最新河北省衡水中学中考招生数学模拟试卷(一)

合集下载

河北省衡水市八校2024届中考数学模拟试题含解析

河北省衡水市八校2024届中考数学模拟试题含解析

河北省衡水市八校2024届中考数学模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.对于反比例函数y=k x(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称2.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .3.如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B′处,此时,点A 的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )A .∠BCB′=∠ACA′B .∠ACB=2∠BC .∠B′CA=∠B′ACD .B′C 平分∠BB′A′4.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x =+D .2003503x x=- 5.下列实数中,有理数是( )A.2B.2.1C.πD.536.下列图形中一定是相似形的是( )A.两个菱形B.两个等边三角形C.两个矩形D.两个直角三角形7.的倒数是()A.B.C.D.8.下列各数中,无理数是()A.0 B.227C.4D.π9.计算-5+1的结果为()A.-6 B.-4 C.4 D.610.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.12.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____13.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.14.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE 的长为_________.15.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.17.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为______.三、解答题(共7小题,满分69分)18.(10分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?19.(5分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P 是点A ,B 关于直线y=ax+b (a≠0)的等角点,且点P 位于直线AB 的右下方,当∠APB=60°时,求b 的取值范围(直接写出结果).20.(8分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()A 2,3-,B ()4,n 两点. (1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.21.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22.(10分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.23.(12分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.24.(14分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】分析:根据反比例函数的性质一一判断即可;详解:A .若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B .当k >0时,y 随x 的增大而减小,错误,应该是当k >0时,在每个象限,y 随x 的增大而减小;故本选项不符合题意;C .错误,应该是过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为|k |;故本选项不符合题意;D .正确,本选项符合题意.故选D .点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.2、B【解题分析】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+>,解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.3、C【解题分析】根据旋转的性质求解即可.【题目详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确;B:CB CB =',B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''2A CB B ''∴∠=∠,ACB A CB ∠=∠''2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论,故答案:C.【题目点拨】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件4、B【解题分析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程5、B【解题分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【题目详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、故选B.【题目点拨】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.6、B【解题分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【题目详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【题目点拨】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.7、C【解题分析】由互为倒数的两数之积为1,即可求解.【题目详解】∵,∴的倒数是.故选C8、D【解题分析】利用无理数定义判断即可.【题目详解】解:π是无理数,故选:D.【题目点拨】此题考查了无理数,弄清无理数的定义是解本题的关键.9、B【解题分析】根据有理数的加法法则计算即可.【题目详解】解:-5+1=-(5-1)=-1.故选B.【题目点拨】本题考查了有理数的加法.10、B【解题分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【题目详解】解:主视图,如图所示:.故选B.【题目点拨】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.二、填空题(共7小题,每小题3分,满分21分)11、π﹣1【解题分析】根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【题目详解】连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=12,∴CD=OD=1,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=24522360π()﹣12×11=π﹣1.故答案为π﹣1.【题目点拨】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.12、33【解题分析】试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE ,∴△DAC ≌△BAE (SAS ),∴∠ADC=∠ABE ,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P 在以BC 为直径的圆上,∵外心为O ,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=3,所以OP 的最小值是33-.故答案为33-.考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.13、()()1n n m m -+【解题分析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).14、1095【解题分析】由勾股定理可先求得AM ,利用条件可证得△ABM ∽△EMA ,则可求得AE 的长,进一步可求得DE .【题目详解】详解:∵正方形ABCD ,∴∠B =90°.∵AB =12,BM =5,∴AM =1.∵ME ⊥AM ,∴∠AME =90°=∠B .∵∠BAE =90°,∴∠BAM +∠MAE =∠MAE +∠E ,∴∠BAM =∠E ,∴△ABM ∽△EMA ,∴BM AM =AM AE,即513=13AE , ∴AE =1695,∴DE =AE ﹣AD =1695﹣12=1095. 故答案为1095. 【题目点拨】本题主要考查相似三角形的判定和性质,利用条件证得△ABM ∽△EMA 是解题的关键.15、B【解题分析】正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B . 16、1 【解题分析】设购买篮球x 个,则购买足球()50x -个,根据总价=单价⨯购买数量结合购买资金不超过3000元,即可得出关于x 的一元一次不等式,解之取其中的最大整数即可.【题目详解】设购买篮球x 个,则购买足球()50x -个,根据题意得:()80x 5050x 3000+-≤, 解得:50x 3≤. x 为整数,x ∴最大值为1.故答案为1.【题目点拨】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.17、1【解题分析】试题解析:∵正方体的展开图中对面不存在公共部分,∴B 与-1所在的面为对面.∴B 内的数为1.故答案为1.三、解答题(共7小题,满分69分)18、(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解题分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【题目详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【题目点拨】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.19、(1)C(2)(3)b<﹣且b≠﹣2或b>【解题分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【题目详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ 的解析式为:y=﹣3,若点P 与B 点重合,则直线PQ 与直线BQ 重合,此时,b=﹣,若点P 与点A 重合,则直线PQ 与直线AQ 重合,此时,b=, 又∵y=ax+b (a≠0),且点P 位于AB 右下方,∴b <﹣ 且b≠﹣2或b >.【题目点拨】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.20、(1)6y x =-;3342y x =-+;(2)2x <-或04x <<; 【解题分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【题目详解】(1)m y x= 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; 点()4,B n 在6y x=- 上, 32n ∴=-, 3(4,2B ∴- ), 一次函数y kx b =+过点()2,3A -,3(4,2B - )23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【题目点拨】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.21、50 见解析(3)115.2°(4)35【解题分析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名) 故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P (恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.22、 (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解题分析】(1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【题目详解】(1)把()A 3,1代入()m y m 0x=≠得m 3=. ∴反比例函数的表达式为3y x = 把()A 3,1和()B 0,2-代入y kx b =+得132k b b =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【题目点拨】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.23、证明见解析.【解题分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论.【题目详解】证明:BAD CAE ∠=∠,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【题目点拨】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.24、(1)直线l的解析式为:y =-(2)2O 平移的时间为5秒.【解题分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.【题目详解】(1)由题意得OA 4812=-+=,∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒,OC OAtan OAC 12tan60∠==⨯︒=,∴C点的坐标为(0,-.设直线l 的解析式为y kx b =+,由l 过A 、C 两点,得123012b k b ⎧-=⎪⎨=-+⎪⎩, 解得1233b k ⎧=-⎪⎨=-⎪⎩,∴直线l 的解析式为:y 3x 123=--.(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=,∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=.∵11O D O O OD 41317=+=+=,∴1111D D O D O D 17125=-=-=,∴5t 51==(秒), ∴2O 平移的时间为5秒.【题目点拨】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.。

