠AOB 舍去,即可得n边形的内角和为〔n一2〕×180°.三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:此题要求∠B与∠D的关系,由于∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。

数学人教版(2024)版七年级初一上册 2.2.2 有理数的除法 课时练 含答案03

数学人教版(2024)版七年级初一上册 2.2.2 有理数的除法 课时练 含答案03

第二章 有理数的运算2.2.2 有理数的除法1.下列计算正确的是( )A .﹣0.15÷3=﹣0.5B .0.2÷0.1=0.2C .12233¸=D .42277¸=2.1(1)(5)5æö-¸-´-ç÷èø的结果为( )A .-1B .1C .-25D .125-3.下列计算正确的是( )A .1991010¸=B .13132612´=C .3÷38═8D .23÷2=344.计算144æö¸-ç÷èø的结果等于( )A .16B .-16C .1D .-15.计算1(2)(4)2æö-´-¸-ç÷èø的结果为( )A .4B .-4C .16D .-166.计算:9115()515¸´-得( )A .95-B .1125-C .15D .11257.计算(﹣1)÷3×(﹣13)的结果是( )A .﹣1B .1C .19D .98.计算()11644¸-´的结果是( )A .1-B .1C .16D .16-9.下列等式成立的是( )A .3313773¸=´B .15252¸=´C .4912942¸=´D .551711117¸=¸10.下列计算正确的是( )A.0÷(﹣3)=﹣13B.(﹣37)÷(﹣335)=﹣5C.1÷(﹣19)=﹣9D.﹣8÷(﹣18)=1二、填空题11.计算:111(3)33æö-¸-´-=ç÷èø.12.从3-,2-,1-,4,5中取3个不同的数相乘.可得到的最大乘积为a,最小乘积为b,则()a b--¸=.13.零乘以都得零;零除以都得零.14.计算:-123÷(-0.2)=15.用“>”“<”或“=”填空:(1)111345æöæöæö-¸-¸-ç÷ç÷ç÷èøèøèø0;(2)111234æöæö-¸¸-ç÷ç÷èøèø0;(3)0(5)(7)¸-¸-0.16.计算11(5)555æö´-¸-´ç÷èø的结果为.17.133-¸=.18.计算:35×(25-)÷(﹣5)=.19.计算:﹣0.12583¸=.20.计算()()1248-¸-´,结果是.三、解答题21.计算:(1)()369-¸;(2)123255æöæö-¸-ç÷ç÷èøèø.22.计算:(1)5125(5)7æö-¸-ç÷èø;(2)7211(4) 9353æö-¸--´-ç÷èø.23.计算:(1)()00.12¸-(2)1(0.5)()4-¸-(3)1( 1.25)4-¸(4)4(12)7¸-(5)()()()37879-¸-¸-(6)5(0.75)(0.3)4-¸¸-(7)96( 3.2)5-¸(8)9() 2.514-¸24.计算:(1)1.25÷(﹣0.5)÷(﹣212)×1(2)(﹣81)÷(+314)×(﹣49)÷(﹣1113)25.计算:(1)()()486+¸+;(2)()()6.55-¸-;(3)()42¸-;(4)()01000¸-;(5)1548æö-¸ç÷èø;(6)213532æö-¸ç÷èø.参考答案1.D 2.D 3.C 4.B 5.D 6.B 7.C 8.A 9.A 10.C 11.427-12.12-13.任何数 任何非零的数14.25315.< > =16.2517.9-18.14519.364-20.11621.(1)解:(36)9(369)4-¸=-¸=-;(2)解:12312542552535æöæöæöæö-¸-=-´-=ç÷ç÷ç÷ç÷èøèøèøèø.22.解:(1)5125(5)7æö-¸-ç÷èø5112575æö=+´ç÷èø151125575=´+´1257=+1257=;(2)原式71034915153æö=-¸-+ç÷èø7749153=-¸+7154973=-´+5433=-+13=-.23.(1)解:()00.012¸-=.(2)解:11(0.5)()4242-¸-=´=.(3)解:15( 1.25)4544-¸=-´=-.(4)解:4411(12)771221¸-=-´=-.(5)解:()()()1137837879679-¸=--´´-=-¸.(6)解:53410(0.75)(0.3)24453-¸¸-=´´=.(7)解:961651( 3.2)55966-¸=-´=-.(8)解:9929( 2.51414535-¸=-´=-.24.(1)解:1.25÷(﹣0.5)÷(﹣212)×1=54÷(﹣12)÷(﹣52)×1=54×(﹣2)×(﹣25)×1=1;(2)解:(﹣81)÷(+314)×(﹣49)÷(﹣1113)=(﹣81)÷(+134)×(﹣49)÷(﹣1413)=(﹣81)×413×(﹣49)×(﹣1314)=2 107 -.25.解:(1)原式4868=¸=;(2)原式 6.55 1.3=¸=;(3)原式422=-¸=-;(4)原式0=;(5)原式1548=-¸,1845=-´,25=-;(6)原式111132=-¸,112311=-´,23=-.。

