金属自由电子理论

合集下载

固体物理-第三章 金属自由电子论讲解

固体物理-第三章 金属自由电子论讲解
N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:

第5章金属自由电子论

第5章金属自由电子论
Z(E)43 k3(2 2 V )33V 22 m 2 E 3/2
第5章金属自由电子论
5.2 量子自由电子论
于是自由电子的状态密度为:
3
g(E)d dE Z2V22m 2 2E1 2cE 1 2
可见自由电子的态密度g(E)乃是能量E的函数,显然g(E)~E 的关系曲线是抛物线的一支。g(E)
态数 ,电子态密度函数
kx
k与能量 E的关系:
kz
dK
ky
kx2ky 2kz22 m 2 , Ek22 m 2 E
第5章金属自由电子论
5.2 量子自由电子论
等k值面为球面,在零到k的范围内,K空间的体积为 4k 3 3
因为在K空间中每 2 3 的体积内有一个满足周期性边界的
V
k值,故从零到k的范围内,总的k的取值数目为:
室温下 1 mol 一价金属的比热为:
C vC vlC ve3R2 3R4.5R
实验表明:室温下,金属的比热接近3R,全部由晶格贡献。 金属中自由电子起着电和热的传导作用,却对比热几乎没 贡献。
第5章金属自由电子论
5.1 经典自由电子论
经典理论自由电子论无法解释这一现象。直到索末菲把量 子力学应用到自由电子系统,才得到圆满的解释。
L Y
5.2 量子自由电子论
于是电子能量可写为:
E 2 2m
k
2 x
k
2 y
k
2 z
2 2
2m L
2
nx2
n
2 y
nz2
可见,自由电子能量依赖 于一组量子数(nx,ny,nz),能量只能 是一系列分离的数值,这些分离的能量被称为能级。按照泡 利原理,每个电子能级允许容纳两个自旋相反的电子。

4.金属自由电子论基础

4.金属自由电子论基础

第四章金属自由电子论材料科学与程学院材料科学与工程学院凌涛内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.1经典自由电子论-特鲁德模型特鲁特(Drude)模型当金属原子凝聚在一起时,原子封闭壳层内的电子和原子核一起在金属中构成不可移动的离子实;原子封闭壳核起在金中构成移动的离实闭壳层外的电子会脱离原子而在金属中自由地运动。

这些电子构成自由电子气系统,可以用理想气体的运动学理论进行处理。

该模型有如下假设:(1)电子在没有发生碰撞时,电子与电子、电子与离子之()间的相互作用完全被忽略。

电子的能量只是动能。

4.1经典自由电子论-特鲁德模型(2)电子只与离子实发生弹性碰撞,电子与离子的碰撞过离实碰撞离碰撞程用平均自由时间τ和平均自由程l来描述。

τ表示一个电子与离子实相继作两次碰撞所间隔的平均时间;l是电子在平均两次相继碰撞之间的平均飞行距离。

(3)电子气是通过和离子实的碰撞达到热平衡的,碰撞前后电子速度毫无关联,运动方向是随机的,速度是和碰撞发生处的温度相适应的,其热平衡分布遵从波尔兹曼统计。

内容提纲1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.2量子自由电子论索末菲模型金属中自由电子的运动应服从量子力学规律和相应的能量分布规律。

价电子在金属内恒定势场中彼此独立地自由运动,只是在金属表面处被势垒反射。

求解电地自由运动只是在金属表面处被势垒反射子运动的薛定谔方程,得到电子所允许的波函数和能量分布状态。

量分布状态4.2量子自由电子论-电子的波函数周期性边界条件:假设在三维空间有无限多个三维限度都是L 的势井相连接在各个势井的相应位置上电子波函数相等的势井相连接,在各个势井的相应位置上,电子波函数相等。

总的边界条件为:(0,,)(,,)0y z L y z ψψ=⎫⎪(,0,)(,,)(,,0)(,,)x z x L z x y x y L ψψψψ=⎬⎪=⎭空间电子态空间电子态:由波矢K 所代表的自由电子可能的空间运动状态。