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024年普通高等学校招生全国统一考试模拟试题数学(一)(考试时间:120分钟,满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集{}0,1,2,3,4,5U =,集合{}1,3,4M =,{}0,3,5N =,则N ()U M = ð()A.{}0,5B.{}1,2,3,4C.{}1,2,3,4,5 D.U【答案】B 【解析】【分析】根据集合并补运算即可求得.【详解】{}0,1,2,3,4,5U =,{}0,3,5N =,所以{}1,2,4U N =ð,所以(){}1,2,3,4U M N = ð,故选:B.2.已知复数z 满足(43i)i z +=-,则z 的虚部为()A.425-B.425 C.4i 25-D.4i 25【答案】A 【解析】【分析】由复数除法运算法则直接计算,结合复数的虚部的概念即可求解.【详解】因为(43i)i z +=-,所以()()()i 43i i 34i 43i 43i 43i 2525z ---===--++-,所以z 的虚部为425-.故选:A.3.将函数()sin 2f x x =的图象向左平移ϕ个单位后得到函数()g x 的图象,若函数()()y f x g x =+的最大值为a ,则a 的值不可能为()A.1B.1C.2D.1【答案】D 【解析】【分析】根据图象的平移变换得到()()sin 22g x x ϕ=+,然后根据和差公式和辅助角公式整理得到()()()2y f x g x x α=+=+,最后根据三角函数的性质求a 的范围即可.【详解】由题意得()()sin 22g x x ϕ=+,则()()()sin 2sin 22y f x g x x x ϕ=+=++sin 2cos 2sin 2sin 2cos 2x x xϕϕ=++()1cos 2sin 2sin 2cos 2x x ϕϕ=++()2x α=+()2x α=+,sin 2tan 1cos 2ϕαϕ=+,因为[]cos 21,1ϕ∈-[]0,2,所以[]0,2a ∈.故选:D.4.在等比数列{}n a 中,若1512a a a ⋅⋅为一确定的常数,记数列{}n a 的前n 项积为n T .则下列各数为常数的是()A.7TB.8T C.10T D.11T 【答案】D 【解析】【分析】根据已知条件判断出6a 为确定常数,再由此确定正确答案.【详解】设等比数列{}n a 的公比为q ,依题意,()3411511111512a a q a a a a q q a =⋅⋅=⋅⋅为确定常数,即6a 为确定常数.7712674T a a a a a == 不符合题意;()48127845T a a a a a a == 不符合题意;()5101291056T a a a a a a == 不符合题意;11111210116T a a a a a == 为确定常数,符合题意.故选:D 5.关于函数4125x y x -=-,N x ∈,N 为自然数集,下列说法正确的是()A.函数只有最大值没有最小值B.函数只有最小值没有最大值C.函数没有最大值也没有最小值D.函数有最小值也有最大值【答案】D 【解析】【分析】先对函数整理化简,根据反比例函数的性质,结合复合函数单调性的“同增异减”,即可求出函数的最小值与最大值.【详解】()22594192252525x x y x x x -+-===+---,52x ¹,由反比例函数的性质得:y 在5,2⎛⎫+∞ ⎪⎝⎭上单调递减,此时2y >,y 在5,2⎛⎫-∞ ⎪⎝⎭上单调递减,此时2y <,又因为N x ∈,N 为自然数集,所以min y 在5,2⎛⎫-∞ ⎪⎝⎭上取到,2x =时,min 7y =-,同理max y 在5,2⎛⎫+∞⎪⎝⎭上取到,3x =时,max 11y =,所以当N x ∈,N 为自然数集时,函数有最小值也有最大值.故选:D .6.已知函数()πcos 12f x x ⎛⎫=-⎪⎝⎭,()πsin 46g x x ⎛⎫=+ ⎪⎝⎭,则“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】分别求出两个函数的对称轴的集合,利用两个集合的关系即可判断.【详解】令()11ππ12m k k -=∈Z ,得()11ππ12m k k =+∈Z ,所以曲线()y f x =关于直线()11ππ12x k k =+∈Z 对称.令()22ππ4π62m k k +=+∈Z ,得()22ππ124k m k =+∈Z ,所以曲线()y g x =关于直线()22ππ124k x k =+∈Z 对称.因为()11π{|π}12m m k k =+∈Z ()22ππ{|}124k m m k =+∈Z 所以“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的充分不必要条件.故选:A.7.O 为坐标原点,F 为抛物线2:8C y x =的焦点,M 为C 上一点,若||6=MF ,则MOF △的面积为()A. B. C. D.8【答案】C 【解析】【分析】首先根据焦半径公式求点M 的坐标,再代入面积公式,即可求解.【详解】设点()00,Mxy ,()2,0F ,所以026MF x =+=,得04x =,0y =±,所以MOF △的面积011222S OF y =⨯=⨯⨯故选:C8.,,a b c 为三个互异的正数,满足2ln 0,31ba cc a a-=>=+,则下列说法正确的是()A.2c a b ->-B.2c b a -≤-C.2c a b +<+D.2c a b+≤+【答案】A 【解析】【分析】对于2ln 0cc a a-=>可构造函数()2ln f x x x =-,利用导函数可求出其单调性,利用数形结合可得02a c <<<,对于31ba =+,可在同一坐标系下画出函数x y =及31x y =+的图象,可得02a b <<<,再由不等式性质可知A 正确.【详解】由2ln0cc a a-=>得2ln 2ln c c a a -=-且c a >,构造函数()2ln f x x x =-,所以()21f x x'=-,易得()f x 在()0,2上单调递减,在()2,+∞上单调递增,其函数图象如下图所示:由图可得02a c <<<,易知函数x y =及31x y =+交于点()2,10,作出函数x y =及31x y =+的图象如下图所示:由图知02a b <<<所以02a b c <<<<,即,2a b c <<,由此可得2a b c +<+,即2c a b ->-.故选:A【点睛】方法点睛:在求解不等式比较大小问题时,经常利用同构函数进行构造后通过函数单调单调性比较出大小,画出函数图象直接由图象观察得出结论.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有两个或两个以上选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)9.已知10个数据的第75百分位数是31,则下列说法正确的是()A.这10个数据中至少有8个数小于或等于31B.把这10个数据从小到大排列后,第8个数据是31C.把这10个数据从小到大排列后,第7个与第8个数据的平均数是31D.把这10个数据从小到大排列后,第6个与第7个数据的平均数是31【答案】AB 【解析】【分析】由百分位数的概念可判断.【详解】因为这10个数据的第75百分位数是31,由100.757.5⨯=,可知把这10个数据从小到大排列后,第8个数为31,可知,选项A ,B 正确,C ,D 错误.故选:AB .10.函数()2,3,x D x x ∈⎧=⎨∉⎩QQ ,则下列结论正确的是()A.()()3.14D D π>B.()D x 的值域为[]2,3C.()()D D x 是偶函数 D.a ∀∈R ,()()D x a D a x +=-【答案】AC 【解析】【分析】根据函数解析式,结合分段函数的性质,逐项判断即可.【详解】()3D π=,()3.142D =,()()3.14D D π>,A 正确;()2,3,x D x x ∈⎧=⎨∉⎩QQ,则()D x 的值域为{}2,3,B 错误;x ∈Q 时,x -∈Q ,()()()22D D x D ==,()()()22D D x D -==,所以()()()()D D x D D x =-,x ∉Q 时,x -∉Q ,()()()32D D x D ==,()()()32D D x D -==,()()()()D D x D D x =-,所以()()D D x 为偶函数,C正确;x =时,取1a =()()12D x a D +==,()(13D a x D -=-=,则()()D x a D a x +≠-,D 错误.故选:AC11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,轴截面ABCD 为等腰梯形,且满足2224cm CD AB AD BC ====.下列说法正确的是()A.该圆台轴截面ABCD 的面积为2B.该圆台的表面积为211πcmC.该圆台的体积为3cmD.【答案】AB 【解析】【分析】求出圆台的高12O O 可判断A ;由圆台的表面积和体积公式可判断B ,C ;由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆可判断D .【详解】对于A ,由2224cm CD AB AD BC ====,可得高12O O ==则圆台轴截面ABCD 的面积为()214m 22⨯+=,故A 正确;对于B ,圆台的侧面积为()()2π1226πcm S =⋅+⨯=侧,又()22ππm1c S =⨯=上,()22π24πcm S=⋅=下,所以()26ππ41cm π1πS =++=表,故B 正确;对于C ,圆台的体积为()()3173π142πcm 33V =++=,故C 错误;对于D ,若圆台存在内切球,则必有轴截面ABCD 存在内切圆,由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆,故D 错误,故选:AB.三、填空题(本题共3小题,每小题5分,共15分)12.已知()12f x x=在点()()1,1f 处的切线为直线20x y t -+=,则=a __________.【答案】12-##-0.5【解析】【分析】结合题目条件,列出方程求解,即可得到本题答案.【详解】因为()12f xx =-,所以21()f x x'=+,因为()f x 在点()()1,1f 处的切线为直线20x y t -+=,所以1(1)12f a '=+=,解得12a =-.故答案为:12-13.已知力123,,F F F ,满足1231N ===F F F ,且123++=F F F 0,则12-=F F ________N.【解析】【分析】将123++=F F F 0变形后平方得到相应结论,然后将12-F F 平方即可计算对应的值.【详解】由123++=F F F 0,可得123+=-F F F ,所以()()22312-=+F F F ,化简可得222312122F =++⋅F F F F ,因为1231===F F F ,所以1221⋅=-F F ,所以12-====F F【点睛】本题考查向量中的力的计算,难度较易.本题除了可以用直接分析计算的方式完成求解,还可以利用图示法去求解.14.已知双曲线C :()222210,0x y a b a b -=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为______.【答案】622【解析】【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,)b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,)33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a⋅=-= ,c e a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得622e +=,故答案为:2+.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,三角形面积为S ,若D 为AC 边上一点,满足,2AB BD BD ⊥=,且223cos 3a S ab C =-+.(1)求角B ;(2)求21AD CD+的取值范围.【答案】(1)2π3(2)3,12⎛⎤ ⎥⎝⎦【解析】【分析】(1)结合面积公式、正弦定理及两角和的正弦公式化简可得tan B =,进而求解即可;(2)在BCD △中由正弦定理可得1sin DC C=,在Rt △ABD 中,可得2sin AD A =,进而得到21sin sin A C AD CD +=+,结合三角恒等变化公式化简可得21πsin 3C AD CD ⎛⎫+=+ ⎪⎝⎭,进而结合正弦函数的图象及性质求解即可.【小问1详解】2cos 3a S ab C =-+ ,23sin cos 3a ab C ab C ∴=-+,即sin cos 3a b C b C =-+,由正弦定理得,3sin sin sin sin cos 3A B C B C =-+,()3sin sin sin sin cos 3B C B C B C ∴+=-+,cos sin sin sin 3B C B C ∴=-,sin 0C ≠,tan B ∴=由0πB <<,得2π3B =.【小问2详解】由(1)知,2π3B =,因为AB BD ⊥,所以π2ABD ∠=,π6DBC ∠=,在BCD △中,由正弦定理得sin sin DC BDDBC C=∠,即π2sin16sin sin DC C C==,在Rt △ABD 中,2sin sin AD A BD A==,sin sin 21sin si 22n 11A CC CA A D D∴++=+=,2π3ABC ∠=,π3A C ∴+=,21ππππsin sin sin sin sin cos cos sin sin sin 3333A C C C C C C C AD CD ⎛⎫⎛⎫∴+=+=-+=-+=+ ⎪ ⎪⎝⎭⎝⎭,π03C << ,ππ2π,333C ⎛⎫∴+∈ ⎪⎝⎭,πsin ,132C ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以21AD CD +的取值范围为3,12⎛⎤ ⎥ ⎝⎦.16.已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式;(2)设1n n n n S b a a +=的前n 项和为n T ,求n T .【答案】(1)21n a n =-(2)242n n n T n +=+【解析】【分析】(1)先用()1n +替换原式中的n ,然后两式作差,结合n a 与n S 的关系,即可得到{}n a 为等差数列,从而得到其通项.(2)由(1)的结论,求得n S 及1n a +,代入1n n n n S b a a +=化简,得到n T 的式子,裂项相消即可.【小问1详解】2241n n n a a S +=-Q ,2111241n n n a a S ++++=-,两式作差得:()()1120n n n n a a a a +++--=,102n n n a a a +>∴-=Q ,{}n a ∴成等差数列,又当1n =时,()2110a -=,所以11a =即()11221n a n n =+-⨯=-【小问2详解】由(1)知21n a n =-,则()()1212122n n n a a n n S n ++-===,即()()()()21111212142121n n n n S n b a a n n n n +⎡⎤===+⎢⎥-+-+⎢⎥⎣⎦1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故1111111483352121n n T n n ⎛⎫=+-+-++- -+⎝⎭L 2111482148442n n n n n n n n +⎛⎫=+-=+= ⎪+++⎝⎭.17.已知椭圆2222:1(0)x y C a b a b +=>>过31,2⎛⎫ ⎪⎝⎭和62⎫⎪⎪⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(2)求AB 的范围.【答案】(1)22143x y +=(2)[]3,4【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解;【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a ba b⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b==,所以椭圆的标准方程为22143x y+=.【小问2详解】由(1)知()11,0F-,()21,0F,当直线l的斜率为0时,24AB a==,当直线l的斜率不为0时,设直线l的方程为1x my=+,()11,A x y,()22,B x y,联立221431x yx my⎧+=⎪⎨⎪=+⎩,消去x,得22(34)690m y my++-=,易得()22Δ636(34)0m m=++>,则12122269,3434my y y ym m--+==++,所以AB==2221212443434mm m+===-++,因为20m≥,所以2344m+≥,所以240134m<≤+,所以34AB≤<,综上,34AB≤≤,即AB的范围是[]3,4.18.《中国制造2025》提出“节能与新能源汽车”作为重点发展领域,明确了“继续支持电动汽车、燃料电池汽车发展,掌握汽车低碳化、信息化、智能化核心技术,提升动力电池、驱动电机、高效内燃机、先进变速器、轻量化材料、智能控制等核心技术的工程化和产业化能力,形成从关键零部件到整车的完成工业体系和创新体系,推动自主品牌节能与新能源汽车与国际先进水平接轨的发展战略,为我国节能与新能源汽车产业发展指明了方向.某新能源汽车制造企业为了提升产品质量,对现有的一条新能源零部件产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的新能源零部件产品中随机抽取了1000件,检测产品的某项质量指标值,根据检测数据整理得到频率直方图(如图):(1)从质量指标值在[)55,75的两组检测产品中,采用分层抽样的方法再抽取5件.现从这5件中随机抽取2件作为样品展示,求抽取的2件产品恰好都在同一组的概率.(2)经估计知这组样本的平均数为61x =,方差为2241s =.检验标准中55n x ns a ⎧⎫-=⨯⎨⎬⎩⎭,55n x ns b ⎡⎤+=⨯⎢⎥⎣⎦,N n *∈,其中[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,s 值四舍五入精确到个位.根据检验标准,技术升级改造后,若质量指标值有65%落在[]11,a b 内,则可以判断技术改造后的产品质量初级稳定,但需要进一步改造技术;若有95%落在[]22,a b 内,则可以判断技术改造后的产品质量稳定,认为生产线技术改造成功.请问:根据样本数据估计,是否可以判定生产线的技术改造成功?【答案】(1)25;(2)详见解析;【解析】【分析】(1)根据分层抽样确定抽取比例,然后运用组合求解即可;(2)根据题中公式,计算出区间并判段数据落在该区间的概率,然后与题中条件比较即可得出结论.【小问1详解】由题意可知[)[)55,6565,750.330.22P P ==,所以抽取的2件产品恰好都在同一组的概率为:223225C C 42C 105P +===;【小问2详解】因为2241s =,知16s ,则11611661165455755 5a b -+⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]45,75内的频率约为0.160.30.266%65%++=>,又22612166121653059055a b -⨯+⨯⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]30,90内的频率约为10.030.040.9393%95%--==<,,所以可以判断技术改造后的产品质量初级稳定,但不能判定生产线技术改造成功.19.如图,//AD BC ,且AD =2BC ,AD ⊥CD ,//EG AD 且EG =AD ,//CD FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN //平面CDE ;(2)求平面EBC 和平面BCF 所夹角的正弦值;【答案】(1)证明见解析(2)1010【解析】【分析】(1)以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,根据空间向量可证MN //平面CDE ;(2)利用平面的法向量可求出结果.【小问1详解】证明:依题意,以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图:可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),3(0,,1)2M ,N (1,0,2).依题意,DC =(0,2,0),DE =(2,0,2).设0n =(x ,y ,z )为平面CDE 的法向量,则0020220n DC y n DE x z ⎧⋅==⎪⎨⋅=+=⎪⎩ ,得0y =,令z =-1,得1x =,则0(1,0,1)n =- ,又3(1,,1)2MN =- ,可得00MN n ⋅= ,直线MN ⊄平面CDE ,所以MN //平面CDE .【小问2详解】依题意,可得(1,0,0)BC =- ,(1,2,2)BE =- ,(0,1,2)CF =- ,设111(,,)n x y z = 为平面BCE 的法向量,则11110220n BC x n BE x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得10x =,令11z =,得11y =,则(0,1,1)n =,设222(,,)m x y z = 为平面BCF 的法向量,则222020m BC x m CF y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得20x =,令21z =,得22y =,则(0,2,1)m =,因此有cos ,||||m n m n m n ⋅<>=⋅ 2152=⨯31010=.于是10sin ,10m n <>= .所以平面EBC 和平面BCF 所夹角的正弦值为1010.。