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。

学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。

本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。

二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。

因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。

同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。

三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。

2.能够正确进行有理数的除法运算。

3.培养学生的运算能力,提高学生解决问题的能力。

四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。

2.教学难点:负数除法运算的理解,以及运算过程的准确性。

五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。

同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。

六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。

2.练习题,包括不同类型的有理数除法题目。

3.教学黑板,用于板书关键知识点和运算过程。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。

例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。

2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。

让学生初步了解有理数除法的基本概念。

3.操练(10分钟)教师提出练习题目,让学生独立完成。

例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。

教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。

《有理数的除法》》 教案(高效课堂)2022年人教版数学精品

《有理数的除法》》 教案(高效课堂)2022年人教版数学精品

有理数除法课型:新授课【教学习目标】一、知识与技能掌握有理数除法法那么,会进行有理数的除法运算以及分数的化简.二、过程与方法通过学习有理数除法法那么,体会转化思想,会将乘除混合运算统一为乘法运算.三、情感态度与价值观培养学生勇于探索积极思考的良好学习习惯.【教学方法】讲授法、谈话法、讨论法。

【教学重点】正确应用法那么进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法那么【课前准备】教师准备教学用课件。

【教学过程】二、新授引入负数后,如何计算有理数的除法呢?例如8÷〔-4〕.根据除法意义,这就是要求一个数,使它与-4相乘得8.因为〔-2〕×〔-4〕=8所以 8÷〔-4〕=-2 ①另外,我们知道,8×〔-14〕=-2 ②由①、②得 8÷〔-4〕=8×〔-14〕③③式说明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,•等于乘以-4的倒数-14.探索:换其他数的除法进行类似讨论,是否仍有除以a〔a≠0〕可以转化为乘以1a呢?[例如〔-10〕÷〔-4〕]从而得出有理数除法法那么:除以一个不等于0的数,等于乘以这个数的倒数.这个法那么也可以表示成:a÷b=a·1b〔b≠0〕,其中a、b表示任意有理数〔b≠0〕例如:两数相除的商仍有符号和绝对值两局部组成,由于除法可转化为乘法,因此商的符号确定与有理数乘法类似,你能否得到与有理数乘法法那么类似的除法法那么吗?两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.这是有理数除法法那么的另一种说法,具体采用哪一种方法,灵活选用.例5:计算:〔1〕〔-36〕÷9;〔2〕〔-1225〕÷〔-35〕.分析:〔1〕题,36能被9整除,可以用方法二,直接除;〔2〕题是分数除法,•可转化为乘法.解:〔1〕〔-36〕÷9=-〔36÷9〕=-4〔先确定符号,再求绝对值〕;〔2〕〔-1225〕÷〔-35〕=〔-1225〕×〔-53〕=45.例6:化简以下分数:〔1〕123-;〔2〕4512--.分析:分数可以理解为除法,所以要按除法法那么进行,可以直接除,也可以转化为乘法,利用乘法的运算性质简化分数.解:〔1〕123-=〔-12〕÷3=-4;〔2〕4512--=〔-45〕÷〔-12〕=〔-45〕×〔-112〕=154.例7:计算:〔1〕〔-12557〕÷÷58×〔-14〕.分析:〔1〕题是分数除法,应转化为乘法,由于12557化为假分数,计算量大,可以把12557写成125+57后用分配律.〔2〕题是乘除混合运算,应将它统一为乘法以便约分.解:〔1〕〔-12557〕÷〔-5〕=12557÷5 〔先确定符号〕=〔125+57〕×15〔除转化为乘,同时将12557写成125+57〕=125×15+57×15〔运用分配律〕=25+17=2517÷58×〔-14〕=52×85×14=1遇到乘除混合运算时,可先确定结果的符号,再将它统一为乘法,另外,既有小数,也有分数时,通常把小数化为分数,以便约分.三、随堂练习课本第36页练习四、课堂小结本节课学习了有理数的除法法那么,有理数的除法有两种方法.一是根据“除以一个数,等于乘以这个数的倒数〞,转化为乘法,按乘法法那么进行.二是根据“两数相除,同号得正,异号得负,并把绝对值相除.一般能整除时用第二种方法.乘除混合运算,先统一为乘法,再按几个不等于0的数相乘的法那么计算.五、作业布置课本第38页习题1.4第4、6、7〔4〕~〔8〕.六、板书设计:有理数的除法除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.七、课后反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b a a b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3.D CA BD CABDC A B1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCABD CAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算.EDCABP2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 六、答案:四、〔1〕2x 〔2〕b a ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

