系解问答题集合jinlz
三种集合问题的解题方法
三种集合问题的解题方法【导语】在数学中,集合是研究对象的集合,集合问题是数学中常见的问题之一。
解决集合问题可以帮助我们深入理解数学的抽象思维和逻辑推理能力。
本文将介绍三种常见的集合问题解题方法,以帮助读者更好地应对这类问题。
【目录】一、概述1.1 集合的定义和基本运算1.2 集合问题的分类二、穷举法2.1 穷举法的基本思想2.2 穷举法的应用案例三、推理法3.1 推理法的基本思想3.2 推理法的应用案例四、运算法4.1 运算法的基本思想4.2 运算法的应用案例五、总结与回顾5.1 三种集合问题解题方法的比较5.2 个人观点与理解一、概述1.1 集合的定义和基本运算在数学中,集合是元素的汇集,可以用大括号{}表示,元素之间用逗号分隔。
集合常见的基本运算有交集、并集、补集和差集等。
1.2 集合问题的分类集合问题可以分为穷举法、推理法和运算法三种解题方法。
这三种方法各有特点,我们将逐一介绍。
二、穷举法2.1 穷举法的基本思想穷举法是通过列出集合中的所有元素来解决问题的方法。
它适用于集合元素个数较少的情况,能够确保不漏解和不重解。
2.2 穷举法的应用案例以某班级人数为例,假设班级有20名学生,我们要求找到芳龄在16岁到18岁之间的学生。
可以使用穷举法,列举出所有学生的芳龄,并筛选出符合条件的学生。
三、推理法3.1 推理法的基本思想推理法是通过逻辑推理的方式解决集合问题的方法。
它适用于对集合元素之间的关系进行推断和分析的情况,需要应用数学推理和逻辑思维。
3.2 推理法的应用案例以A、B、C三个集合为例,已知A包含B,B包含C,我们要推导出A包含C的结论。
可以通过推理法进行逻辑推演,利用集合之间的关系进行推理。
四、运算法4.1 运算法的基本思想运算法是通过对集合进行运算操作解决问题的方法。
它主要应用于集合的交集、并集、补集、差集等操作,可以快速求解特定的集合问题。
4.2 运算法的应用案例以两个集合的交集问题为例,已知集合A={1,2,3},集合B={3,4,5},我们要求解A和B的交集。
有关高一数学集合的经典解答题
高一数学集合的经典解答题1. 求解方程组已知集合$A=\{x\in R|x^2-3x+2<0\}$,$B=\{x\in R|x-1\geq 0\}$,求解方程组$A\cap B$。
解:我们要求出集合$A$和$B$中的元素。
对于集合$A$,由不等式$x^2-3x+2<0$,可以得到方程的解为$x\in (1,2)$。
而对于集合$B$,由不等式$x-1\geq 0$,可以得到方程的解为$x\geq 1$。
所以集合$A$和$B$的交集即为$x\in (1,2)$。
2. 求解集合的幂集已知集合$A=\{1,2,3\}$,求集合$A$的幂集。
解:集合$A$的幂集即为集合$A$的所有子集的集合。
由于集合$A$共有3个元素,所以其幂集共有$2^3=8$个子集。
具体包括空集、单元素子集$\{1\},\{2\},\{3\}$,双元素子集$\{1,2\},\{1,3\},\{2,3\}$,以及全集$A=\{1,2,3\}$。
3. 判断集合关系已知集合$A=\{x\in R|2\leq x\leq 5\}$,$B=\{x\in R|3\leq x\leq6\}$,判断集合$A$与集合$B$的关系。
解:集合$A$中的元素为$x\in [2,5]$,而集合$B$中的元素为$x\in [3,6]$。
从区间的包含关系来看,集合$A$中的元素均在集合$B$中,且有$2\leq 3$和$5\leq 6$,因此集合$A$是集合$B$的子集。
4. 求解不等式集合已知不等式$2x-1<5$,求解集合$A=\{x\in R|2x-1<5\}$。
解:根据不等式$2x-1<5$,可以得到$2x<6$,进而得到$x<3$。
因此集合$A$中的元素为$x\in (-\infty,3)$。
5. 求交集与并集已知集合$A=\{1,2,3,4\}$,$B=\{3,4,5,6\}$,求解集合$A$与集合$B$的交集与并集。
集合的概念及运算例题及答案
1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括 号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合 例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗? 答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合: (1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
高考数学专题复习 对集合的理解及集合思想应用的问题 试题
卜人入州八九几市潮王学校高考数学专题复习对集合的理解及集合思想应用的问题高考要求集合是高中数学的根本知识,为历年必考内容之一,主要考察对集合根本概念的认识和理解,以及作为工具,考察集合语言和集合思想的运用本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用重难点归纳1解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描绘法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题2注意空集∅的特殊性,在解题中,假设未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,那么有A =∅或者A≠∅两种可能,此时应分类讨论典型题例示范讲解例1设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论此题主要考察考生对集合及其符号的分析转化才能,即能从集合符号上分辨出所考察的知识点,进而解决问题知识依托解决此题的闪光点是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了错解分析此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其本质内涵,因此可能感觉无从下手技巧与方法由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进展限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值解∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1①∵⎩⎨⎧+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <25②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得 ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅例2向50名学生调查对A 、B 两事件的态度,有如下结果赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人问对A 、B 都赞成的学生和都不赞成的学生各有多少人?