2023年河北省衡水市部分学校中考数学模拟试卷(含解析)

2023年河北省衡水市部分学校中考数学模拟试卷(含解析)

2023年河北省衡水市部分学校中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共26小题,共72.0分。

在每小题列出的选项中,选出符合题目的一项)1. 3的平方根是( )A. 3B. ±3C. 3D. ±32. 下列运算正确的是( )A. a3+a4=a7B. a3⋅a4=a12C. (a3)4=a7D. (−2a3)4=16a123. 下列事件中,属于确定事件的是( )①抛出的篮球会下落;②从装有黑球、白球的袋中摸出红球;③14人中至少有2人是同月出生;④买一张彩票,中1000万大奖.A. ①②B. ①③C. ②④D. ①②③4. 如果圆锥的母线长为5,底面半径为2,那么这个圆锥的侧面积为( )A. 10B. 10πC. 20D. 20π5. 下列命题中:(1)两组对边分别相等的四边形是平行四边形;(2)对角线相等的平行四边形是矩形;(3)一组邻边相等的平行四边形是菱形;(4)对角线相等且互相垂直的四边形是正方形,正确的命题个数为( )A. 1B. 2C. 3D. 46. 正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x−k的图象大致是( )A. B.C. D.7.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,点P(−a,a)(a>0),连接AP交y轴于点B.若AB:BP=2:1.则sin∠PAO的值是( )A. 13B. 55C. 1010D. 310108.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=24,AB=15,则线段PB的长等于( )A. 22B. 32C. 42D. 529. 如图,矩形ABCD中,点A在双曲线y=−4上,点B,C在x轴上,延xCD,连接BE交y轴于点F,连接CF,则△BFC长CD至点E,使DE=12的面积为( )A. 2B. 3C. 72D. 410. 如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,AD=2,点E是⊙O上的动点(不与C重合),点F为CE的中点,若在E运动过程中DF的最大值为4,则CD的值为( )A. 23B. 22C. 32D. 7211. 已知四个点A,B,C,D和∠MON的位置关系如图所示,其中在∠MON外部的是( )A. 点AB. 点BC. 点CD. 点D12. 与−(12−23)相等的是( )A. −12−23B. 12+23C. −12+23D. 12−2313. 2022年11月29日23时08分,搭载三名中国航天员的神舟十五号载人飞船发射成功,随后与神舟十四号乘组在距离地球约400000m 的中国空间站胜利会师.将数据400000m 用科学记数法表示为a ×10n 米,下列说法正确的是( )A. a =400,n =3B. a =4,n =5C. a =4,n =6D. a =0.4,n =614.如图,在海岛C 测得船A 在其南偏东70°的方向上,测得灯塔B 在其北偏东50°的方向上,则∠ACB =( )A. 50°B. 60°C. 70°D. 80°15. 计算:2 3□(− 3),若要使计算结果最小,则“□”中的符号是( )A. +B. −C. ×D. ÷16. 如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A. ①②③④⑤B. ②④①③⑤C. ⑤④①③②D. ⑤③①④②17. 若66是6?的36倍,则“?”的值是( )A. 0B. 2C. 3D. 418.在玩俄罗斯方块游戏时,底部己有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形( )A. B. C. D.19.如图,在△ABC 中,∠ABC =90°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D 、E 处的读数分别为15,12,0,1,若直尺宽BD =1cm ,则AD 的长为( )A. 13cmB. 12cmC. 1cmD. 32cm 20. 在如图所示的网格中,以点O 为原点,若m 、n 所在直线分别代表y 轴、x 轴,则与点A 在同一反比例函数y =k x(k ≠0)图象上的是( )A. 点MB. 点NC. 点PD. 点Q21. 若有一组有理数:−2,−5,3,0,−0.5,38,则该组数据的中位数( )A. −0.5B. −0.25C. 0D. 122. 如图,将正方形AMNP 和正五边形ABCDE 的中心O 重合,按如图位置放置,连接OP 、OE ,则∠POE =( )A. 18°B. 19°C. 20°D. 21°23. 已知关于x 的一元二次方程x 2−2x +b +2=0有两个不相等的实数根,则一次函数y =x +b 的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限24. 某数学兴趣小组的同学尝试只用一副带刻度的三角板作∠AOB 的角平分线,有如下四位同学的作法,其中无法判断OP 是角平分线的是( ) 甲:OC =OD ,P 为CD 的中点乙:CD //OB ,OC =CP丙:OC =OD ,OE =OF 丁:CD ⊥OB ,P 为CD 的中点A. 甲B. 乙C. 丙D. 丁25.如图,等边△ABC的边长为1,D 是BC 边上一点,过D 作DG ⊥AB 于点G ,设AG =x ,DG =y ,任意改变D 的位置选取5组数对(x ,y ),在坐标系中进行描点,则正确的是( )A. B.C. D.26. 老师设计了“谁是卧底”游戏,用合作的方式描述一个二次函数y=x2+ax+b的图象性质,其中a,b为常数.甲说:该二次函数的对称轴是直线x=1;乙说:函数的最小值为3;丙说:x=−1是方程x2+ax+b=0的一个根;丁说:该二次函数的图象与y轴交于(0,4).若四个描述中,只有“卧底”的描述是假命题,则“卧底”是( )A. 甲B. 乙C. 丙D. 丁第II卷(非选择题)二、填空题(本大题共11小题,共33.0分)27. 分解因式:x3−x=28. 方程x2−3x=1的解是______ .29. 命题“对顶角相等”的逆命题是______.30. 请写出一个函数的表达式,使其图象是以直线x=−2为对称轴,开口向上的抛物线:______ .31. 小明在跳绳考核中,前4次跳绳成绩(次数/分钟)记录为:140,138,140,137,若要使5次跳绳成绩的平均数与众数相同,则小明第5次跳绳成绩是______ .32.如图,在矩形ABCD中,AB=4,BC=5,E点为BC边延长线一点,且CE=3.连接AE交边CD于点F,过点D作DH⊥AE于点H,则DH=______ .33.如图,正方形ABCD 的边长为2,点E 是边AB 上的动点,连接ED 、EC ,将ED 绕点E 顺时针旋转90°得到EN ,将EC 绕点E 逆时针旋转90°得到EM ,连接MN ,则线段MN 的取值范围为______ .34. 如图,二次函数y =14x 2−32x−4的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,则∠ACB = ______ °;M 是二次函数在第四象限内图象上一点,作MQ //y 轴交BC 于Q ,若△NQM是以NQ 为腰的等腰三角形,则线段NC 的长为______ .35. 若|m |=(π−3.14)0,则m = ______ .36. 若a =n m −m n ,b =n m +m n ,则(1)a +b = ______ ;(2)a 2−b 2= ______ .37. 如图,A M B 关于AB 对称的−A O B 经过−A MB 所在圆的圆心O ,已知AB =6,点P 为A M B 上的点,则(1)∠AOB = ______ °;(2)点P 到AB 的最大距离是______ ;(3)若点M 、N 分别是A P 、B P 的中点,则M N 的长为______ .三、解答题(本大题共17小题,共165.0分。