(完整版)第四章金属自由电子理论

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k 空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222η=所以 mkdk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmL E 22)(ηπρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L ηπ=240FmE L ηπ由此可得: 222208mL N E Fηπ= (7)(3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅ηπ=230)(232F E m N L ηπ=022223124F E mL N =ηπ 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E +=η。

第五章:金属的电子理论

第五章:金属的电子理论

dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2

金属自由电子理论

金属自由电子理论

金属自由电子理论文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]第四章金属自由电子理论1.金属自由电子论作了哪些假设得到了哪些结果解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关解:金属自由电子论在k空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么它与哪些因素有关解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求:(1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ (1)考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 (2)又由于 mk E 222 =所以mkdk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmLE 22)(πρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L π=240FmE L π由此可得:222208mLN E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅π=230)(232F E m N L π=022223124F E mLN = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。

高二物理竞赛金属自由电子论课件

高二物理竞赛金属自由电子论课件
dN f E N EdE
f E
1
—— Fermi-Dirac分布函数
exp
E
kBT
+
1
:电子的化学势
物理意义:在体积不变的情况下,系统增加一个电子所
需的自由能
当E=时,f()=1/2 ,代表填充概率为1/2的能态
当E- >几个kBT时,exp{(E-)/ kBT} >>1 ,
f
E
exp
k
V
k :电子波矢
电子的能量: E k 2k 2 2m
2. 周期性边界条件
设N是金属沿基矢 a(=1,2,3)方向的原胞数,
金属中原胞的总数: N= N1 N2 N3
周期性边界条件:k
r
k
r
a
, =1, 2, 3
1 exp ik r
V
1 V
exp
i k
r
a
exp ik a 1
成功之处:金属导电率和热导率κ关系: Wiedemann-Franz定律: κ / = LT ,L:洛伦兹数( T>>θD)
缺点:1、霍尔系数“反常”现象, 2、电子平均自由程 λexp>> λth, 3. Xe~1/T,其实无关, 4、电子比热:Cexp = Cth/100,5、材料的巨大差别。
第五章 金属自由电子论
物理现象 或实验结果
决定因素
修 改
物理模型
理论解释
验证
结果与预言
第一阶段、自由电子学说-德鲁特和洛伦兹 第二阶段、量子自由电子学说-F-S电子理论 第三阶段、能带理论-单电子近似求解电子能谱的理论
金属电子认识历史
M-B分布
F-D分布

金属自由电子经典理论

金属自由电子经典理论

金属自由电子经典理论
• 金属中的正离子形成的电场是均匀的,价电子不被原子所 束缚,可以在整个金属中自由地运动,形成自由电子。这 些电子起着导电和导热的作用,他们的行为像理想气体一 样,故被称作自由电子气体,其运动规律遵循经典力学气 体分子的运动定律。 • 在没有外电场作用时,金属中的自由电子沿着各方向运动 的几率相同,故不产生电流。当施加外电场后,自由电子 获得附加速度,于是便沿外电场方向发生定向迁移,从而 形成电流。自由电子在定向迁移过程中,因不断与正离子 发生碰撞,使电子的迁移受阻,因而产生了电阻。
金属自由电子经典理论的产生背景
18世纪末: 1、人们已熟悉金属导电和导热特性,但是还不具备解释这 些传导电子是如何形成和运动的理论基础。 2、1897年汤姆逊发现金属中存在电子(e/m测定)。
3、分子运动论处理理想气体十分成功。
金属自由电子经典理论的提出
•1900年,特鲁德首先将金属中的价电子与理想气体类比,提 出了金属电子气理论,即认为金属中存在有自由电子气体。 •1904年,洛伦兹将麦克斯韦-玻尔兹曼统计分布规律引入电 子气,据此就可用经典力学定律对金属自由电子气体模型作 出定量计算. •这样就构成了特鲁德-洛伦兹自由电子气理论,称为经典自 由电子理论.
金属中自由电子在电场中的运动
当金属中有电流时,每个自由电子都因受到电场力的作用而 加速,即在无规则的热运动上叠加一个定向运动。
自由电子在运动过程中频繁的与晶格碰撞,碰后电子向各个 方向运动的几率相等,因此可认为每个电子在相邻两次碰撞 间做初速度为零的匀加速直线运动。 大量自由电子的统计平均,就是以平均定向漂移速度逆着电 场线方向漂移。
电导率σ的推导
设导体内的恒定电场为 ,则电子的加速度为
v0 电子两次碰撞的时间间隔为t,上次碰撞后的初速度为