在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生实在掌握此题主要强化学生的这种才能知识依托解答此题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来错解分析此题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索技巧与方法画出韦恩图,形象地表示出各数量关系间的联络解赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合BB 都不赞成的学生人数为3x+1,赞设对事件A 、B 都赞成的学生人数为x ,那么对A 、成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x依题意(30-x )+(33-x )+x +(3x+1)=50,解得x =21 所以对A 、B 都赞成的同学有21人,都不赞成的有8人例3集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},假设A ∩B ≠∅,务实数m 的取值范围解由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解首先,由Δ=(m -1)2-4≥0,得m ≥3或者m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内故所求m 的取值范围是m ≤-1学生稳固练习1集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =42k ππ+,k ∈Z },那么() A M =NB M NC M ND M ∩N =∅2集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,假设A ∪B =A ,那么()A -3≤m ≤4B -3<m <4C 2<m <4D 2<m ≤43集合A ={x ∈R |a x 2-3x +2=0,a ∈R },假设A 中元素至多有1个,那么a 的取值范围是_________4x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|bya x -=1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________ 5集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B∅和A ∩C =∅同时成立6{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41x2-y 2=1,x ,y ∈R }试问以下结论是否正确,假设正确,请给予证明;假设不正确,请举例说明(1)假设以集合A 中的元素作为点的坐标,那么这些点都在同一条直线上; (2)A ∩B 至多有一个元素; (3)当a 1≠0时,一定有A ∩B ≠∅7集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值 8设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }(1)求证A ⊆B ;(2)假设A ={-1,3},求B参考答案1解析对M 将k 分成两类k =2n 或者k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或者k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }答案C2解析∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4 答案D3a =0或者a ≥89 4解析由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b y a x -=1相切,那么1=22b a ab +,即ab =22b a + 答案ab =22b a +5解log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或者a =-2当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B∅,∴a =-26解(1)正确在等差数列{a n }中,S n =2)(1n a a n +,那么21=n S n (a 1+a n ),这说明点(a n ,nS n 〕的坐标适宜方程y 21=(x +a 1),于是点(a n ,nS n )均在直线y =21x +21a 1上(2)正确设(x ,y )∈A ∩B ,那么(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解 ∴A ∩B 至多有一个元素(3〕不正确取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0假设A ∩B ≠∅,那么据(2〕的结论,A ∩B 中至多有一个元素(x 0,y 0〕,而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0〕∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的7解由w =21zi +b 得z =ib w 