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)①

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)①

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)①一.算术平方根(共1小题)1.(2023•河北一模)若,则a=( )A.B.1C.D.2二.实数与数轴(共2小题)2.(2023•河北一模)如图,在数轴上标注了①、②、③,④四段范围,实数a与b同时落在某一段上,若a+b=0,则这一段是( )A.④B.③C.②D.①3.(2023•海港区一模)实数a在数轴上的对应点的位置如图所示.若实数b满足﹣a<b<a,则b的值可以是( )A.2B.﹣1C.﹣2D.3三.同底数幂的乘法(共1小题)4.(2023•海港区一模)墨迹覆盖了等式“x3x=x4(x≠0)”中的运算符号,则覆盖的是( )A.﹣B.÷C.+D.×四.分式的加减法(共2小题)5.(2023•河北一模)小刚在化简﹣时,把整式M抄错了,得到的化简结果是,他在核对时发现所抄写的M比原来的M大2b,则原式的化简结果是( )A.B.C.﹣D.6.(2023•海港区一模)若,则□中的数是( )A.﹣1B.﹣2C.﹣3D.任意实数五.根的判别式(共1小题)7.(2023•河北一模)老师设计了接力游戏,用合作的方式完成判断一元二次方程根的情况,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成判断,过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有甲B.甲和乙C.乙和丙D.乙和丁六.解一元一次不等式组(共1小题)8.(2023•丰南区一模)[x]表示不超过x的最大整数.如[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解,其中正确的结论是( )A.①②B.②④C.②③D.①③七.函数的图象(共1小题)9.(2023•河北一模)在恒温实验室里,有充满一定质量气体的密闭气球,现三次改变气球的体积并测得球内气体的密度,体积与密度的三对对应值分别用图所示的A点,B点、C 点表示,若第四次改变体积,得到体积与密度的对应值可以表示成的点是( )A.P点B.Q点C.M点D.N点八.反比例函数的应用(共1小题)10.(2023•保定一模)密闭容器内有一定质量的气体,当容器的体积v(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积v是反比例函数关系,它的图象如图所示.则正确的是( )A.函数解析式为B.容器内气体的质量是5vC.当ρ≤8kg/m3时,v≥1.25m3D.当ρ=4kg/m3时,v=3m3九.抛物线与x轴的交点(共1小题)11.(2023•丰南区一模)课堂上,老师给出一道题:如图,将抛物线C:y=x2﹣6x+5在x 轴下方的图象沿x轴翻折,翻折后得到的图象与抛物线C在x轴上方的图象记为G(包含x轴上的点),已知直线l:y=x+m与图象G有两个公共点,求m的取值范围.甲同学的结果是﹣5<m<﹣1,乙同学的结果是m>.下列说法正确的是( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确一十.专题:正方体相对两个面上的文字(共1小题)12.(2023•河北一模)图1表示一个正方体,只有三个面上分别标有不同的点数,图2是这个正方体的表面展开图,则在图2中面“”是( )A.①B.②C.③D.④一十一.角的大小比较(共1小题)13.(2023•河北一模)如图1,图2所示,把一副三角板先后放在∠AOB上,则∠AOB的度数可能( )A.60°B.50°C.40°D.30°一十二.三角形的外角性质(共1小题)14.(2023•黄骅市一模)将三角尺和直尺如图所示叠放在一起,已知∠1=80°,则∠2=( )A.40°B.45°C.50°D.55°一十三.等腰三角形的判定(共1小题)15.(2023•河北一模)如图所标数据,下面说法正确的是( )A.①是等腰三角形B.②是等腰三角形C.①和②均是等腰三角形D.①和②都不是等腰三角形一十四.等边三角形的性质(共1小题)16.(2023•丰南区一模)老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE 和正三角形ABG,连接AC,DG交于点F,下列四位同学的说法不正确的是( )甲AC⊥AG乙DG是AB的垂直平分线丙△DCF是等腰三角形丁AC与DE平行A.甲B.乙C.丙D.丁一十五.菱形的判定(共1小题)17.(2023•河北一模)如图,在四边形ABCD中,对角线AC,BD交于O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形,证明:∵AC⊥BD,OB=OD.∴AC垂直平分BD.①∴AB=AD,CB=CD,②四边形ABCD是菱形.( )A.推理严谨,证明正确B.证明时,在①开始出错C.证明时,在②开始出错D.题目缺少条件,需要补充条件才能证明一十六.矩形的性质(共1小题)18.(2023•广阳区一模)如图,两个等宽的矩形纸条交叉叠放在一起,若重合部分构成的四边形为ABCD,求证:四边形ABCD是菱形.证法1:设两张等宽的纸条的宽为h,∵纸条的对边平行,∴AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.又∵S▱ABCD=BC•h=AB•h,∴BC=AB,∴四边形ABCD是菱形.证法2:∵AB=0.9cm,BC=0.9cm,CD=0.9cm,AD=0.9cm(直尺测量所得),∴AB=BC=CD=AD,∴四边形ABCD是菱形.下列说法正确的是( )A.证法1还需要证明三角形全等,该证明才完整B.证法2用特殊到一般法证明了该问题C.证法1的证明过程是严谨完整的D.证法2只要测量够一百个四边形的边长进行验证,就能证明该问题一十七.正多边形和圆(共1小题)19.(2023•河北一模)如图,在正六边形ABCDEF中,点M是CD边的中点,P是边AF 上任意一点,若正六边形ABCDEF的面积是12,则S△CMP的值是( )A.2B.3C.4D.由于P的位置不确定,所以S△CMP的值也不确定一十八.解直角三角形(共1小题)20.(2023•海港区一模)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan A的值是( )A.B.C.2D.一十九.条形统计图(共1小题)21.(2023•黄骅市一模)某中学开展“迎接2022年北京冬奥会”的手抄报作品征集活动,从中随机抽取了部分作品,按A,B,C,D,E五个等级评价并进行统计,绘制成两幅不完整的统计图,根据图中提供的信息,下列说法正确的是( )A.本次调查的样本容量为200B.C等级的学生有40名C.扇形统计图B等级所对应的扇形圆心角的度数为144°D.该校有1200名学生参加竞赛,则估计成绩为A和B等级的学生共有652名二十.折线统计图(共1小题)22.(2023•广阳区一模)如图是某市连续20天的平均气温折线统计图,则下列说法正确的是( )A.平均数是9.4,众数是10B.中位数是9,平均数是10C.中位数是9.4,众数是9D.中位数是9.5,众数是9二十一.方差(共1小题)23.(2023•海港区一模)甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方差有分别是,,,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A.甲团B.乙团C.丙团D.甲或乙团二十二.游戏公平性(共1小题)24.(2023•广阳区一模)在元旦联欢会上,3名小朋友分别站在三角形三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先坐到凳子上谁获胜,为使游戏公平,则凳子应放在三角形的( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)①参考答案与试题解析一.算术平方根(共1小题)1.(2023•河北一模)若,则a=( )A.B.1C.D.2【答案】C【解答】解:∵,∴3=2+a,∴a=.故选:C.二.实数与数轴(共2小题)2.(2023•河北一模)如图,在数轴上标注了①、②、③,④四段范围,实数a与b同时落在某一段上,若a+b=0,则这一段是( )A.④B.③C.②D.①【答案】C【解答】解:∵a+b=0,∴a=b=0或a、b异号且绝对值相等,∴实数a与b同时落在第②段上,故选:C.3.(2023•海港区一模)实数a在数轴上的对应点的位置如图所示.若实数b满足﹣a<b<a,则b的值可以是( )A.2B.﹣1C.﹣2D.3【答案】B【解答】解:由数轴的定义得:1<a<2,∴﹣2<﹣a<﹣1,∴|a|<2,又∵﹣a<b<a,∴b到原点的距离一定小于2,观察四个选项,只有选项B符合,故选:B.三.同底数幂的乘法(共1小题)4.(2023•海港区一模)墨迹覆盖了等式“x3x=x4(x≠0)”中的运算符号,则覆盖的是( )A.﹣B.÷C.+D.×【答案】D【解答】解:∵x3•x=x4(x≠0),∴覆盖的是:×.故选:D.四.分式的加减法(共2小题)5.(2023•河北一模)小刚在化简﹣时,把整式M抄错了,得到的化简结果是,他在核对时发现所抄写的M比原来的M大2b,则原式的化简结果是( )A.B.C.﹣D.【答案】A【解答】解:小刚在抄错整式M情况下,有﹣=,∴M=a+b,则不抄错的M=a+b﹣2b=a﹣b,∴﹣==,故选:A.6.(2023•海港区一模)若,则□中的数是( )A.﹣1B.﹣2C.﹣3D.任意实数【答案】B【解答】解:由题意可得:□=====﹣2,故选:B.五.根的判别式(共1小题)7.(2023•河北一模)老师设计了接力游戏,用合作的方式完成判断一元二次方程根的情况,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成判断,过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有甲B.甲和乙C.乙和丙D.乙和丁【答案】B【解答】解:方程化为一般式为x2+4mx﹣3m2﹣1=0,a=1,b=4m,c=﹣3m2﹣1,所以甲出现错误,b2=(4m)2,所以乙出现错误.故选:B.六.解一元一次不等式组(共1小题)8.(2023•丰南区一模)[x]表示不超过x的最大整数.如[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解,其中正确的结论是( )A.①②B.②④C.②③D.