2022人教版数学《有理数的除法》配套教案(精选)

2022人教版数学《有理数的除法》配套教案(精选)

8有理数的除法【知识与技能】理解有理数除法的法则,会进行有理数的除法运算,会求有理数的倒数.【过程与方法】经历探索有理数除法法则的过程,发展学生观察、归纳、猜想、验证等能力.【情感态度】结合本课教学特点,教育学生热爱生活、热爱学习,使学生认识到通过观察、归纳、推断可以获得数学猜想,激发学生学习兴趣.【教学重点】理解有理数除法的法则,会进行有理数的除法运算.【教学难点】根据不同的情况选取适当的计算法则求商.一、情境导入,初步认识除法与乘法是互逆运算,在小学我们就认识到除法与乘法相互转化可以简化运算,那么在有理数范围内,又怎样将除法转化成乘法?有理数的除法可以怎样进行计算呢?(-12)÷(-3)=?由(-3)×4=-12,你能得出结果吗?【教学说明】学生已经知道除法与乘法的互逆关系,很容易得出正确的结果,使学生初步认识有理数的除法.二、思考探究,获取新知1.有理数除法法则(直接相除)问题1观察下面的算式及计算结果,你有什么发现?(-18)÷6= ,(-27)÷(-9)= ,0÷(-2)=.【教学说明】学生通过计算、观察、分析,与同伴交流,归纳有理数除法的计算法则.【归纳结论】两个有理数相除,同号得正,异号得负,并把绝对值相除.0除以任何非0的数都得0.注意:0不能作除数.问题2计算:【教学说明】学生通过计算、交流,进一步掌握有理数除法法则.【归纳结论】有理数除法与有理数乘法的计算步骤类似:先确定商的符号,再把绝对值相除.3.有理数除法的第二个法则(化除为乘)问题3比较下列各组数的计算结果,你能得到什么结论?【教学说明】学生通过计算,很容易发现每题中两个式子的结果是相等,教师引导归纳,加以规范,得出第二个计算法则.【归纳结论】除以一个数等于乘这个数的倒数.问题4计算:【教学说明】通过计算、交流,熟练掌握有理数除法的第二个法则.能根据不同的情况选取适当的计算法则进行有理数除法的运算.【归纳结论】有理数的除法法则有两个,一个是直接相除的法则,一个是化除为乘的法则,第二个法则适合于小数、分数的除法,对于整数的除数,能整除时用第一个,不能整除时用第二个.三、运用新知,深化理解5.已知|a|=8,|b|=2,且a+b<0,求(a-b)÷ab的值.6.根据实验测定,高度每增加1km,气温大约下降6℃,某登山队员攀登某山峰的途中发回信息,报告他们所在高度的气温是-15℃,测得当时地面气温是3℃.请你确定登山运动员所在位置的高度.【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数除法运算的掌握情况,为后面混合运算的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.3.(1)-14(2)-3(3)3(4)306.[3-(-15)]÷6×1=3(km)四、师生互动,课堂小结1.师生共同回顾有理数除法法则.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数除法法则的理解与运用,会选择适当的法则进行有理数除法的运算.【板书设计】1.布置作业:从教材“”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究有理数的除法法则,到运用除法法则进行计算,培养学生动手,动脑习惯,提高了学生的运算能力.第1课时等腰三角形的性质【知识与技能】1.理解掌握等腰三角形的性质.2.运用等腰三角形性质进行证明和计算.、发展形象思维.【过程与方法】、观察、证明等腰三角形的性质,发展学生推理能力.2.通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力.【情感态度】引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验.【教学重点】等腰三角形的性质及应用.【教学难点】等腰三角形的证明.一、情境导入,初步认识问题 1 让学生根据自己的理解,做一个等腰三角形.要求学生独立思考,动手做图后,再互相交流评价.可按下列方法做出:作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形.问题2 老师拿出事先准备好的长方形纸片,按下图方式折叠剪裁.观察并讨论:△ABC有什么特点?教师指导,并介绍等腰三角形的相关概念,及等腰三角形是轴对称图形.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师依据学生讨论发言的情况,归纳等腰三角形的性质:①∠B=∠C→两个底角相等.②BD=CD→AD为底边BC上的中线.③∠BAD=∠CAD→AD为顶角∠BAC的平分线.∠ADB=∠ADC=90°→AD为底边BC上的高.指导学生用语言叙述上述性质.性质1等腰三角形的两个底角相等(简写成:“等边对等角”).性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”).教师指导对等腰三角形性质的证明.1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.在引导学生分析思路时强调:∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形.(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等.“三线合一”的性质.【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验.例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°于是在△ABC中,有∠A=36°,∠ABC=∠C=72°.【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数.要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题.三、运用新知,深化理解第1组练习:1.如图,在下列等腰三角形中,分别求出它们的底角的度数.2.如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段.3.如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.