22-, ∵z ∈A ,∴|z -2|≤2,代入得|ibw 22--2|≤2,化简得|w -(b +i )|≤1 ∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0〕为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面又A ∩B =B ,即B ⊆A ,∴两圆内含因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =28(1)证明设x 0是集合A 中的任一元素,即有x 0∈A∵A ={x |x =f (x )},∴x 0=f (x 0)即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B(2)证明∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得∴f (x )=x 2-x -3于是集合B 的元素是方程f [f (x )]=x , 也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3故B ={-3,-1,3,3}课前后备注。
集合知识点总结带例题
集合知识点总结带例题一、基本概念1. 集合集合是由一些确定的对象构成的整体。
集合是一个无序的整体,它只关心集合中包含的元素,与元素的排列顺序无关。
2. 元素集合中的个体称为元素,元素可以是任何事物或对象,例如数字、字母、集合等。
3. 空集一个不包含任何元素的集合称为空集,通常用符号∅ 或 {} 表示。
4. 包含关系若集合 A 中的所有元素都是集合 B 中的元素,则称集合 A 包含在集合 B 中,通常用符号A⊆B 表示。
5. 相等关系若集合 A 包含在集合 B 中,并且集合 B 包含在集合 A 中,则称集合 A 和集合 B 相等,通常用符号 A=B 表示。
6. 子集若集合 A 包含在集合 B 中,且集合 A 不等于集合 B,则称集合 A 是集合 B 的子集,通常用符号A⊂B 表示。
7. 并集若集合 A 和集合 B 的元素都包含在一个新的集合中,则称该集合为 A 和 B 的并集,通常用符号A∪B 表示。
8. 交集若集合 A 和集合 B 的公共元素构成一个新的集合,则称该集合为 A 和 B 的交集,通常用符号A∩B 表示。
9. 完全集一个包含所有可能元素的集合称为完全集。
10. 互斥集若集合 A 和集合 B 没有共同的元素,则称集合 A 和集合 B 互斥。
二、运算1. 并集对于两个集合 A 和 B,它们的并集是一个包含 A 和 B 所有元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∪B={1,2,3,4,5}。
2. 交集对于两个集合 A 和 B,它们的交集是一个包含 A 和 B 共同元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∩B={3}。
3. 补集对于一个集合 A,它在另一个集合 U 中的补集是指 U 中不属于 A 的元素所组成的集合,通常用符号 A' 或 A^c 表示。
4. 差集对于两个集合 A 和 B,它们的差集是包含在 A 中但不包含在 B 中的元素所组成的集合,通常用符号 A-B 表示。
集合知识点汇总与练习试题
集合知识点汇总与练习试题1.1 集合1.1.1 集合的含义与表⽰⼀集合与元素1.集合是由元素组成的集合通常⽤⼤写字母A、B、C,…表⽰,元素常⽤⼩写字母a、b、c,…表⽰。
2.集合中元素的属性(1)确定性:⼀个元素要么属于这个集合,要么不属于这个集合,绝⽆模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现⼀次。
(3)⽆序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素⼀样,就称这两个集合相等,与元素的排列顺序⽆关。
⼆集合的分类1.有限集:集合中元素的个数是可数的,只含有⼀个元素的集合叫单元素集合;2.⽆限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做?.三集合的表⽰⽅法1.常⽤数集(1)⾃然数集:⼜称为⾮负整数集,记做N;(2)正整数集:⾃然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表⽰⽅法(1)⾃然语⾔法:⽤⽂字叙述的形式描述集合。
如⼤于等于2且⼩于等于8的偶数构成的集合。
(2)列举法:把集合的元素⼀⼀列举出来,并⽤花括号“{}”括起来表⽰集合的⽅法,⼀般适⽤于元素个数不多的有限集,简单、明了,能够⼀⽬了然地知道集合中的元素是什么。
注意事项:①元素间⽤逗号隔开;②元素不能重复;③元素之间不⽤考虑先后顺序;④元素较多且有规律的集合的表⽰:{0,1,2,3,…,100}表⽰不⼤于100的⾃然数构成的集合。
(3)描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,⼀般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使⽤“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句⼒求简明、准确。
近世代数习题解答2
近世代数习题解答第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得e a a =-1因为由'4G 有元'a 能使e a a =-'1所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea =a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 假设群G 的每一个元都适合方程e x =2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 那么1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(假设有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a me a m=∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2) a 的阶大于2, 那么1-≠a a 假设 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 那么 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等:n m a a =)(n m 〈 故 e a m n =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定一样? 