①③【答案】C【解答】解:①当x=3.5时,[﹣3.5]=﹣4,﹣[x]=﹣3,不相等;故①不正确;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;故②是正确的;③当﹣1<x<0时,0<1+x<1,1<1﹣x<2,则:[1+x]+[1﹣x]=0+1=1;当x=0时,[1+x]+[1﹣x]=1+1=2;当0<x<1时,1<1+x<2,0<1﹣x<1,[1+x]+[1﹣x]=1+0=1;综上③是正确的;故当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2是正确的;④x﹣[x]的范围为0≤x﹣[x]<1,∵4x﹣2[x]+5=0,即:,亦即:,∴,即:﹣7<2x≤﹣5,即﹣3.5<x≤﹣2.5,当﹣3.5<x<﹣3时,方程变形为4x﹣2×(﹣4)+5=0,解得x=﹣3.25;当﹣3≤x≤﹣2.5时,方程变形为4x﹣2×(﹣3)+5=0,解得x=﹣2.75;∴x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0的解,故④是错误的.故答案为:C.七.函数的图象(共1小题)9.(2023•河北一模)在恒温实验室里,有充满一定质量气体的密闭气球,现三次改变气球的体积并测得球内气体的密度,体积与密度的三对对应值分别用图所示的A点,B点、C 点表示,若第四次改变体积,得到体积与密度的对应值可以表示成的点是( )A.P点B.Q点C.M点D.N点【答案】D【解答】解:由三次改变气球的体积并测得球内气体的密度,体积与密度的三对对应值分别用图所示的A点,B点、C点表示,可得球内气体的质量大约为:m=ρV≈3×1.5=4.5,点N表示气体的质量大约为:1×4.5=4.5,∴第四次改变体积,得到体积与密度的对应值可以表示成的点是N.故选:D.八.反比例函数的应用(共1小题)10.(2023•保定一模)密闭容器内有一定质量的气体,当容器的体积v(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积v是反比例函数关系,它的图象如图所示.则正确的是( )A.函数解析式为B.容器内气体的质量是5vC.当ρ≤8kg/m3时,v≥1.25m3D.当ρ=4kg/m3时,v=3m3【答案】C【解答】解:设ρ=,将(2,5)代入ρ=得5=,解得k=10,∴ρ=,故A选项错误,不符合题意;v是体积单位,故B选项说法不符合题意;将V=8代入ρ=得ρ=1.25.∴当ρ≤8kg/m3时,v≥1.25m3正确,符合题意;将ρ=4kg/m3代入ρ=得v=2.5m3,故D选项错误,不符合题意.故选:C.九.抛物线与x轴的交点(共1小题)11.(2023•丰南区一模)课堂上,老师给出一道题:如图,将抛物线C:y=x2﹣6x+5在x 轴下方的图象沿x轴翻折,翻折后得到的图象与抛物线C在x轴上方的图象记为G(包含x轴上的点),已知直线l:y=x+m与图象G有两个公共点,求m的取值范围.甲同学的结果是﹣5<m<﹣1,乙同学的结果是m>.下列说法正确的是( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【答案】C【解答】解:令y=x2﹣6x+5=0,解得(1,0),(5,0)将点(1,0),(5,0)代入直线y=x+m,得m=﹣1,﹣5;∴﹣5<m<﹣1翻折后的抛物线的解析式为y=﹣(x﹣3)2+4,由消去y得到x2﹣5x+5+m=0,当Δ=0时,25﹣20﹣4m=0,m=,∴当m>时,直线l:y=x+m与图象G有两个公共点,综上所述,m>或﹣5<m<﹣1时,直线l:y=x+m与图象G有两个公共点,故选:C.一十.专题:正方体相对两个面上的文字(共1小题)12.(2023•河北一模)图1表示一个正方体,只有三个面上分别标有不同的点数,图2是这个正方体的表面展开图,则在图2中面“”是( )A.①B.②C.③D.④【答案】D【解答】解:观察图形可知,图1表示一个正方体,只有三个面上分别标有不同的点数,图2是这个正方体的表面展开图,则在图2中面“”是④.故选:D.一十一.角的大小比较(共1小题)13.(2023•河北一模)如图1,图2所示,把一副三角板先后放在∠AOB上,则∠AOB的度数可能( )A.60°B.50°C.40°D.30°【答案】C【解答】解:由图1可得∠AOB<45°,由图2可得∠AOB>30°,∴30°<∠AOB<45°,故选:C.一十二.三角形的外角性质(共1小题)14.(2023•黄骅市一模)将三角尺和直尺如图所示叠放在一起,已知∠1=80°,则∠2=( )A.40°B.45°C.50°D.55°【答案】C【解答】解:∵∠1=∠2+∠3,∴∠2=∠1﹣∠3,∵∠1=80°,∠3=30°,∴∠2=50°.故选:C.一十三.等腰三角形的判定(共1小题)15.(2023•河北一模)如图所标数据,下面说法正确的是( )A.①是等腰三角形B.②是等腰三角形C.①和②均是等腰三角形D.①和②都不是等腰三角形【答案】B【解答】解:图①,三角形的第三边的长不确定,故①不一定是等腰三角形;图②,三角形的第三个角是180°﹣50°﹣80°=50°,三角形有两个角都是50°,故②是等腰三角形.故选:B.一十四.等边三角形的性质(共1小题)16.(2023•丰南区一模)老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE 和正三角形ABG,连接AC,DG交于点F,下列四位同学的说法不正确的是( )甲AC⊥AG乙DG是AB的垂直平分线丙△DCF是等腰三角形丁AC与DE平行A.甲B.乙C.丙D.丁【答案】A【解答】解:在正五边形ABCDE和正三角形ABG中,AB=BG=AG=BC=CD=DE=AE,正五边形ABCDE的每个内角为,正三角形ABG的每个内角的度数为60°,∴,∴∠CAG=∠BAC+∠BAG=96°,即AC不垂直于AG,故甲同学的说法错误,符合题意;如图,连接AD,BD,∵CD=DE=BC=AE,∠BCD=∠AED,∴△BCD≌△AED,∴AD=BD,∴点D在线段AB的垂直平分线上,∵AG=BG,∴点G在线段AB的垂直平分线上,∴DG是AB的垂直平分线,故乙同学说法正确,不符合题意;∵∠BCD=108°,∠ACB=36°,∴∠ACD=108°﹣36°=72°,∵∠CFD=∠AFG=180°﹣∠AGF﹣∠CAG=54°,∴∠CDF=180°﹣∠ACD﹣∠CFD=54°,∴∠CDF=∠CFD,∴CD=CF,∴△DCF是等腰三角形,故丙同学说法正确,不符合题意;∵∠CDE+∠ACD=180°+72°=180°,∴AC与DE平行,丁同学说法正确,不符合题意;故选:A.一十五.菱形的判定(共1小题)17.(2023•河北一模)如图,在四边形ABCD中,对角线AC,BD交于O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形,证明:∵AC⊥BD,OB=OD.∴AC垂直平分BD.①∴AB=AD,CB=CD,②四边形ABCD是菱形.( )A.推理严谨,证明正确B.证明时,在①开始出错C.证明时,在②开始出错D.题目缺少条件,需要补充条件才能证明【答案】D【解答】解:∵AC⊥BD,OB=OD,∴AC垂直平分BD,∴AB=AD,CB=CD,由题目条件无法证明四边形ABCD是菱形,故选:D.一十六.矩形的性质(共1小题)18.(2023•广阳区一模)如图,两个等宽的矩形纸条交叉叠放在一起,若重合部分构成的四边形为ABCD,求证:四边形ABCD是菱形.证法1:设两张等宽的纸条的宽为h,∵纸条的对边平行,∴AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.又∵S▱ABCD=BC•h=AB•h,∴BC=AB,∴四边形ABCD是菱形.证法2:∵AB=0.9cm,BC=0.9cm,CD=0.9cm,AD=0.9cm(直尺测量所得),∴AB=BC=CD=AD,∴四边形ABCD是菱形.下列说法正确的是( )A.证法1还需要证明三角形全等,该证明才完整B.证法2用特殊到一般法证明了该问题C.证法1的证明过程是严谨完整的D.证法2只要测量够一百个四边形的边长进行验证,就能证明该问题【答案】C【解答】解:证法1证明过程是严谨完整的,证法2是用特殊值法,这方法不能用于这题证明,故选:C.一十七.正多边形和圆(共1小题)19.(2023•河北一模)如图,在正六边形ABCDEF中,点M是CD边的中点,P是边AF 上任意一点,若正六边形ABCDEF的面积是12,则S△CMP的值是( )A.2B.3C.4D.由于P的位置不确定,所以S△CMP的值也不确定【答案】A【解答】解:如图,连接BE,OC,OD,连接MO并延长交AF于N,则MN⊥AF,AF∥BE∥CD,∴S△COD=CD•OM,S△PCM=CM•MN,∵CM=CD,OM=MN,∴S△COD=S△PCM,又∵S△COD=S正六边形ABCDEF,∴S△PCM=S正六边形ABCDEF=×12=2,故选:A.一十八.解直角三角形(共1小题)20.(2023•海港区一模)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan A的值是( )A.B.C.2D.【答案】B【解答】解:如图:连接BD,由题意得:AD2=22+22=8,BD2=12+12=2,AB2=12+32=10,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,在Rt△ABD中,AD=2,BD=,∴tan A===,故选:B.一十九.条形统计图(共1小题)21.(2023•黄骅市一模)某中学开展“迎接2022年北京冬奥会”的手抄报作品征集活动,从中随机抽取了部分作品,按A,B,C,D,E五个等级评价并进行统计,绘制成两幅不完整的统计图,根据图中提供的信息,下列说法正确的是( )A.本次调查的样本容量为200B.C等级的学生有40名C.扇形统计图B等级所对应的扇形圆心角的度数为144°D.该校有1200名学生参加竞赛,则估计成绩为A和B等级的学生共有652名【答案】C【解答】解:A.调查人数为:26÷26%=100(人),因此选项A不符合题意;B.样本中C等级的人数为:100×20%=20(人),因此选项B不符合题意;C.扇形统计图B等级所对应的扇形圆心角的度数为360°×=144°,因此选项C符合题意;D.1200×=552(人),因此选项D不符合题意;故选:C.二十.折线统计图(共1小题)22.(2023•广阳区一模)如图是某市连续20天的平均气温折线统计图,则下列说法正确的是( )A.平均数是9.4,众数是10B.中位数是9,平均数是10C.中位数是9.4,众数是9D.中位数是9.5,众数是9【答案】A【解答】解:平均数为,众数是10,中位数为,故选:A.二十一.方差(共1小题)23.(2023•海港区一模)甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方差有分别是,,,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A.甲团B.乙团C.丙团D.甲或乙团【答案】C【解答】解:方差越大则数据的离中程度就越大,故方差越小离中程度就越小,数据越稳定.故选:C.二十二.游戏公平性(共1小题)24.(2023•广阳区一模)在元旦联欢会上,3名小朋友分别站在三角形三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先坐到凳子上谁获胜,为使游戏公平,则凳子应放在三角形的( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【答案】D【解答】解:由题意可得,3个小朋友到板凳的距离相等游戏才是公平的,于是板凳的位置到三角形3个顶点的距离相等,因此板凳的位置是三角形三边的垂直平分线的交点,故选:D.。