第2组练习:△ABC是轴对称图形,则它一定是( )°,它的顶角的度数是( )A.80°B.20°°和20°°或50°2cm,并且它的周长为16cm.求这个等腰三角形的边长.4.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB 交AC于E.求证:AE=CE.【教学说明】等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用.【答案】第1组练习答案:1.(1)72°;(2)30°2.∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD3.∠B=77°,∠°第2组练习答案:3.设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.∴等腰三角形的三边长为4cm,6cm和6cm.4.延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC.∴∠P=∠∵DE∥AP,∴∠CDE=∠P.∴∠CDE=∠ACD,∴DE=EC.同理可证:AE=DE.∴AE=CE.四、师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用.请学生表述性质,提醒每个学生要灵活应用它们.学生间可交流体会与收获.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时应把重点放在逐步展示知识的形成过程上,先让学生通过剪纸认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证.由特殊到一般、由感性上升到理性,逻辑演绎,层层展开,步步深入.第1课时等腰三角形的性质【知识与技能】1.理解掌握等腰三角形的性质.2.运用等腰三角形性质进行证明和计算.、发展形象思维.【过程与方法】、观察、证明等腰三角形的性质,发展学生推理能力.2.通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力.【情感态度】引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验.【教学重点】等腰三角形的性质及应用.【教学难点】等腰三角形的证明.一、情境导入,初步认识问题 1 让学生根据自己的理解,做一个等腰三角形.要求学生独立思考,动手做图后,再互相交流评价.可按下列方法做出:作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形.问题2 老师拿出事先准备好的长方形纸片,按下图方式折叠剪裁.观察并讨论:△ABC有什么特点?教师指导,并介绍等腰三角形的相关概念,及等腰三角形是轴对称图形.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师依据学生讨论发言的情况,归纳等腰三角形的性质:①∠B=∠C→两个底角相等.②BD=CD→AD为底边BC上的中线.③∠BAD=∠CAD→AD为顶角∠BAC的平分线.∠ADB=∠ADC=90°→AD为底边BC上的高.指导学生用语言叙述上述性质.性质1等腰三角形的两个底角相等(简写成:“等边对等角”).性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”).教师指导对等腰三角形性质的证明.1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.在引导学生分析思路时强调:∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形.(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等.“三线合一”的性质.【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验.例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°于是在△ABC中,有∠A=36°,∠ABC=∠C=72°.【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数.要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题.三、运用新知,深化理解第1组练习:1.如图,在下列等腰三角形中,分别求出它们的底角的度数.2.如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段.3.如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.第2组练习:△ABC是轴对称图形,则它一定是( )°,它的顶角的度数是( )A.80°B.20°°和20°°或50°2cm,并且它的周长为16cm.求这个等腰三角形的边长.4.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.【教学说明】等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用.【答案】第1组练习答案:1.(1)72°;(2)30°2.∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD3.∠B=77°,∠°第2组练习答案:3.设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.∴等腰三角形的三边长为4cm,6cm和6cm.4.延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC.∴∠P=∠∵DE∥AP,∴∠CDE=∠P.∴∠CDE=∠ACD,∴DE=EC.同理可证:AE=DE.∴AE=CE.四、师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用.请学生表述性质,提醒每个学生要灵活应用它们.学生间可交流体会与收获.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时应把重点放在逐步展示知识的形成过程上,先让学生通过剪纸认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证.由特殊到一般、由感性上升到理性,逻辑演绎,层层展开,步步深入.。