证 不一定一样 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但 231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的答复是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 ……τ显然是一个非一一变换但 εττ=-12. 假定A A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→:λd cx x +→:τλd cb cax d b ax c x ++=++→)(d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 那么 :εx x → (4):τb ax +)(1:1ab x a x -+→-τ 而 εττ=-1所以构成变换群.又 1τ: 1+→x x:2τx x 2→:21ττ)1(2+→x x :12ττ12+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→ 来说明一个变换τ.证明,我们可以用21ττ:)()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元.证 :1τ)(1a a τ→:2τ)(2a a τ→那么:21ττ)()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ==→)]([:)(321321a a ττττττ)]]([[321a τττ故 )()(321321ττττττ= 再证ε还是S 的单位元:ε)(a a a ε=→:ετ)()]([a a a ττε=→τ:τε)()]([a a a τετ=→∴τεετ=4. 证明一个变换群的单位元一定是恒等变换。
集合经典习题集含答案
集合经典习题集含答案标题:集合经典习题集含答案一、基础练习题1. 设A={1,2,3,4},B={3,4,5,6},求A与B的交集。
解析:两个集合的交集是指同时存在于两个集合中的元素。
所以A与B的交集为{3,4}。
2. 如果集合A与集合B的并集是整数集Z,那么集合A与集合B的关系是什么?解析:如果集合A与集合B的并集是整数集Z,那么说明集合A和集合B的元素的取值范围覆盖了整数集Z中的所有元素。
因此,可以说集合A与集合B的关系是包含关系。
3. 设A={x|x是大于等于0小于10的实数},B={x|x是大于等于5小于15的实数},求A与B的交集。
解析:根据题目给出的条件,可以得出A={0,1,2,3,4,5,6,7,8,9},B={5,6,7,8,9,10,11,12,13,14}。
所以A与B的交集为{5,6,7,8,9}。
4. 设A={a,b,c,d},B={c,d,e,f},C={d,e,f,g},求(A∩B)∪C。
解析:首先求A与B的交集:A∩B={c,d}。
然后将交集与C求并集:(A∩B)∪C={c,d,e,f,g}。
5. 设A={3,4,5},B={4,5,6},C={5,6,7},求(A∪B)∩C。
解析:首先求A与B的并集:A∪B={3,4,5,6}。
然后将并集与C求交集:(A∪B)∩C={5}。
二、进阶练习题1. 设A={x|x是集合R中的一个奇数},B={x|x是集合R 中的一个负数},C={x|x是集合R中的一个素数},求(A∪B)∩C。
解析:集合R中的奇数为{-3,-1,1,3,5,...},负数为{-∞,-1,-2,-3,...},素数为{2,3,5,7,11,...}。
将A与B的并集求出:A∪B={-∞,-3,-2,-1,1,3,5,...}。
然后将并集与C 求交集:(A∪B)∩C={3,5,7,11,...}。
2. 设集合A={1,2,3,...,10},B={3,5,7,9},C={2,6,10},求(A∩B)∪C。
高考文科数学命题热点名师解密专题:集合的解题技巧含答案
专题01 集合的解题技巧一、集合的解题技巧及注意事项1.元素与集合,集合与集合关系混淆问题;2.造成集合中元素重复问题;3.隐含条件问题;4.代表元变化问题;5.分类讨论问题;6.子集中忽视空集问题;7.新定义问题;8.任意、存在问题中的最值问题;9.集合的运算问题;10.集合的综合问题。
二.知识点【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(Venn)图表达集合间的关系与运算.【知识要点】1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集.(2)集合中的元素的三个特征:确定性、互异性、无序性(3)集合的表示方法有:描述法、列举法、区间法、图示法(4)集合中元素与集合的关系分为属于与不属于两种,分别用“”或“”来表示.(5)常用的数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.2.集合之间的关系(1)一般地,对于两个集合A,B.如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A B;若A?B,且A≠B,则A B,我们就说A是B的真子集.(2)不含任何元素的集合叫做空集,记作,它是任何集合的子集,即??A.3.集合的基本运算(1)并集:A∪B={x|x∈A或x∈B};(2)交集:A∩B={x|x∈A且x∈B};(3)补集:?U A=.4.集合的运算性质(1)A∩B=A?A?B,A∩A=A,A∩?=?;(2)A∪B=A?A?B,A∪A=A,A∪?=A;(3)A?B,B?C,则A?C;【点评】:注意两个集合代表元的条件,容易忽视集合中元素属于整数的条件.练习2.