河北衡水市中考数学模拟试卷(一)含答案解析

河北衡水市中考数学模拟试卷(一)含答案解析

河北衡水中考数学模拟试卷(一)一、选择题(本大题有16个小题,共42分)1.(3分)如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7 B.5 C.4 D.12.(3分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(3分)我国“神七”在9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1064.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A.6 B.8 C.9 D.105.(3分)如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分6.(3分)若方程=1有增根,则它的增根是()A.0 B.1 C.﹣1 D.1和﹣17.(3分)若m个数的平均数x,另n个数的平均数y,则m+n个数的平均数是()A. B. C. D.8.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA等于()A.30°B.36°C.45°D.32°9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=103510.(2分)如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2);则它们的位似中心的坐标是()A.(0,0) B.(﹣1,0)C.(﹣2,0)D.(﹣3,0)11.(2分)若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.1212.(2分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米13.(2分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M 在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:1014.(2分)下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据武汉卷改编)A.①②B.①③C.②③D.①②③15.(2分)如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.cm B.cm C.cm D.cm二、填空题(本大题有3个小题,共10分)16.(3分)比较大小:﹣3cos45°(填“>”“=”或“<”).17.(3分)如图,矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点E,则阴影部分的面积为.(结果保留π)18.(4分)如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交y轴于B(0,﹣4),则四边形AOBC的面积为.三、解答题(本大题有7个小题,共68分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1)(1)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(9分)先化简,再求值:()÷,其中x是方程x2﹣2x﹣2=0的根.21.(9分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y 轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22.(9分)在今年“五•一”小长假期间,某学校团委要求学生参加一项社会调查活动,八年级学生小明想了解他所居住的小区500户居民的家庭收入情况,从中随机调查了本小区一定数量居民家庭的收入情况(收入取整数,单位:元),并将调查的数据绘制成如下直方图和扇形图,根据图中提供的信息,解答下列问题:(1)这次共调查了个家庭的收入,a=,b=;(2)补全频数分布直方图,样本的中位数落在第个小组;(3)请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(4)在第1组和第5组的家庭中,随机抽取2户家庭,求这两户家庭人均月收入差距不超过200元的概率.23.(10分)四边形ABCD内接于⊙O,AB为⊙O的直径,=.(1)如图1,求证:OC∥AD;(2)如图2,OF⊥AD于E,交CD的延长线于F,若=,求cos∠F的值.24.(10分)直线y=﹣x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离;(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;不存在,请说明理由.参考答案与试题解析一、选择题(本大题有16个小题,共42分)1.(3分)如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7 B.5 C.4 D.1【解答】解:设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故选:C.2.(3分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.3.(3分)我国“神七”在9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×106【解答】解:423公里=423 000米=4.23×105米.故选C.4.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A.6 B.8 C.9 D.10【解答】解:如图,作BF⊥AD与点F,,∵BF⊥AD,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BAF和△BEC中,,∴△BAF≌△BEC,∴AF=EC.∵CD=BC=8,DE=6,∴DF=8,EC=2,∴AF=2,∴AD=8+2=10.故选:D.5.(3分)如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分【解答】解:由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.6.(3分)若方程=1有增根,则它的增根是()A.0 B.1 C.﹣1 D.1和﹣1【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.7.(3分)若m个数的平均数x,另n个数的平均数y,则m+n个数的平均数是()A. B. C.D.【解答】解:m+n个数的平均数=,故选C.8.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA等于()A.30°B.36°C.45°D.32°【解答】解:在正五边形ABCDE中,∠C=×(5﹣2)×180°=108°,∵正五边形ABCDE的边BC=CD,∴∠CBD=∠CDB,∴∠CDB=(180°﹣108°)=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故选B.9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.10.(2分)如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2);则它们的位似中心的坐标是()A.(0,0) B.(﹣1,0)C.(﹣2,0)D.(﹣3,0)【解答】解:∵点F与点C是一对对应点,可知两个位似图形在位似中心同旁,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(4,2),F(1,1)代入,得,解得,即y=x+,令y=0得x=﹣2,∴O′坐标是(﹣2,0);故选C.11.(2分)若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.12【解答】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选A.12.(2分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.13.(2分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M 在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.14.(2分)下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据武汉卷改编)A.①②B.①③C.②③D.①②③【解答】解:①若a+b+c=0,则b=﹣a﹣c,∴b2﹣4ac=(a﹣c)2≥0,正确;②若b=2a+3c则△=b2﹣4ac=4a2+9c2+12ac﹣4ac=4a2+9c2+8ac=(2a+2c)2+5c2,∵a≠0∴△恒大于0,∴有两个不相等的实数根,正确;③若b2﹣4ac>0,则二次函数的图象,一定与x轴有2个交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3,正确.故选D.15.(2分)如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.cm B.cm C.cm D.cm【解答】解:点P运动3秒时P点运动了3cm,CP=2×2﹣3=1cm,由勾股定理,得PQ==cm,故选:C.二、填空题(本大题有3个小题,共10分) 16.(3分)比较大小:﹣3 > cos45°(填“>”“=”或“<”). 【解答】解:∵≈3.742, ∴﹣3≈0.742,∵cos45°=≈0.707,∵0.742>0.707,∴﹣3>cos45°,故答案为:>.17.(3分)如图,矩形ABCD 中,BC=2,DC=4,以AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为 π .(结果保留π)【解答】解:连接OE .阴影部分的面积=S △BCD ﹣(S 正方形OBCE ﹣S 扇形OBE )=×2×4﹣(2×2﹣π×2×2)=π.18.(4分)如图,梯形AOBC 的顶点A ,C 在反比例函数图象上,OA ∥BC ,上底边OA 在直线y=x 上,下底边BC 交y 轴于B (0,﹣4),则四边形AOBC 的面积为 2+10 .【解答】解:因为AO∥BC,上底边OA在直线y=x上,则可设BC的解析式为y=x+b,将B(0,﹣4)代入上式得,b=﹣4,BC的解析式为y=x﹣4.把y=1代入y=x﹣4,得x=5,C点坐标为(5,1),则反比例函数解析式为y=,将它与y=x组成方程组得:,解得x=,x=﹣(负值舍去).代入y=x得,y=,A点坐标为(,),OA==,BC==5,∵BC的解析式为y=x﹣4,∴E(4,0),∵B(0,﹣4),∴BE==4,设BE边上的高为h,h×=4×4×,解得:h=2,则梯形AOBC高为:2,梯形AOBC面积为:×2×(+5)=2+10,故答案为:2+10.三、解答题(本大题有7个小题,共68分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1)(1)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【解答】解:(1)如图所示,点C即为所求;(2)如图所示,点P即为所求.20.(9分)先化简,再求值:()÷,其中x是方程x2﹣2x ﹣2=0的根.【解答】解:原式=[﹣]•=•=.∵x2﹣2x﹣2=0,∴x2=2(x+1),∴原式==2.21.(9分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y 轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=8,BC=4,AC=4;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择A题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=A C=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).22.(9分)在今年“五•一”小长假期间,某学校团委要求学生参加一项社会调查活动,八年级学生小明想了解他所居住的小区500户居民的家庭收入情况,从中随机调查了本小区一定数量居民家庭的收入情况(收入取整数,单位:元),并将调查的数据绘制成如下直方图和扇形图,根据图中提供的信息,解答下列问题:(1)这次共调查了40个家庭的收入,a=15%,b=7.5%;(2)补全频数分布直方图,样本的中位数落在第三个小组;(3)请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(4)在第1组和第5组的家庭中,随机抽取2户家庭,求这两户家庭人均月收入差距不超过200元的概率.【解答】解:(1)2÷5%=40(个),所以这次共调查了40个家庭;a=6÷40=15%,第三组的家庭个数=40×45%=18(个),b=(40﹣2﹣6﹣18﹣9﹣2)÷40=7.5%,(2)第20个数和第21个数都落在第三组,所以样本的中位数落在第三个小组,如图,故答案为40,15%,7.5%;三;(3)500×(5%+15%)=100(户),所以估计该居民小区家庭收入较低(不足1000元)的户数大约有100户;(4)设第1组的2户用A、B表示,第5组的3户用a、b、c表示,画树状图为:共有20种等可能的结果数,其中这两户家庭人均月收入差距不超过200元的结果数为8,所以这两户家庭人均月收入差距不超过200元的概率==.23.(10分)四边形ABCD内接于⊙O,AB为⊙O的直径,=.(1)如图1,求证:OC∥AD;(2)如图2,OF⊥AD于E,交CD的延长线于F,若=,求cos∠F的值.【解答】(1)证明:∵=,∴∠BOC=∠BOD,∵∠A=BOD,∴∠A=∠BOC,∴OC∥AD;(2)解:连接BD交OC于G,∵AB为⊙O的直径,∴∠ADB=90°,∵OF⊥AD于E,∴OF∥BD,DE=AD,∴∠CDB=∠F,∵=,∴设BC=2,AD=7,AO=BO=OC=r,∴BD==,∵=,∴OC⊥BD,DG=BG=,∴OG=DE=,∴CG=r﹣,∵CG2+BG2=BC2,即(r﹣)2+()2=4,∴r=4,∴DG=,∴cos∠F=cos∠CDB===.24.(10分)直线y=﹣x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离;(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;不存在,请说明理由.【解答】解:(1)设点M到直线AB的距离的直线解析式为y=x+b,则2=×3+b,解得b=﹣,∴直线解析式为y=x﹣,联立两个直线解析式可得,解得,则点M到直线AB的距离为=6;(2)设与直线y=﹣x﹣4平行的直线解析式为y=﹣x+m,代入抛物线得x2﹣4x+5=﹣x+m,即3x2﹣8x+(15﹣3m)=0,△=64﹣4×3(15﹣3m)=0,解得m=,则9x2﹣24x+16=0,解得x=,则y=()2﹣4×+5=,则交点P的坐标(,),则△PAB面积的最小值=(3+)×(4+)﹣×3×4﹣×(3+)×﹣××(4+)=.。