人教版七年级数学上册优质课导学案《有理数的除法》

人教版七年级数学上册优质课导学案《有理数的除法》

有理数的除法一,预习目标1 理解有理数除法法则,会进行有理数除非运算。

2 会求有理数的倒数。

重点、难点:重点:有理数除法的法则和倒数的概念,难点:有理数除法法则的理解二,自主学习1,我们知道12÷3可以理解为12=3×(),因为3×4=12,所以,12÷3=4,因此求(-3.6)÷4也可以按照除法和乘法是互为逆运算来考虑,你试试看。

解:因为:4×()=-3.6,所以(-3.6)÷4=____.再试试看:计算:(-6)÷3, 6÷(-3),(-6)÷(-3),0÷(-6)解:因为3×()=-6,所以,(-6)÷3=____,因为(-3)×()=6,所以,6÷(-3)=___因为:(-3)×()=(-6),所以(-6)÷(-3)=____,因为(-6)×()=0,所以,,0÷(-6)=___.2 做一做计算:(1)(-24)÷4;(2)(-18)÷(-9)(3) 50÷(-5)(4) 0÷(-8.8)3,同号两数相除得___,异号两数相除得___,并把它们的绝对值___,互为倒数的概念(1)在非负数的范围内,你知道什么叫互为倒数吗?举例说明。

(如果两个数的乘积等于__,那么这两个数叫_____.如5×15=__,所以5与15____.又如__×__=1,所以,_与__互为倒数)(2)类似的,(-5)(-15)=___,所以(-5)与-15也是互为倒数,现在你知道什么叫互为倒数了吗?一般地,两个数的乘积等于__,那么其中一个数叫另一个数的___,也称他们________.(3)填空:-10的倒数是___,-1.5的倒数是___,223的倒数是_____; ___是-23的倒数。