【江西省九江市2019届高三第一次联考】已知集合,集合,则图中的阴影部分表示的集合是()A.B.C.D.【答案】C【分析】图中阴影部分表示的集合为,所以先求出集合A,B后可得结论.【解析】由题意得,所以,即图中阴影部分表示的集合为.故选C.【点评】本题考查集合的元素、韦恩图和集合的补集运算,解题的关键是认清图中阴影部分表示的集合以及所给集合中元素的特征,属于基础题.(四)代表元变化问题例4.【内蒙古鄂尔多斯市一中2018-2019模拟】已知A={y|y=log2x,x>1},B=,则() A.B.C.D.【答案】C【分析】利用对数性质和交集定义求解.【解析】∵A={y|y=log2x,x>1}={y|y>0},B=,∴A∩B={x|0x≤1}= .故选C.【点评】本题考查交集的求法,是基础题,解题时要注意对数函数的性质的灵活运用.练习1.【华东师范大学附中2018-2019学年试题】集合,的元素只有1个,则的取值范围是__________.【答案】【分析】由中有且仅有一个元素,可知两个方程联立得到方程是一次方程或二次方程有两个相等的根;利用分类讨论思想,可求出的范围.【解析】联立即,是单元素集,分两种情况考虑:,方程有两个相等的实数根,即,可得,解得,方程只有一个根,符合题意,综上,的范围为故答案为.【点评】本题主要考查集合交集的定义与性质以及一元二次方程根与系数的关系,意在考查综合应用所学知识解答问题的能力,属于中档题.练习2.同时满足:①M ?{1,2,3,4,5};②a∈M且6-a∈M的非空集合M有()A.9个B.8个C.7个D.6个【答案】C共有7个集合满足条件,故选 C.【点评】本题主要考查了元素与集合的关系,以及集合与集合的关系的判定与应用,其中熟记元素与集合的关系,以及集合与集合的包含关系是解答的关键,着重考查了推理与运算能力,属于基础题.(五)分类讨论问题例5. 【九江市2019届高三第一次十校联考】(1)求解高次不等式的解集A;(2)若的值域为B,A B=B求实数的取值范围.【答案】(1);(2)【分析】(1)利用讨论的方法求得不等式的解集A;(2)根据函数的单调性求出值域B,由得,转化为不式等组求解,可得所求范围.【解析】(1)①当时,原不等式成立.②当时,原不等式等价于,解得.,综上可得原不等式的解集为,∴.(2)由题意得函数在区间上单调递减,∴,∴,∴.∵,∴,∴,解得,∴实数的取值范围是.【点评】解答本题时注意转化思想方法的运用,已知集合的包含关系求参数的取值范围时,可根据数轴将问题转化为不等式(组)求解,转化时要注意不等式中的等号能否成立,解题的关键是深刻理解集合包含关系的含义.练习1.设集合,,若,求实数a的取值范围;若,求实数a的取值范围.【答案】(1)(2)【分析】(1)由题意得,,根据可得,从而可解出的取值范围;(2)先求出,根据可得到,解出的取值范围即可.【解析】由题意得,;(1)∵,∴,解得,又,∴,∴实数的取值范围为.(2)由题意得,∵,∴,解得.∴实数的取值范围为.【点评】本题考查集合表示中描述法的定义,一元二次不等式的解法,子集的概念,以及交集的运算.根据集合间的包含关系求参数的取值范围时,注意转化方法的运用,特别要注意不等式中的等号能否成立.(六)子集中忽视空集问题例6【云南省2018-2019学年期中考试】已知集合,若,则的取值集合是()A.B.C.D.【答案】C【分析】本题考查集合间的包含关系,先将集合,化简,然后再根据分类讨论.【解析】∵集合∴若,即时,满足条件;若,则.∵∴或∴或综上,或或.故选C.【点评】本题主要考查利用集合子集关系确定参数问题,易错点是化简集合时没有注意时的特殊情况.练习1.已知集合,.(1)若,求;(2)若,求实数的取值范围.【答案】(1) (2) 或【点评】由集合间的关系求参数时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点(七)新定义问题例7.【清华附属中2018-2019学年试题】集合A,B的并集A∪B={1,2},当且仅当A≠B时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有__________.【答案】8【分析】根据条件列举,即得结果.【解析】由题意得满足题意的(A,B)为:A=,B={1,2};A={1},B={2};A={1},B={1,2};A={2},B={1};A={2},B={1,2};A={1,2},B=;A={1,2},B={1};A={1,2},B={2};共8个.【点评】本题考查集合子集与并集,考查基本分析求解能力.练习1.【华东师范大学附中2019届高三数学试卷】已知集合M=,集合M的所有非空子集依次记为:M1,M2,...,M15,设m1,m2,...,m15分别是上述每一个子集内元素的乘积,规定:如果子集中只有一个元素,乘积即为该元素本身,则m1+m2+...+m15=_____【答案】【分析】根据二项式定理的推导过程构造出函数,当时,函数的值就是所有子集的乘积。
例谈求解集合问题的常用方法
丐丐丐丐丐丐丐丐丐丐丐丐丐丐丐丐丐丐思路探寻进入高中后,我们最先接触到的数学知识是集合,因而集合问题一般属于基础题目.集合问题主要分成两大类,一类是直接考查与集合相关的知识点,另一类是集合与其他知识点相结合的综合题目.笔者总结了求解集合问题的三种常用方法,以供大家参考.一、定义法利用定义法求解集合问题,主要是根据集合的定义来求解相关问题.我们把一些元素组成的总体叫做集合,而集合中的元素都是互不相同的、唯一的、没有顺序的.在解答集合问题时,我们首先要分析集合中的元素所代表的意义,再对元素的三个性质进行讨论,这样才能确定一个集合.例1.设P 、Q 是两个集合,定义集合P -Q ={|x x ∈P ,}且x ∉Q ,如果P ={}|x log 2x <1,Q ={}|x ||x -2<1,那么P -Q 等于().A.{}|x 0<x <1 B.{}|x 0<x ≤1C.{}|x 1≤x ≤2 D.{}|x 2≤x <3解:先将P 、Q 化简,得P ={}|x 0<x <2,Q ={}|x 1<x <3,由定义P -Q ={}|x 0<x ≤1,故答案为B .该题属于集合的新定义问题,集合P -Q 、P 、Q 分别是三个集合,且集合中的元素都是x 的解集.很多同学在解题时没有分析集合P -Q 中的元素,把P -Q 看作集合P 与集合Q 之差,导致解题出错.因此,在解答有关集合的新定义问题时,要严格按照集合的定义进行求解,这样才能得到正确的答案.