2024届河北省衡水重点中学毕业升学考试模拟卷数学卷含解析

2024届河北省衡水重点中学毕业升学考试模拟卷数学卷含解析

2024学年河北省衡水重点中学毕业升学考试模拟卷数学卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.半径为R 的正六边形的边心距和面积分别是( ) A .32R ,2332R B .12R ,2332R C .32R ,234R D .12R ,234R 2.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ,DFBA .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .43.把a 1a-a 移到根号内得( ) A a B a C a -D a -4.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是( ) A .a≥1B .a >1C .a≥1且a≠4D .a >1且a≠45.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )A .50.5~60.5 分B .60.5~70.5 分C .70.5~80.5 分D .80.5~90.5 分6.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( ) 月用电量(度) 25 30 40 50 60 户数 1 2421A .极差是3B .众数是4C .中位数40D .平均数是20.57.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果: 居民(户) 1 2 3 4 月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是50B .众数是51C .方差是42D .极差是218.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .9.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =10.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°11.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( ) A .30°B .60°C .120°D .180°12.如图,在矩形ABCD 中,AB=5,BC=7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B′落在∠ADC 的角平分线上时,则点B′到BC 的距离为( )A .1或2B .2或3C .3或4D .4或5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.14.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.15.解不等式组1121x x x -+-⎧⎨≥-⎩①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为 .16.如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK .若∠MKN =40°,则∠P 的度数为___17.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.18.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C 处垂直于地面竖立了高度为2米的标杆CD ,这时地面上的点E ,标杆的顶端点D ,舍利塔的塔尖点B 正好在同一直线上,测得EC =4米,将标杆CD 向后平移到点C 处,这时地面上的点F ,标杆的顶端点H ,舍利塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与塔底处的点A 在同一直线上),这时测得FG =6米,GC =53米. 请你根据以上数据,计算舍利塔的高度AB .20.(6分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)21.(6分)如图,已知Rt △ABC 中,∠C=90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线;(2)若AE :EB=1:2,BC=6,求⊙O 的半径.22.(8分)如图,在▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:△ADE ≌△CBF ;求证:四边形BFDE 为矩形.23.(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OAB C中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=43,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.24.(10分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.25.(10分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.26.(12分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?27.(12分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求ADAB的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A 【解题分析】首先根据题意画出图形,易得△OBC 是等边三角形,继而可得正六边形的边长为R ,然后利用解直角三角形求得边心距,又由S 正六边形=6OBCS 求得正六边形的面积.【题目详解】解:如图,O 为正六边形外接圆的圆心,连接OB ,OC ,过点O 作OH ⊥BC 于H ,∵六边形ABCDEF 是正六边形,半径为R , ∴∠BOC =3600166⨯︒=︒, ∵OB=OC=R ,∴△OBC 是等边三角形, ∴BC=OB=OC =R ,60OBC ∠=︒∵OH ⊥BC ,∴在Rt OBH 中,sin sin 60∠=︒=OHOBH OB,即=OH R∴=OH R R ;∵2112224=⋅=⋅=OBCSBC OH R R R ,∴S 正六边形=226642=⨯=OBCS R R , 故选:A .【题目点拨】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键. 2、D 【解题分析】先由两组对边分别平行的四边形为平行四边形,根据DE ∥CA ,DF ∥BA ,得出AEDF 为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF ,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD 平分∠BAC ,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA ,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC ,AD ⊥BC ,根据等腰三角形的三线合一可得AD 平分∠BAC ,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数. 【题目详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,选项①正确; 若∠BAC=90°,∴平行四边形AEDF 为矩形,选项②正确; 若AD 平分∠BAC , ∴∠EAD=∠FAD ,又DE ∥CA ,∴∠EDA=∠FAD , ∴∠EAD=∠EDA , ∴AE=DE ,∴平行四边形AEDF 为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【题目点拨】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.3、C【解题分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)再把根号内化简即可.【题目详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=,故选C.【题目点拨】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.4、C【解题分析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=223a-,由题意得:223a-≥1且223a-≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.5、C【解题分析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、C【解题分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.7、C【解题分析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C.考点:1.方差;2.中位数;3.众数;4.极差.8、D【解题分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【题目详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D .【题目点拨】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.9、C【解题分析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则. 10、C【解题分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【题目详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【题目点拨】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11、C【解题分析】求出正三角形的中心角即可得解【题目详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C .【题目点拨】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键12、A【解题分析】连接B′D ,过点B′作B′M ⊥AD 于M .设DM=B′M=x ,则AM=7-x ,根据等腰直角三角形的性质和折叠的性质得到:(7-x )2=25-x 2,通过解方程求得x 的值,易得点B′到BC 的距离.【题目详解】解:如图,连接B′D ,过点B′作B′M ⊥AD 于M ,∵点B 的对应点B′落在∠ADC 的角平分线上,∴设DM=B′M=x ,则AM=7﹣x ,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:222''AM AB B M =-,即22(7)25x x -=-,解得x=3或x=4,则点B′到BC 的距离为2或1.故选A .【题目点拨】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1 2【解题分析】先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【题目详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:31 62 =.故答案为:12.【题目点拨】本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.14、3() 6a b-【解题分析】根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=12(AE+AF-EF)=12(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【题目详解】解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,∴AD=AE=12[(AB+AC)-(BD+CE)]=12[(AB+AC)-(BF+CF)]=12(AB+AC-BC),如图2,∵△ABC,△DEF都为正三角形,∴AB=BC=CA ,EF=FD=DE ,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF 和△CFD 中,13BAC C EF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△CFD (AAS );同理可证:△AEF ≌△CFD ≌△BDE ;∴BE=AF ,即AE+AF=AE+BE=a .设M 是△AEF 的内心,过点M 作MH ⊥AE 于H ,则根据图1的结论得:AH=12(AE+AF-EF )=12(a-b ); ∵MA 平分∠BAC ,∴∠HAM=30°;∴HM=AH•tan30°=12(a-b )•33=()3a b 6- 故答案为:()3a b 6-. 【题目点拨】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH 的长是解题关键.15、详见解析.【解题分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【题目详解】(Ⅰ)解不等式①,得:x <1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1,故答案为:x <1、x≥﹣1、﹣1≤x <1.【题目点拨】本题考查了解一元一次不等式组的概念.16、100°【解题分析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【题目详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【题目点拨】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键. 17、11【解题分析】根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案.【题目详解】∵a<b ,a 、b 为两个连续的整数,∴a =5,b =6,∴a +b =11.故答案为11.【题目点拨】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.18、7 【解题分析】试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=12×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.试题解析:∵圆锥的底面周长为6π,∴圆锥的底面半径为 6π÷2π="3,"∵圆锥的侧面积=12×侧面展开图的弧长×母线长, ∴母线长=2×12π÷6π="4,"∴这个圆锥的高是 考点:圆锥的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、55米【解题分析】由题意可知△EDC ∽△EBA ,△FHC ∽△FBA ,根据相似三角形的性质可得,GH FG DC EC AB FA BA EA ==,又DC=HG ,可得FG EC FA EA =,代入数据即可求得AC=106米,再由DC EC AB EA=即可求得AB=55米. 【题目详解】∵△EDC ∽△EBA ,△FHC ∽△FBA,,GH FG DC EC AB FA BA EA∴==, DC HG =又, FG EC FA EA∴=, 即64594AC AC=++, ∴AC=106米,又DC EC AB EA=, ∴244106AB =+, ∴AB=55米.答:舍利塔的高度AB 为55米.【题目点拨】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.20、至少涨到每股6.1元时才能卖出.【解题分析】根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【题目详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,解这个不等式得x≥1205 199,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【题目点拨】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.21、(1)证明见解析;(1)【解题分析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.22、(1)证明见解析;(2)证明见解析.【解题分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【题目详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【题目点拨】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.23、(1)①(2,0),(1),(﹣1);②x;③x,y=;(2)①半径为4,M,1<r.【解题分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.【题目详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为(2,0),(1,2),(﹣1,2);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,21x,∴2x;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴4383,∴M(8343);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,3﹣1,当EN=1时,3,观察图象可知当⊙M的半径r3﹣1<r3.31<r3.【题目点拨】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.24、(1)50人;(2)补图见解析;(3)1 10.【解题分析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下: 化学 生物 政治 历史 地理 化学生物、化学 政治、化学 历史、化学 地理、化学 生物 化学、生物政治、生物 历史、生物 地理、生物 政治 化学、政治 生物、政治历史、政治 地理、政治 历史 化学、历史 生物、历史 政治、历史地理、历史 地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果, 所以该同学恰好选中化学、历史两科的概率为21=2010. 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.25、(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解题分析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得. 【题目详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分, 故答案为:83分、81分; (2)()17982838586835=⨯++++=甲x ,∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s .∵x x =甲乙,22s s <甲乙, ∴推荐甲去参加比赛. 【题目点拨】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台, 【解题分析】(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x )台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x 的不等式,就可以求出x 的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案. 【题目详解】解:(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x)台 依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x 可取0,1,2三个值. ∴该公司按要求可以有以下三种购买方案: 方案一:不购买甲种机器,购买乙种机器6台. 方案二:购买甲种机器l1台,购买乙种机器5台. 方案三:购买甲种机器2台,购买乙种机器4台 (2)根据题意,100x+60(6-x)≥380 解之得x>12由(1)得x≤2,即12≤x≤2. ∴x 可取1,2俩值. 即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元; 购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【题目点拨】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案. 27、12【解题分析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解. 【题目详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处, ∴CE =BC ,∠BAC =∠CAE , ∵矩形对边AD =BC , ∴AD =CE ,设AE 、CD 相交于点F , 在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ), ∴EF =DF , ∵AB ∥CD , ∴∠BAC =∠ACF , 又∵∠BAC =∠CAE , ∴∠ACF =∠CAE , ∴AF =CF , ∴AC ∥DE , ∴△ACF ∽△DEF , ∴35EF DE CF AC ==, 设EF =3k ,CF =5k , 由勾股定理得CE4k =,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=12.【题目点拨】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.。