第四章金属自由电子理论

第四章金属自由电子理论

dE
之间时,
k
空间中,在半径为
k

k

dk的两球
面之间所含的状态数为:
dZ '

4k 2dk k

Vc 8 3
4k 2dk

1 2
(
2m 2
)
3
2
E
1 2
dE
考虑自旋的二重简并dZ 2dZ '
(E)
所以: ( E )

Vc 2 2
(
2m
)
3
2
E
1 2

1
CE 2
其中
C

及其缺陷。
1)由Drude模型导出了欧姆定律,并得到电导的定量表达式,在 解释碱金属的导电性上取得了完全的成功
但是,按Drude模型,碱土金属(二价)的自由电子密度n为碱金属 (一价)的两倍,由式(1-6),电导率σ也应高一倍。但实际上, 碱土金属的导电性不及碱金属,说明Drede模型的局限性。
1
3 维德曼一夫兰兹定律 Wiedemann-Franz Law
k
0 F

3n 2
3
由电子动量
k
0 F
mvF0
得绝对零度时的费米速度矢为: vF0

k
0 F
m
与费米能量对应的热运动温度称为费米温度,记为
所以绝对零度时的费米温度为:
TF0

EF0 kB
TF
.有: kBTF0

EF0
例如铜:铜是面心立方晶体,晶格常数 a 3.611010 m .
每个铜原子电离时放出一个自由电子,所以铜的电子浓度为:

金属自由电子气理论

金属自由电子气理论

金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。

)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

化学导电知识点总结高中

化学导电知识点总结高中

化学导电知识点总结高中一、金属导电的原理1. 自由电子理论:金属中存在大量自由电子,这些自由电子能够在金属中自由移动,从而形成电流。

2. 金属晶体结构:金属的晶体结构中存在大量的“电子海”,这些电子可以自由流动,形成电流。

二、金属导电性能的影响因素1. 金属晶体结构:晶体结构密度、晶体质量、晶格畸变等因素都会影响金属的导电性能。

2. 金属纯度:金属的纯度越高,晶体结构越完整,导电性能越好。

3. 温度:金属的导电性能随着温度的变化而有所改变,通常随着温度的升高,导电性能变差。

三、电解质溶液的导电原理1. 电解质溶液中的离子:在电解质溶液中,溶质会电离成为正负离子,这些离子在外加电场的作用下会发生迁移,形成电流。

2. 导电性能和浓度:电解质溶液的导电性能与其离子浓度直接相关,浓度越高,导电性能越好。

3. 温度:电解质溶液的导电性能也会受到温度的影响,通常情况下,温度越高,导电性能越好。

四、电解质固体的导电原理1. 固体电解质中的离子传导:固体电解质中的离子可以通过空穴的方式进行传导,这种传导方式能够形成电流。

2. 结构和导电性能:固体电解质的结构对其导电性能有着直接影响,通常情况下,离子传导路径越短,结构越完整,导电性能越好。

五、半导体导电性质1. 控制电导率:半导体材料的电导率可以通过控制其掺杂程度来实现,在n型掺杂和p型掺杂条件下,半导体的导电性质会有所不同。

2. 热激发和光激发:半导体在受到热激发或光激发的作用下,会产生电子和空穴对,从而形成电流。

六、导电材料的应用1. 电子器件:金属、半导体和导电聚合物等材料都被广泛应用于电子器件制造中。

2. 电解质溶液:电解质溶液被用于电池、电解质测定仪器等领域。

3. 固体电解质:固体电解质被应用于固体电池、传感器等领域。

综上所述,导电知识在化学中是一个很重要的知识点,金属、电解质溶液、固体电解质和半导体都是重要的导电材料,在我们的日常生活和工业生产中均有着广泛的应用。

固体物理学 自由电子论

固体物理学 自由电子论
自由电子费米气体 (金属自由电子论)
§1. 金属自由电子论的物理模型 1.Drude的金属自由电子论
Drude的经典理论将自由电子看 作是经典离子气体,服从波尔兹曼分 布(速度分布),与中性稀薄气体一样 去处理,认为电子之间无相互作用, 同时也不考虑原子实势场的作用,这 样一个简单的物理模型处理金属的许 多动力学问题是很成功的。
f ( T )D( )d N
0
当T《 TF时:
u
F
[1
2
12
(
kBT
F
)2
]
0(kB
T
F
)4
与处理点阵振动的热能相仿,由
电子气的轨道密度D(ε)可求出电子气
的内能,轨道密度定义为:
在能量ε附近,单位能量间隔中
的轨道数定义为轨道密度度,在dε能
量间隔中的轨道数为D(ε)dε,色散
关系为:
2 k 2
k2
2 2m
(k2x
k
2 y
kz2 )
这就是色散关系,能量随波矢的变化是抛物
线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数
ms
1 2
给定了 k 就确定了能级,k 代表同能级上
自旋相反的一对电子轨道。
在波矢空间自由电子的等能面是一个球面
εk
2 2m
此时 k(r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将 (r) eikr ei(k xxk y yk zz) k 代回薛定锷方程可求出能级:

金属自由电子理论

金属自由电子理论

金属自由电子理论Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】第四章金属自由电子理论1.金属自由电子论作了哪些假设得到了哪些结果解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关解:金属自由电子论在k空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么它与哪些因素有关解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求:(1)电子的状态密度;(2)电子的费米能级;(3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dE dk dk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk L dk dZ π=∆=k 2 (2)又由于 mk E 222 = 所以 mk dk dE 2 = (3)将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:Em LE 22)( πρ= …………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为: 11)(+=-T K E E B Fe E f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=00)(FE dE E N ρ =⎰0022FE dE E m L π=240F mE L π 由此可得: 222208mL N E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为: ⎰∞=00)()(1dE E E Ef N E ρ=dE Em L E N FE 22100⎰⋅ π=230)(232F E m N L π=022223124F E mL N = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。