二、运用分类讨论思想很多集合问题要分多种不同的情况进行讨论,此时就需要灵活运用分类讨论思想来解题.首先可根据问题中所给的条件进行分析,对所有可能出现的情况进行分类,然后逐一对每种情况进行分析和解答,再进行整合、总结,就能得到问题的答案.例2.已知集合A ={}1,3,5,B ={}1,2,x 2-1,若A ⋃B ={}1,2,3,5,求x 的值以及A ⋂B .解:由A ⋃B ={}1,2,3,5可知,x 2-1的取值有2种情况:①x 2-1=3,此时x =±2,B ={}1,2,3,故A ⋂B ={}1,3;②x 2-1=5,此时x =±6,B ={}1,2,5,故A ⋂B ={}1,5.通过分析可知,B ={}1,2,x 2-1中x 2-1的取值有2种情况:等于3或者5,需要运用分类讨论思想将其分成两类分别进行讨论,求得两种情况下x 的取值,再将其综合便可解题.三、图象法图象法是解答几何问题的常用方法.运用图象法解答几何问题的关键在于把问题中的条件转化为图形,利用直观的图象来解答集合问题.常见的有把集合关系用韦恩图表示出来,把不同的集合在同一数轴上画出来.例3.已知U 为全集,集合M 、N 是U 的子集,若M ⋂N =N ,则下列选项中正确的是().A.C U M ⊇C U NB.M ⊆C U NC.C U M ⊆C U ND.M ⊇C U N解:由题意作出如图所示的韦恩图.由M ⋂N =N 可得N ⊆M ,而M ⊆U ,由图可知C U M ⊆C U N ,故选项C 正确.运用图象法解题,能使集合之间的关系以更加直观的方式呈现出来,这样有利于分析问题,还能提升解题的效率.通过上述分析,同学们能更加深刻地了解解答集合问题的三种方法:定义法、运用分类讨论思想、图象法.在解题时,同学们要注意合理选择解题方法,定义法适用于解答与集合定义有关的问题;运用分类讨论思想适用于求解有多种不同情况的问题;图象法适用于解答方便作图的问题.(作者单位:湖南省江华县第一中学)49Copyright©博看网 . All Rights Reserved.。
[集合]有关集合的例题及解析
[集合]有关集合的例题及解析1.理解集合的概念;2.掌握集合的两种表示方法;3.会正确使用符号这三个学习目标即可1.集合点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.一般地,某些指定的对象集在一起就成为一个集合,也简称集.一般用大括号表示集合,例如“汽车,飞机,轮船”等交通运输工具组成的集合可以写成{汽车、飞机、轮船}为了方便.我们还通常用大写的拉丁字母A、B、C……表示集合,例如A={a,b,c}.2.集合中的元素集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、xx.集合中的元素常用小写的拉丁字母a,b,c,…表示.如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a A.3.集合中元素的特性(1)确定性对于集合A 和某一对象x,有一个明确的判断标准是x∈A,还是x A,二者必成其一,不会模棱两可.例如,“著名的数学家”,“漂亮的人”这类对象,一般不能构成数学意义上的集合,因为找不到用以判别每一具体对象是否属于集合的明确标准.(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的;因此,集合中的相同元素只能算作一个,如方程x -2x+1=0的两个等根,x1=x2=1,用集合记为{1},而不写为{1,1},如果把集合{1,2,3},{2,3,4}的元素合并起来构成一个新集合,那么新集合只有1,2,3,4这四个元素.(3)无序性集合中的元素是不排序的,如集合{1,2}与{2,1}是同一个集合,但实际上在书写时还是按一定顺序书写的,如{-1,0,1,2}而不写成{0,1,-1,2},这样写不方便,其更深刻的含义是揭示了集合元素的“平等地位”.4.集合表示法(1)列举法将集合中的所有元素一一列举出来,写在大括号内.(2)描述法用描述表示的集合,对其元素的属性要准确理解.例如,集合{y|y=x }表示函数y值的全体,即{y|y≥0};集合{x|y=x }表示自变量x的值的全体,即{x|x为任一实数};集合{x,y|y=x }表示抛物线y=x 上的点的全体,是点集(一条抛物线);而集合{y=x }则是用列举法表示的单元素集,也就是只有一个元素(方程y=x )的有限集.(3)图示法为了形集合叫做无限集.例如:集合N+③空集:不含任何元素的集合称为空集.例如:集合方程x +2x+3=0在实数范围内的解集. 例 1 下列各组对象能否构成一个集合?指出其中的集合是无限集1还是有限集?并用适当的方法表示出来.(1)直角坐标平面内横坐标与纵坐标互为相反数的点;(2)高一数学课本中所有的难题;(3)方程x +x +2=0的实数根;(4)图甲中阴影部分的点(含边界上的点).图甲图乙解:(1)是无限集合.其中元素是点,这些点要满足横坐标和纵坐标互为相反数.可用两种方法表示这个集合:描述法:{(x,y)|y=x|};图示法:如图乙中直线l上的点.(2)不是集合.难题的概念是模糊的不确定的,实际上一道数学题是“难者不会,会者不难”.因而这些难题不能构成集合.(3)是空集.其中元素是实数,这些实数应是方程x +x +2=0的根,这个方程没有实数根,它的解集是空集.可用描述法表示为:或者{x∈R|x +x +2=0}.(4)是无限集合.其中元素是点,这些点必须落在图甲的阴影部分(包括边界上的点).图甲本身也可看成图示法表示,我们还可用描述表示这个集合;{(x,y)|-1≤x≤2,- ≤y≤2,且xy≤0}例2 下面六种表示法:(1){x=-1,y=2},(2){(x,y)|x=-1,y=2},(3){-1,2},(4)(-1,2),(5){(-1,2)},(6){(x,y)|x=-1或y=2},能正确表示方程组的解集的是:A.(1)(2)(3)(4)(5)(6) B.(1)(2)(4)(5)C.(2)(5) D.(2)(5)(6)分析由于此方程组的解是因而写成集合时,应表示成一对有序实数(-1,2).解:因为{(x,y)|={(x,y)|={(-1,2)}故选C.评析集合(1)既非列举法,又非描述法.集合(3)表示由-1和2两个数组成的集合.(4)是一个点.(6)中的元素是(-1,y)或(x,2),x,y∈R是一个无限集.