最新人教部编版初一七年级数学上册《有理数的除法》导学案

最新人教部编版初一七年级数学上册《有理数的除法》导学案

1.4.2 有理数的除法第1课时有理数的除法一、新课导入1.课题导入:我们在前面学习有理数的减法时,是借助于逆运算把它转化为加法来进行的.大家知道除法的逆运算是乘法,那么有理数的除法运算是不是也是借助于逆运算转化为乘法来进行的呢?这节课我们就来学习有理数的除法.2.三维目标:(1)知识与技能①了解有理数除法的定义.②经历有理数除法法则的导出及运用过程,会进行有理数的除法运算.(2)过程与方法①通过有理数除法法则的导出及运用,让学生体会转化思想.②培养学生运用数学思想指导数学思维活动的能力.(3)情感态度在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.3.学习重、难点:重点:对有理数除法法则的推导过程的理解和归纳.难点:知道有理数除法法则的两种表达形式及合理运用.二、分层学习1.自学指导:(1)自学内容:教材第34页例5前的内容.(2)自学时间:5分钟.(3)自学要求:认真看课本中两种运算过程和结果,并依照此法换其它数来进行尝试,不懂的地方小组交流完成.(4)自学参考提纲:①观察教材中8÷(-4)=8×(-14)是怎样得来的?用相同的方法计算:(-6)÷13,(-10)÷(-5)能得出什么样的等式?(-6)÷3=(-6)×13,(-10)÷(-5)=(-10)×(-15).②通过上面的观察及练习的结果可知:除以一个不为0的数,等于乘这个数的倒数,把它写成数学式子为:a÷b=a×1b(b≠0).③既然除法运算可以转化为乘法运算,那么联系乘法运算的法则又可得到如下除法运算法则:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入学生之中了解学生能否认识法则的推导过程和法则的两种表达形式.②差异指导:对个别学有困难的学生进行指导.(2)生助生:学生通过交流相互帮助解决一些自学中的疑难问题.4.强化:有理数除法法则(两种表述).1.自学指导:(1)自学内容:教材第34页例5.(2)自学时间:3分钟.(3)自学要求:认真看例5的计算过程,比较两题运用除法法则的方法有什么不同之处.(4)自学参考提纲:①由例题(1)的计算过程可以看出:当被除数、除数都是整数且能整除时,选择方法:先确定符号,再做绝对值的除法.②由例题(2)的计算过程可以看出:当除数是分数时,一般选择方法:把除法转化为乘法进行计算.③计算:-72÷(-6) 415÷(-58)12 -32752.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生对例题的计算方法是否掌握,自学中存在哪些问题.②差异指导:从分析算式中的数的特点来选择合理算法进行针对性指导.(2)生助生:学生通过交流相互帮助解决一些自学中的疑难问题.4.强化:(1)交流解题经验:有理数除法法则的两种表达形式在计算中如何灵活运用.(2)在做除法运算时:先定符号,再算绝对值.若算式中有小数、带分数,一般情况下先化成真分数和假分数.(3)计算:①(-18)÷6②(-63)÷(-7)③1÷(-9)④0÷(-8)⑤(-6.5)÷0.13⑥(-65)÷(-25)解:-3 9 -190 -50 3三、评价1.学生的自我评价(围绕三维目标):学生代表谈本节课学习的得与失.2.教师对学生的评价:(1)表现性评价:对本节课中自主学习、合作交流情况进行针对性总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节知识是在学生已有有理数乘法知识的基础上,通过让学生经历从具体情境中抽象出法则的过程,使他们发现其中的规律,掌握必要的技能,于学习中发展数感和符号感.教学时遵循启发式教学原则,注意创设问题情境,及时点拨,通过学生亲自演算和教师的引导,达到准确认识有理数除法法则的目的.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(10分)已知(-2)×(-3)=6,则6÷(-2)=-3,6÷(-3)=-2.2.(10分)下列运算结果等于1的是(D)A.(-3)+(-3)B.(-3)-(-3)C.(-3)×(-3)D.(-3)÷(-3)3.(40分)计算.(1)-91÷13 (2)-56÷(-14) (3)16÷(-3) (4)(-48)÷(-16)(5)45÷(-1) (6)-0.25÷38(7)223÷(-118) (8)(-1)÷(-323)解:(1)-7;(2)4;(3)-163;(4)3;(5)-45;(6)-23;(7)-64 27;(8)311.二、综合应用(每题15分,共30分)4.(30分)在下列算式的括号内填上适当的数:(1)(-4)÷( 12)=-8(2)(1)÷( -13)=-3(3)(-14)÷( -14)=56(4)-78÷( 78)=-1(5)(+72.83)÷( -1100)=-7283(6)( 0 )÷(-7135)=0三、拓展延伸(20分)5.(10分)用“>”“<”或“=”填空.(1)如果a<0,b>0,那么ab<0,a<0;b(2)如果a>0,b<0,那么ab<0,a<0;b(3)如果a<0,b<0,那么ab>0,a>0;b=0.(4)如果a=0,b≠0,那么ab=0,ab良好的学习态度能够更好的提高学习能力。

《有理数的除法》教案(精选9篇)

《有理数的除法》教案(精选9篇)

《有理数的除法》教案《有理数的除法》教案(精选9篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编整理的《有理数的除法》教案,欢迎大家分享。

《有理数的除法》教案篇1学习目标1. 理解除法的意义,理解除法是乘法的逆运算,理解倒数的意义,掌握有理数的除法法则.2. 熟练地进行有理数的除法运算;3. 借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.重点有理数的除法法则难点理解商的符号及其绝对值与被除数和除数的关系教学过程一、自主学习(一)、自学课文(二)、导学练习1. 小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?2.请找出下列有理数的倒数-4 3 -8 - -1 -3.53.比较大小:8(-4)_______8 (-15)3_______(-15)(-1 )(-2) (-1 )(- )计算:(1)(-15)(-3)= (2)(-12)(- )=(3)(-8)(- )= (4)0(- )=通过比较、计算,你能归纳出有理数的除法法则吗?有理数的除法法则:(或换一种表达方法为):用字母表示除法法则:4.课本第35页练习题(三)自学疑难摘要:组长检查等级:组长签名:二、合作探究例1 计算:(1)(-18)6 (2) (- )(3) (4)-3.5 (- )注意:乘除混合运算该怎么做呢?例2化简下列分数:(1) (2)请思考:商的符号及绝对值同被除数和除数有什么关系?三、展示提升1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

《有理数的除法》word教案 (公开课)2022年北师大版 (8)

《有理数的除法》word教案 (公开课)2022年北师大版 (8)