金属中的自由电子模型

金属中的自由电子模型

金属中的自由电子模型在金属中,原子固定在晶格中,共享其外层电子形成金属键。

与共价键不同,金属键不是由两个原子共享电子形成的,而是由整个金属晶体共享所有电子形成的。

因此,金属中的电子是高度移动的,可以在整个晶体中自由移动。

这种高度移动的电子被称为自由电子。

自由电子模型为了更好地理解金属中的自由电子,我们可以使用自由电子模型来进行说明。

自由电子模型假设金属中的所有原子共享它们的外层电子,形成一个巨大的电子气体。

这个电子气体中的电子可以看作是独立的,它们可以在整个晶体中自由移动,没有受到单个原子的束缚。

这种自由运动的电子是金属的导电电子,可以在金属中形成电流。

自由电子模型的一个重要假设是,电子在金属中形成一个连续的能带。

这个能带可以看作是一系列接近的能级,电子可以在其中自由移动。

不同的金属有不同的能带结构,这决定了它们的导电性和其他电学和热学性质。

在自由电子模型中,金属晶体的离子核可以看作是一个均匀的正电荷背景,与电子相互作用形成电子-正离子相互作用。

这种相互作用决定了自由电子的运动和能带结构。

能带结构能带结构是自由电子模型的一个重要概念。

在一个金属晶体中,由于相邻的原子之间形成了化学键,形成了共享电子的状态。

在这种情况下,电子的能量不再被离子核所束缚,而是自由移动。

它们可以在一系列接近的能级上自由移动,形成了能带结构。

概念上,我们可以将能带结构看作单位晶体内的所有电子的哈密顿量,哈密顿量代表所有电子的能量。

根据能带结构理论,所有电子都会填充到有限数量的能带中。

当一个能带被填充满时,下一个更高的能带就变成了空的,这个空的能带就可以被其他电子占据,从而继续导电。

导电性金属的导电性可以通过自由电子模型来解释。

在自由电子模型中,金属中的电子可以以任何方向自由移动,导致电流。

金属中的导电性与其能带结构有关。

金属中的电子被分为价带和导带,价带电子被紧密束缚在原子周围的状态中,电子的运动受到离子核的束缚。

而导带电子则在能带结构中自由移动,不受到束缚。

第二章 金属的自由电子论

第二章 金属的自由电子论

d (1 e ) f e I0 d d (1 e ) 2 (1 e ) 2 1 此为 I0 | 0 (1) 1 奇函 此为 偶函 (1 e ) 数

I1
kx
2 ky ny L 2 kz nz L
2 nx L
( nx 0, 1, 2, )
( ny 0, 1, 2, ) ( nz 0, 1, 2, )
h
注: 由于德布洛意关系 P 所以 k 空间也称为动量空间。
,即 P k

上式告诉我们,沿 k 空间的每个坐标轴方向, 2 电子的相邻两个状态点之间的距离都是 L 。 2 所以三维 k 空间每个点所占的体积是 L 。
0
f dE E
f I1 ( E EF ) dE 0 E 2 f 1 I 2 ( E EF ) dE 0 2! E
f (E) e
1
E EF 1 k BT
E EF 1 令f ( ) , , e 1 k BT E 0, k BT EF时, f ( ) e , 2 (1 e ) E , E EF k BT f dE f ( ) d E 积分限发生变化



eBT ) 2
I g (E)
2
6
(k BT ) 2 g '' ( E )
3 2 g ( E ) CE 2 3 1 2 3 1 g ' (E) C E 2 C E 2 3 2 1 1 C 1 g '' ( E ) C E 2 E 2 2 2

金属导电原理基于自由电子理论

金属导电原理基于自由电子理论

金属导电原理基于自由电子理论引言:金属是一类具有良好导电性能的材料,这一特性得益于金属导电原理的存在。

金属导电原理基于自由电子理论,这一理论解释了金属中为何能够自由流动的电子参与电导过程。

本文将深入探讨金属导电原理基于自由电子理论的背景、原理和应用。

一、背景金属是一种晶体结构的物质,它是由金属离子团按照一定排列方式构成的。

在这种晶体结构中,固定的金属离子被包围在共享的电子云中。

这些电子具有较低的束缚能量,因此能够容易地在金属中自由移动。

自由电子理论就是基于这一观察结果提出的。

二、自由电子理论自由电子理论是指,金属中的导电过程是由自由电子在金属中的自由运动而产生的。

根据该理论,金属中的电子可以被看作是以高速在金属中自由运动的自由电子气体。

同时,自由电子理论假设金属中的固定阳离子对电子没有束缚力。

自由电子理论的核心观点包括:1. 金属中的电子具有连续的能量和动量;2. 金属中的电子之间没有相互作用力;3. 金属中的电子可以通过碰撞与晶格振动相互作用。

三、导电原理基于自由电子理论,金属中的导电过程可以被解释为自由电子在外加电场作用下沿着晶格正方向移动的结果。

当外加电场应用于金属时,它作用于自由电子,导致电子在平均自由程内发生碰撞。

然而,由于金属中的自由电子数量巨大,并且自由电子在碰撞后很快就能够重新获得动能,电流得以不受阻碍地通过金属。

导电过程中的一些重要现象包括:1. 电阻:电阻是电流通过金属时遇到的阻力。

导电过程中的阻力来自于自由电子与晶格振动以及其他自由电子的碰撞。

2. 热效应:导电过程中,电流通过金属时会产生热量。

这是因为电流中的能量被耗散在自由电子与晶格振动之间,使金属发热。

3. 磁效应:根据电流在金属中移动的现象,会形成磁场。

根据右手螺旋定则,电流方向可以确定磁场方向。

四、应用金属导电原理基于自由电子理论的应用非常广泛,以下列举几个重要应用领域:1. 电子设备:金属导电原理使得电子设备能够顺畅传递信号和电能。

金属自由电子理论

金属自由电子理论

dk
dZ

2
VC
2π3
4π k 2
dk
E dE ky
dZ

2
VC
2π3

2mE 2
2
m dE 2m E
E
kx


4πVC
2π3
(2m)3 2 3
E1 2
dE
3

4πVC

2m h2

21
E 2dE
N (E) dZ cE1 2
dE
其中
C

4πVc

3
2
E
1
2

CE1
2
其中
C

4πVc

2m h2
3

2
4.1.3 自由电子气的费米能量
1.费米能量
在热平衡时,能量为E的状态被电子占据的概率是
1 f ( E ) e(EEF ) kBT 1
EF---费米能级(等于这个系统中电子的化学势),它的意 义是在体积不变的条件下,系统增加一个电子所需的自由能。 它是温度T和晶体自由电子总数N的函数。

k
(r)