以上均不合题意.例3 用符号∈或填空.(1)3.14 Q,0 N, Z,(-1) N,0 (2)2 {x|x<=,3 {x|x>4}, + {x|x≤2+ };(3)3 {x|x=n +1,n∈N},5 {x|x=n +1,n∈N};(4)(-1,1) {y|y=x },(-1,1) {(x,y)|y=x }解:(1)∈、∈、、∈、 (空集不含任何元素);(2)2 =>,3 =>=4,+ ==<==2+ ,故填、∈、∈;(3)令n +1=3,n=± n N.令n +1=5, n=±2,2∈N,故填、∈;(4) ,∈.(因为{y|y=x }中元素是数而(-1,1)代表一个点)例4 用另一种形式表示下列集合(1){绝对值不大于3的整数}(2){所有被3整除的数}(3){x|x=|x|,x∈Z且x<5}(4){x|(3x-5)(x+2)(x +3)=0,x∈Z}(5){(x,y)}|x+y=6,x∈N+,y∈N+}解:(1)绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,,2,3};(2){x|x=3n,n∈Z};(说明:{被3除余1的整数}可表示为{x|x=3n+1,n∈Z});(3)∵x=|x|,∴x≥0,又∵x∈Z2且x<5,∴{x|x=|x|,x∈Z且x<5}还可以表示为{0,1,2,3,4}(4){-2}(注意x∈Z})(5){(1,5),(2,4),(3,3),(4,2),(5,1)}例5。
集合中的常见问题及一般解法
例 1 已知 P = {a, b} , M = {t | t P} ,则 P 与 M 的关系为( A. P M B. P M C. M P D. P M
)
【分析】集合 M 的构成元素 t 是集合 P 的子集,即: M 是由集合 P 的子集构成 的集合.而 P 的子集包含其本身,所以从集合 M 的角度来讲,P 是作为 M 的元 素存在的,故 P M . 【注意】当一个集合作为另一个集合中的元素存在时,两集合即为从属关系,用 “ ”连接. 【详解】 解: P = {a, b} , t P
集合元素的互异性
集合中的元素具有确定性、 无序性和互异性,而考试一般常从互异性这条性质出 题,考察学生对集合的理解.对于这类问题,学生须注意分情况讨论,而且要对 求得的参数值进行验证. 例 1 已知集合 A = {a + 2,(a + 1)2 , a 2 + 3a + 3} ,若 1 A ,求实数 a 的取值集合. 【分析】元素 1 属于集合 A,需要分三种情况进行讨论,同时对每种情况下求得 的 a 值进行验证(即把 a 值回代) ,看.是否满足互异性条件. 【详解】 解: 1 A
例 2 设 a, b R ,集合 {1, a + b, a} = {0, , b} ,则 b 2018 − a 2017 = ________. 【分析】已知两集合相等,需根据互异性将已知元素 0 和 1 与未知元素对应起 来,由此求出 a,b 的值. 【注意】 欲建立两集合中元素的对应关系, 通常需要进行分类讨论, 情况较多. 但 对于此题,应注意到隐含条件:若 有意义,则 a 0 ,由此再根据互异性判断出 只能是 a + b = 0 ,问题便迎刃而解. 【详解】 解:由题意: a 0 , b 0 又
集合五问
集合五问集合五问集合是现代数学中一个原始的、不加定义的概念。
教材上给出“集合”的概念,只是对集合描述性的说明。
初次接触集合感到比较抽象,难以把握。
实质上,集合元素的三个性质是我们解决集合有关概念问题的重要依据。
子集、真子集的定义是解决两个集合之间关系的法宝。
下面通过五个问题对同学们容易忽略的知识进行解答,以期对同学们有所帮助。
一问:你已掌握集合概念中所描述的集合的全体性了吗?例1:函数y=x2+x-1的定义域为()。
①{R}②{一切实数}③ R ④{实数}⑤ 实数 A ①② B ②③ C ③④ D ④⑤分析:任何一个实数都能使函数y=x2+x-1有意义,故函数的定义域应为全体实数。
所以③正确。
R与一切实数都表示一个整体,它们是一个集合,放在大括号内是表示以集合为元素的单元素集,所以①②不正确。
④表示实数的全体,正确。
⑤表示元素,不正确。
答案:C 点评:用符号{}表示集合时,它表示大括号内元素的全体。
在表示定义域时,大括号内的元素应是使函数有意义的实数,而不应该是一个集合。
二问:用描述法表示集合时,你注意到代表元素的代表性了吗?例2:设集合A={x│y=x2-1},B={y│y=x2-1},C={(x,y)│y=x2-1},D={y=x2-1}分别写出集合A、B、C、D的意义,A表示,B表示,C表示,D表示。
分析:集合表示的是代表元素的全体,竖线后面表示代表元素满足的条件,故A表示自变量x的全体是函数的定义域,B表示因变量y的全体是函数的值域,C表示满足函数的点的全体是函数的图像,D是用列举法表示以方程y=x2-1为元素的单元素集。
答案:A表示函数的定义域, B表示函数的值域, C表示函数的图像, D表示以方程y=x2-1为元素的单元素集。
点评:集合的代表元素规定了集合的类型。
三问:你注意到集合元素的互异性了吗?例3:设集合A={1,3,a},B={1,a2-a+1},若BA,求a的值。
分析:因为BA,所以B中的元素1,a2-a+1都是A中的元素,但是要考虑到元素的互异性。
集合的解题方法与技巧
解得 k=3.
点评 P ∩Q ≠Q 的情况较复杂,若正面求解,需要 一一列举出来分别讨论,然后再求并集,运算量 大,且不容易考虑周全.注意到“≠”的反面比较 单纯,从问题的反面去思考探究,就容易得到正面 结论,这其实就是补集思想的应用.
【例 2】
设 P 和 Q 是两个集合,定义集合 P -Q =
{x|x∈P, 且 x∉Q }, 如果 P ={x|log2x<1}, Q ={x||x -2|<1},那么 P -Q 等于 A.{x|0<x<1} C.{x|1≤x<2}
解析
( B.{x|0<x≤1} D.{x|2≤x<3}
)
先将集合 P 、Q 简单化,得 P ={x|0<x<2},
合时也要注意,本题若取S1={1},S2={2},S3= {3},I={1,2,3},选项B、C、D都成立,不能得出 结论,还需进一步检验.
【例7】
已知集合P ={x|4≤x≤5,x∈R},Q =
{x|k+1≤x≤2k-1,x∈R},求当P ∩Q ≠Q 时,实 数k的取值范围.
解析 若 P ∩Q =Q 时,则 Q ⊆P .