2.8 有理数的除法教案1.经历探索发现有理数除法法那么的过程,开展观察、归纳、猜测、验证、表达能力.2.学会进行有理数的除法运算;掌握多个数相乘;商的符号判定方法.3.会求有理数的倒数,会用“除以一个数等于乘以它的倒数〞法那么进行有理数的除法运算,提高灵活解题的能力.教学重点与难点:重点:是经历探索发现有理数除法法那么的过程,学会进行有理数的除法运算.难点:是灵活进行有理数的除法运算,提高灵活解题的能力.教法与学法指导:教法:采用“自主探究、合作交流、讲练相结合〞的教学方法,以“问题的提出和问题的解决〞为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题,并解决问题.学法:通过问题探索新知→归纳除法法那么→稳固练习.课前准备:多媒体课件.教学过程:一、创设情境,导入新课师:〔多媒体展示〕,冬天某周上午8时的气温记录如下:星期一二三四五六日气温-3℃-2℃-3℃0℃-2℃-1℃-3℃求:这周上午8时的平均气温是多少?生:计算:[〔-3〕+〔-2〕+〔-3〕+0+〔-2〕+〔-1〕+〔-3〕]÷7 =〔-14〕÷7.师: 如何计算:〔-14〕÷7 呢?今天我们就来揭示它的计算方法.〔板书:2.8有理数的除法〕设计意图:从实际生活引入,表达数学知识源于生活的特点.用多媒体展示,引导学生通过列式计算,得出〔-14〕÷7,从而让学生产生求知欲望.实际效果:这一环节是让学生结合生活实例列出有理数除法式子,体验数学知识的现实意义,并在生活实际中体会数学知识的必要性.二、特例归纳,猜测新知师:那么〔-14〕÷7 = ?〔在老师的引导下思考----除法是乘法的逆运算,所以首先思考:什么乘以7等于-14?〕生:因为〔-2〕×7=-14,所以:〔-14〕÷7=-2.师生共同总结:先将除法转化为乘法,再进行乘法运算.师:在完成引例的根底上,请同学们想一想,以下各式中两数相除的商是多少?你有什么发现?并用乘法验算.〔多媒体展示“想一想〞〕⑴〔-18〕÷6=;⑵5÷〔15〕= ;⑶〔-27〕÷〔-9〕= ;⑷0÷〔-2〕= .师:观察以上算式,看看商的符号及商的绝对值与被除数和除数有何关系?如果有请大家从特例中归纳猜测出一般规律,并用自己的语言表达规律.生:充分的讨论、分析,并转化成乘法计算后得出结果.师:适时引导学生有条理归纳猜测法那么.〔板书〕两个有理数相除,同号得正,异号得负,并把绝对值相除.0除以任何非0的数都得0师:提示学生注意:0不能做除数.设计意图:本环节是通过几个特例,让学生明确除法是乘法的逆运算在有理数范围内也适用,为学生归纳猜测得出有理数的除法法那么作好充分的铺垫工作.在这里,除法的运算法那么要由学生归纳.实际效果:将上述探究的结论运用于计算,并进行检验,以初步感知它的正确性.同时这样能有效地激发学生学习的积极性和主动性,满足学生的表现欲和探究欲.这里之所以采用小组合作学习是因为对法那么的探究是比拟难的内容,可以借助小组成员的集体智慧来解决,从而到达降低难度的目的.三、例题练习,稳固新知例1 计算:⑴〔-15〕÷〔-3〕;⑵〔-12〕÷〔-14〕;⑶〔-0.75〕÷0.25 ;⑷〔-12〕÷〔-112〕÷〔-100〕.〔引导学生讨论分析:直接利用法那么进行计算.首先确定商的符号,然后再把绝对值相除.(4)小题要按顺序从左到右进行计算.另外注意:负数在有理数运算中一定要加上括号.〕〔四名学生生板演〕解:(1)(-15)÷(-3)=+(15÷3)=5 (2)(-12)÷(-14)=+(12÷14)=48 (3)(-0.75)÷0.25=-(0.75÷0.25)=-3 (4)(-12)÷(-112)÷(-100) =+(12÷112)÷(-100) =144÷(-100) =-(144÷100) =-1.44〔学生板演后,师生共同讨论交流,对出现的问题给予纠正,并要求学生注意板书标准,对每一步的依据,要做到心中有数.〕牛刀小试:〔投影片展示〕 1.计算:⑴〔-64〕÷4; ⑵〔-35〕÷〔-3〕;⑶ 0÷〔-16〕; ⑷〔-15〕÷〔-15〕÷〔-2〕。