Ae ikr
E

2k 2 2m

2 2m
(k
2 x

k
2 y

k
2 z
)
波函数为行波,表示当一个电子运动到表面时并不被反射
回来,而是离开金属,同时必有一个同态电子从相对表面的对
应点进入金属中来。
k
波矢, 2π
k
为电子的德布罗意波长。
电子的动量:p k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求:(1)电子的状态密度;(2)电子的费米能级;(3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222 =所以 mkdk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmLE 22)( πρ=…………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L π=240FmE L π由此可得: 222208mLN E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为:⎰∞=0)()(1dE E E Ef N E ρ=dE EmL E N FE 22100⎰⋅π=230)(232F E m N L π=022223124F E mL N = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。

试求:(1)能量E ~dE E +之间的状态数;(2)此二维系统在绝对零度的费米能量;(3)电子的平均能量。

解:(1)K 空间中,在半径为k 和k k d +的两圆面之间所含的状态数为k k k k d L d L dZ πππ224222==…………………………(1) 这也就是能量在E ~dE E +之间的状态数,由电子的能量表达式可得dE m dE E m mE d 2222122 =⋅=k k ………………(2) 将(2)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,这样可得能量在E ~dE E +之间的状态数为dE mL dE mL dZ 222222ππ=⋅= (2)由(1)问可知,该系统的自由电子的状态密度为22)(πρmL dE dZ E == 在绝对零度下,由下式22022000)(F E E E mL dE mL dE E N FF ⋅===⎰⎰ππρ 由此可得此二维系统在绝对零度的费米能量为220mLN E Fπ= (3)电子的平均能量为⎰⎰==0002201)(1FFE E EdE mL N dE E E NEπρ 02222222212)(211F E mL N mL N mL N ===πππ 8.金属锂是体心立方晶格,晶格常数为m a 10105.3-⨯=。

试计算绝对零度时电子气的费米能量0F E (以eV 表示)解:由题意可求得金属锂的电子浓度为2831031066.4)105.3(22⨯=⨯==-a n /m 3 故绝对零度时金属锂的电子气的费米能量为32220)3(2πn mE F= 3222831234)14.31066.43(1011.92)10055.1(⨯⨯⨯⨯⨯⨯⨯=-- 191057.7-⨯=J 72.4=eV9.在低温下金属钾的摩尔比热容的实验结果可写成)57.208.2(3T T c v += K)mJ/(mol ⋅若1mol 的钾有23106⨯=N 个电子,试求钾的费米温度F T 和德拜温度D Θ。

解:根据金属自由电子气模型,低温下金属的总比摩尔热容为:3bT T c c c c e V V v +=+=γ上式中,02202F B E k N πγ=,304512DBk N b Θ=π,所以有: 302201008.22-⨯=F B E k N π 33041057.2512-⨯=ΘDB k N π 故:1932232233220010708.21016.4)1038.1(14.31061008.22----⨯=⨯⨯⨯⨯⨯=⨯⨯=B Fk N E πJ 又由 00F F B E T k = 得42319010962.11038.110708.2⨯=⨯⨯=--FT K 而 9.901057.251038.110614.3123323234=⨯⨯⨯⨯⨯⨯⨯=Θ--D K 10.试比较1mol 金属钠在30K 和0.3K 时的德拜比热容,并与电子比热容比较。