返回
教育类精品资料备课资讯2集合的解题方法与技巧集合是学习数学的基础和工具是高考的必考内容之一由于集合知识的抽象性给相关问题的解决带来一定的困难利用定义法具体化方法直观化方法和简单化方法可以帮您走出困境
【教育类精品资料】
备课资讯 2
集合的解题方法与技巧
最新版集合问题的解题方法和技巧
集合问题解题方法和技巧一、集合间的包含与运算关系问题解题技巧:解答集合间的包含与运算关系问题的思路:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的规律为:(1)若给定的集合是不等式的解集,用数轴来解;(2)若给定的集合是点集,用数形结合法求解;(3)若给定的集合是抽象集合, 用Venn 图求解。
例1、(2012高考真题北京理1)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= ( )A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【答案】D 【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .例2、(2011年高考广东卷理科2)已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( )A .0B . 1C .2D .3答案:D解析:作出圆x 2+y 2=l 和直线y=x,观察两曲线有2个交点例3(2012年高考全国卷)已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则 ( )A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆答案:B【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用.【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,作出Venn 图,可知集合C 是最小,集合A 是最大的,故选答案B.二、以集合语言为背景的新信息题解题技巧:以集合语言为背景的新信息题,常见的有定义新概念型、定义新运算型及开放型,解决此类问题的关键是准确理解新概念或运算,通过对题目的分析,明确所要解决的问题,类比集合的有关定义运算来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 脊柱由哪些椎骨所组成,它们是如何连结成脊柱的(即椎骨间的连结,需通
过椎体之间如何连结?椎弓之间又是如何连结?分别进行归)。
2. 简述肩关节的组成及结构特点
3. 试述肩关节和髋关节的异同点。
4. 简述肘关节的构成和主要的韧带。
5. 肘关节可做哪些运动?分别写出参与各组运动的肌肉
6. 骨盆界线是怎样围成的?何谓大、小骨盆?
7. 简述骨盆的组成,区别男女性骨盆的主要依据是什么? 8. 简述膝关节的构造及特点。
9. 上山和下山,在哪一种情况下容易扭伤踝关节?为什么? 10. 简述三大唾液腺的名称和开口的部位。
11. 简述鼻旁窦的名称与开口位置
12. 食管的各狭窄分别位于何处,其中第3狭窄距中切牙的距离是多少? 13. 简要叙述胃的形态、位置和分部。
14. 简述胆汁的产生及排出途径? 15. 简述肝的位置及毗邻。
16. 试述精子的产生部位、排出途经及常用的结扎部位。
17. 简述男性尿道的分部和形态特点。
18. 简述固定子宫的韧带及其主要作用。
19. 简述子宫的位置、形态和分部。
20. 简述输卵管由内向外分为哪几部,并指出受精和结扎的部位。
21. 三尖瓣复合体的构成及作用
22. 那些结构保证了心腔内血液的定向流动?他们各位于何处? 23. 简述右心房血栓脱落导致肺内细小动脉阻塞的具体循环途径? 24. 试述主动脉分段及每段主要分支名称
25. 请写出腹主动脉直接分出的脏支。
哪支既是营养性血管又是功能性血管?。
26. 请写出体表能触及动脉搏动的动脉名称 27. 试述肱二头肌得到食物中营养物质供应的途径
28. 肝硬化门脉高压患者,门静脉的血液往往可经过食管静脉丛(2分)、直肠静
脉丛(2分)和脐周静脉网(3分,脐平面以上和以下回流途径各占1.5分)回流入心房,请用箭头表示各回流途径(写出各静脉名称) 29. 试述从手背静脉网注射抗生素,药物是如何到达大拇指的? 30. 简述从手背静脉输液保守治疗阑尾炎,药物到达病灶处的途径。
31. 口服抗生素治疗阑尾炎,写出药物到达阑尾所经过的结构名称。
32. 请叙述脾的位置、形态及触诊标志。
33. 房水的产生和循环途径如何?
34. 试用解剖学知识阐明脊髓(胸段)右半侧横贯损伤时可出现哪些体征?并述其
产生原因? 35. 写出大脑皮质主要的4个功能定位区并注明其功能。
36. 简述头面部浅感觉传导通路
…………………………………………………………..装………………….订…………………..线………………………………………………………
37.请写出躯干和四肢意识性本体感觉和精细触觉传导通路中3级神经元的名称
及其上行过程中主要传导束的名称。
38.下颌牙齿疼痛的神经传导通路如何?
39.视觉传导通路的不同部位受损,可引起怎样的视觉缺损?
40.根据已学的解剖学知识写出“望梅止渴”这一调节过程所涉及的脑神经)、
脑神经核和腺体。
41.一患者左侧大脑脚底血肿,该血肿压迫到大脑脚底的下行传导束和穿出脚间
窝左侧的神经。
请问①什么神经穿出脚间窝?该患者此神经损伤引起什么症状?②大脑脚底有哪些下行传导束?损伤后引起什么症状?
42.脑脊液的产生及回流
43.大脑动脉环的构造及意义。
44.简述内囊的位置、分部及各部通过的主要纤维束名称。
45.试述大腿肌的分群及每群肌肉的名称和神经支配
46.试述舌的神经支配。
McBurney点肝门内囊斜角肌间隙Treitz韧带:隔缘肉柱脑神经胸骨角
Willis环骨连接乳糜池胸膜腔
白交通支冠状窦三尖瓣复合体牙周组织
膀胱三角核上瘫神经核咽峡
臂丛黄斑神经节眼的屈光系统
大脑动脉环:灰质肾窦翼点
胆囊三角交感干肾区硬膜外隙
第三脑室解剖学姿势十二指肠球掌浅弓:
动脉静脉角视神经盘:蛛网膜下隙
窦房结局部淋巴结体循环:椎管
二尖瓣复合体面神经丘危险三角椎间孔
肺门内侧丘系纤维束锥体束
肝蒂:小脑扁桃体纵隔。