有理数的除法导学案 北师大版

有理数的除法导学案 北师大版

2.9有理数的除法导学目标1.使学生理解有理数倒数的意义;2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;3.培养学生观察、归纳、概括及运算能力.导学重点有理数除法法则.导学难点(1)商的符号的确定.(2)0不能作除数的理解.导学过程温故:1.叙述有理数乘法法则.2.叙述有理数乘法的运算律.3.计算:(1)3×(-2); (2)-3×5; (3)(-2)×(-5).链接:因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;同样-3×5=-15,解简易方程-3x=-15,得x=5.在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.知新:1.有埋数的倒数定义。

0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)提问:怎样求一个数的倒数?答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数再求倒数.2.有理数除法法则两数相除,同号得,异号得,并把绝对值.0除以任何一个不为0的数,都得.3. 利用有理数倒数的概念,我们进一步学习有理数除法.因为(-2)×(-4)=8,所以8÷(-4)=-2.除法的法则也可以这样说:除以一个数等于乘以.0不能作除数.4.几个非0的有理数相除,商的符号怎样确定?几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如:(-12)÷(-2)÷(-3)——三个负数相乘取负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数相乘取正=+(12÷2÷3)=2练一练:1、 计算:(1)—42÷(—6); (2)25.1)1212(÷- 说明: 不能整除的情况下,特别当除数是分数时,应将除法化为乘法来做.2、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1注意:“-32的倒数是-23”,不能用“=”连接-32和-23,因为它们是不相等的,所以一般来说互为相反数的两个数不能用“=”连接,除了-1和1这两个数和它们的倒数外.3、计算:(-5)÷(-7)÷(-15)分析:三个数连除,先确定商的符号——利用负数的个数;再将除法变为乘法——除以一个数等于乘以这个数的倒数;最后利用乘法法则进行运算.解:(-5)÷(-7)÷(-15)4、计算:72×(-8)÷(-12)点拨:乘除法是同级运算,它们进行混合时,可从左至右逐步计算,注意符号.还可以将式子中的除法变为乘法,直接进行乘法运算.注意:除法没有结合律,即“a ÷b ÷c =a ÷(b ÷c )”是错误的.解法一:解法二:拓展:一、填空题:1、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 有理数的除法
一、学习目标
1、经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程;
2、掌握有理数的除法法则,理解零不能作除数;
3、会运用除法法则求两个有理数的商,会进行简单的乘除混合运算。

二、重、难点
学习重点:除法法则和乘除的混合运算。

学习难点:根据除法是乘法的逆运算,归纳出除法法则需要较强的思维能力,不
容易理解。

三、学法指导
由有理数乘法法则延伸至除法法则。

四、导学过程
(一)自主预习
1、通过预习,你获得了哪些知识与技能?
2、除法与乘法之间有什么关系?你还存在哪些疑惑和困难?
3、通过预习获得的知识与技能,你能完成以下习题吗?
(1)()()48-÷- (2)()08.02.3÷- (3)3261÷⎪⎭⎫ ⎝⎛- (4)⎪⎭
⎫ ⎝⎛-÷8370
(二)合作探究
计算:
(1)()57723⨯-÷-
(2)⎪⎭⎫ ⎝⎛-⨯÷23875.3 (3)15÷7×7
3
(4)(
1276521-+ )÷121 (5)6
5÷(31-21) (6)()6.053322531-÷⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝
⎛+÷⎪⎭⎫ ⎝⎛-
(7)⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-452143211431
(三)自主小结
1、有理数除法法则: ;
2、有理数除法的步骤 ;
3、两个有理数相除有哪些不同的方法 ;这些方法分别使用于哪些情况 。

4、我们在进行除法运算时应该注意什么? 。

(四)当堂检测
1、两个有理数的商是正数,这两个数一定是( )
A 、都是负数
B 、都是正数
C 、至少一个是正数
D 、两数同号
2、两个不为0的数相除,如果交换被除数和除数的位置,它们的商不变,那么
这两个数 ( )
A 、相等
B 、相等或互为相反数
C 、互为倒数
D 、互为相反数
3、如果0<+b a ,0>b
a ,那么下列结论中正确的是( ) A 、0,0>>
b a B 、0,0<<b a C 、0,0<>b a D 、0,0><b a
4、计算:
(1)()()1240-÷- (2)()⎪⎭
⎫ ⎝⎛+÷-153360
5、计算:⎪⎭
⎫ ⎝⎛-+-÷⎪⎭⎫ ⎝⎛-526110132301
6、如果6=m ,3=n ,且n m <,求()m n m ÷-的值。

参考答案:
1.D
2.B
3.B
4. 103,75
4
- 5. 1
10- 6. 1
3
22或。

相关文档
最新文档