已知钠的德拜温度150=ΘD K ,钠的费米能级23.30=FE eV 。

解:在30K 时,1mol 金属钠的德拜比热容为34)(512DB V TNk c c Θ=π323232)15030(1038.11002.6514.312⨯⨯⨯⨯⨯⨯=- 57.1=J/K而其电子比热容为)(202FB B V E Tk Nk c e π=)106.123.3301038.1(1038.11002.6214.3192323232---⨯⨯⨯⨯⨯⨯⨯⨯⨯= 0328.0= J/K所以德拜比热容与电子比热容之比为9.470328.057.1==ec V V c c在0.3K 时1mol 金属钠的德拜比热容为34)(512DB V TNk c c Θ=π323232)1503.0(1038.11002.6514.312⨯⨯⨯⨯⨯⨯=- 61057.1-⨯=J/K而其电子比热容为)(202FB B V E Tk Nk c e π=)106.123.33.01038.1(1038.11002.6214.3192323232---⨯⨯⨯⨯⨯⨯⨯⨯⨯= 41028.3-⨯=J/K所以德拜比热容与电子比热容之比为3461079.41028.31057.1---⨯=⨯⨯=ec V V c c 11.有一钨丝,长0.05m ,横截面积的直径为1×10-4m 。

试求2000K 时钨丝的热电子发射电流。

已知钨的电子逸出功为4.5eV 。

解:由里查孙-杜师曼定律可知钨丝的热电子发射电流密度为)/(2T k W B eAT j -=05.1420001075)20001038.1/(106.15.4242319=⨯⨯=⨯⨯⨯⨯---e A/m 2故热电子发射电流为72410103.1210114.305.14--⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯==jS I A 12.室温下利用光电效应已测得银及铯的光电效应阀值分别为4.8eV 和1.8eV 。

求:(1)采用里查孙-杜师曼公式分别估算银及铯在室温下的热电子发射电流密度;(2)若温度上升至800K 时,其热电子发射电流密度为多少?(3)若把银与铯两种金属接触在一起,求出室温下它们的接触电势差。

解:(1)在室温下银的热电子发射电流密度为)/(2T k W Ag B Ag eT A j -=)2981038.1/(106.18.4262319298102.1⨯⨯⨯⨯---⨯⨯=e711036.8-⨯= A/m 2在室温下铯的热电子发射电流密度为)/(2T k W Cs B Cs eT A j -=)2981038.1/(106.18.1262319298106.1⨯⨯⨯⨯---⨯⨯=e201047.5-⨯= A/m 2(2)在800K 时银的热电子发射电流密度为)/(2T k W Ag B Ag eT A j -=)8001038.1/(106.18.4262319800102.1⨯⨯⨯⨯---⨯⨯=e191072.4-⨯= A/m 2在800K 时铯的热电子发射电流密度为)/(2T k W Cs B Cs eT A j -=)8001038.1/(106.18.1262319800106.1⨯⨯⨯⨯---⨯⨯=e80.4= A/m 2(3)若把银与铯两种金属接触在一起,它们的接触电势差为3)(1=-=Cs Ag D W W eV V13.利用电子漂移速度v 的方程E -=+e vdt dv m )(τ证明在频率ω下的电导率为])(11)[0()(2ωτωτσωσ++=i 。

其中02/)0(m ne τσ=。

解:设电场为t i e ω-E =E 0,则有t i e e vdt dv m ωτ-E -=+0)(或t i e me vdt dv ωτ-E -=+0 齐次方程0=+τvdt dv 的通解为 τtcev -=设非齐次方程的特解为t i Ae v ω-=,则有ti t i ti e me Ae Aei ωωωτω---E -=+-01从上式可求出特解的待定系数A 为)1(0ωττi m e A -⋅E -= 故非齐次方程的通解为)1(0ωττωτi e m e ce v ti t-E -=-- 上式中的第一项随时间的增大迅速衰减,表示电子在电场作用下的驰豫过程,对电流没有贡献,对电流有贡献是第二项,如果在电场的作用下,单位体积内含有n 个电荷为e-的电子,则其电流密度E =-E =-=-)()1()()(02ωσωττωωi e m ne v e n j ti 故 ⎥⎦⎤⎢⎣⎡++=-=22)(11)0()1(1)(ωτωτσωττωσi i m ne 其中 m ne τσ2)0(=。

相关文档
最新文档