精选衡水市初三中考数学一模模拟试卷【含答案】

精选衡水市初三中考数学一模模拟试卷【含答案】

精选衡水市初三中考数学一模模拟试卷【含答案】一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.。

【考试必备】河北衡水中学中考提前自主招生数学模拟试卷(6套)附解析

【考试必备】河北衡水中学中考提前自主招生数学模拟试卷(6套)附解析

中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O 的半径为 cm .16.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为 .17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan260°(2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.26.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是:﹣.故选:B.2.解:A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意.故选:D.3.解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.6.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.7.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.9.解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.10.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS=.扇形BOC在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.11.解:∵四边形ABCD是菱形,∴AB∥CD,∠ADB=∠CDB,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∴∠ADB=×140°=70°,故选:D.12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题13.解:5 400 000=5.4×106万元.故答案为5.4×106.14.解:因为l=,l=4π,n=120,所以可得:4π=,解得:r=6,故答案为:615.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y =x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=10,故答案为:10.17.解:∵当1<2时,y 1<y 2,∴函数值y 随x 的增大而增大,∴1﹣2m >0,解得m <∵函数的图象与y 轴相交于正半轴,∴m >0,故m 的取值范围是0<m <故答案为0<m <18.解:如图,延长CF 交GE 的延长线于H ,延长GE 交AB 的延长线于J .设GE =xm .在Rt △BDK 中,∵BD =13,DK :BK =1:2.4,∴DK =5,BK =12,∵AC =BF =HJ =1.6,DK =EJ =5,∴EH =5﹣1.6=3.4,∵CH ﹣FH =CF ,∴﹣=12,∴﹣=12,∴x=12.6≈13(m),故答案为13.三.解答题19.解:(1)原式==(2)原式==20.解:解不等式组得﹣2<x≤5,所以原不等式组的非负整数解为0,1,2,3,4,5.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.22.解:(1)被调查的学生总人数:150÷15%=1000人,选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200;补全统计图如图所示;(2)5500×40%=2200人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B 和D 的有2种可能,即BD 和DB ,P (同时选择B 和D )=.23.解:(1)设现场购买每张电影票为x 元,网上购买每张电影票为y 元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m 元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m )[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m 2﹣120m =0m (16m ﹣120)=0解得m 1=0(舍去) m 2=7.5 答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.24.(1)证明:连接OC . (1分)∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°. (2分)∵AE ⊥CE ,∴∠AEC =∠OCE =90°.∴OC ∥AE .∴∠OCA =∠CAD .∴∠CAD =∠BAC . (4分)∴.∴DC =BC . (5分)(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°.∴BC==3.(6分)∵∠CAE=∠BAC,∠AEC=∠ACB=90°,∴△ACE∽△ABC.(7分)∴.∴,.(8分)∵DC=BC=3,∴.(9分)∴tan∠DCE=.(10分)25.解:(1)函数的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3;(2)如图所示,△ABC为直角三角形,则∠ACB=90°,∵△AMB是等边三角形,则点C是MB的中点,则BC =MC =1,则BO =BC =,同理OC =,OA =2﹣=,则点A 、B 、C 的坐标分别为(﹣,0)、(,0),(0,﹣),则函数的表达式为:y =a (x +)(x ﹣)=a (x 2+x ﹣),即﹣a =﹣,解得:a =,则函数表达式为:y =x 2+x ﹣;(3)y =ax 2+bx +c =x 2+(3﹣mt )x ﹣3mt ,则x 1+x 2=mt ﹣3,x 1x 2=﹣3mt ,AB =x 2﹣x 1==|mt +3|≥|2t +n |,则m 2t 2+6mt +9≥4t 2+4tn +n 2, 即:(m 2﹣4)t 2+(6m ﹣4n )t +(9﹣n 2)≥0,由题意得:m 2﹣4>0,△=(6m ﹣4n )2﹣4(m 2﹣4)(9﹣n 2)≤0,解得:mn =6,故:m =3,n =2或m =6,n =1.26.解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0)∴ 解得:∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F∵x =0时,y =﹣x 2﹣2x +3=3∴A (0,3)∴直线AB 解析式为y =x +3∵点P 在线段AB 上方抛物线上∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0)∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∴S△PAB =S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD =22°30′,则⊙O的半径为cm.16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为.17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan 260° (2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.26.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是:﹣.故选:B.2.解:A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意.故选:D.3.解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.6.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.7.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.9.解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.10.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS=.扇形BOC在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.11.解:∵四边形ABCD是菱形,∴AB∥CD,∠ADB=∠CDB,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∴∠ADB=×140°=70°,故选:D.12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题13.解:5 400 000=5.4×106万元.故答案为5.4×106.14.解:因为l=,l=4π,n=120,所以可得:4π=,解得:r=6,故答案为:615.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y =x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=10,故答案为:10.17.解:∵当1<2时,y 1<y 2,∴函数值y 随x 的增大而增大,∴1﹣2m >0,解得m <∵函数的图象与y 轴相交于正半轴,∴m >0,故m 的取值范围是0<m <故答案为0<m <18.解:如图,延长CF 交GE 的延长线于H ,延长GE 交AB 的延长线于J .设GE =xm .在Rt △BDK 中,∵BD =13,DK :BK =1:2.4,∴DK =5,BK =12,∵AC =BF =HJ =1.6,DK =EJ =5,∴EH =5﹣1.6=3.4,∵CH ﹣FH =CF ,∴﹣=12,∴﹣=12,∴x=12.6≈13(m),故答案为13.三.解答题19.解:(1)原式==(2)原式==20.解:解不等式组得﹣2<x≤5,所以原不等式组的非负整数解为0,1,2,3,4,5.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.22.解:(1)被调查的学生总人数:150÷15%=1000人,选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200;补全统计图如图所示;(2)5500×40%=2200人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B 和D 的有2种可能,即BD 和DB ,P (同时选择B 和D )=.23.解:(1)设现场购买每张电影票为x 元,网上购买每张电影票为y 元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m 元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m )[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m 2﹣120m =0m (16m ﹣120)=0解得m 1=0(舍去) m 2=7.5 答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.24.(1)证明:连接OC . (1分)∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°. (2分)∵AE ⊥CE ,∴∠AEC =∠OCE =90°.∴OC ∥AE .∴∠OCA =∠CAD .∴∠CAD =∠BAC . (4分)∴.∴DC =BC . (5分)(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°.∴BC==3.(6分)∵∠CAE=∠BAC,∠AEC=∠ACB=90°,∴△ACE∽△ABC.(7分)∴.∴,.(8分)∵DC=BC=3,∴.(9分)∴tan∠DCE=.(10分)25.解:(1)函数的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3;(2)如图所示,△ABC为直角三角形,则∠ACB=90°,∵△AMB是等边三角形,则点C是MB的中点,则BC =MC =1,则BO =BC =,同理OC =,OA =2﹣=,则点A 、B 、C 的坐标分别为(﹣,0)、(,0),(0,﹣),则函数的表达式为:y =a (x +)(x ﹣)=a (x 2+x ﹣),即﹣a =﹣,解得:a =,则函数表达式为:y =x 2+x ﹣;(3)y =ax 2+bx +c =x 2+(3﹣mt )x ﹣3mt ,则x 1+x 2=mt ﹣3,x 1x 2=﹣3mt ,AB =x 2﹣x 1==|mt +3|≥|2t +n |,则m 2t 2+6mt +9≥4t 2+4tn +n 2, 即:(m 2﹣4)t 2+(6m ﹣4n )t +(9﹣n 2)≥0,由题意得:m 2﹣4>0,△=(6m ﹣4n )2﹣4(m 2﹣4)(9﹣n 2)≤0,解得:mn =6,故:m =3,n =2或m =6,n =1.26.解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0)∴ 解得:∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F∵x =0时,y =﹣x 2﹣2x +3=3∴A (0,3)∴直线AB 解析式为y =x +3∵点P 在线段AB 上方抛物线上∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0)∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∴S△PAB =S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.中学自主招生数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果是x 5的为A .x 2•x 3B .x 6-xC .x 10÷x 2D .(x 3)2 2.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的 形状不可能是A .B .C .D .3.2581256的值等于A .15116B .±15116C .16116D .±16116 4.点P (m ,n )在平面直角坐标系中的位置如图所示,则坐标(m +1,n -1)对应的点可能是A .AB .BC .CD .D(第2题)AB C DPOy x (第4题)5.完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m ,n 的大长方形,则图中阴影部分的周长是A .4mB .4nC .2m +nD .m +2n6.如图,□OABC 的周长为14,∠AOC =60°,以O 为原点,OC 所在直线为x 轴建立直角坐标系,函数y =k x (x >0)的图像经过□OABC 的顶点A 和BC 的中点M ,则k 的值为A .2 3B .4 3C .6D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.已知某种纸一张的厚度为0.008 7 cm .用科学记数法表示0.0087是 ▲ .8.分解因式2x 2-4xy +2y 2的结果是 ▲ .9.若式子1-2x 在实数范围内有意义,则x 的取值范围是 ▲ .10.计算(6-18)×13+2 6 的结果是 ▲ .11.若x 1,x 2是一元二次方程x 2-2x -4=0的两个实数根,则x 1+x 2-x 1x 2= ▲ .12.如图,点I 为△ABC 的重心,过点I 作PQ ∥BC 交AB 于点P ,交AC 于点Q .若AB =6,AC =4,BC =5,则PQ 的长为 ▲ .13.已知甲、乙两组数据的折线图如图所示,则甲的方差 ▲ 乙的方差(填“>”、“=”或“<”).14.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2, ⌒AC的长为π,则∠ADC 的大小是 ▲ °.15.如图,将边长为8正方形纸片ABCD 沿着EF 折叠,使点C 落在AB 边的中点M 处,点D落在点D '处,MD '与AD 交于点G ,则△AMG 的内切圆半径的长为 ▲ .16.若关于x 的不等式组⎩⎪⎨⎪⎧2x +12+3>-1x <m 的所有整数解的和是-7,则m 的取值范围是 ▲ .(第14题) (第15题)D D 序号 (第13题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)先化简,再求值:(1x 2-4+1x +2)÷x -1x -2,其中-2≤x ≤2,且x 为整数,请你选一个合适的x 值代入求值.18.(7分)解方程23x -1-1=36x -2.19.(8分)如图,在菱形ABCD 中,∠ABC =60°,E 是CD 边上一点,作等边△BEF ,连接AF .(1)求证:CE =AF ;(2)EF 与AD 交于点P ,∠DPE =48°,求∠CBE 的度数.20.(8分)某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):(1)该公司营销员销售该品牌电脑的月销售平均数是 ▲ 台,中位数是 ▲ 台,众数是 ▲ 台.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?说明理由.B C D A E F P (第19题)21.(8分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是 ▲ ;(2)任选两名同学打第一场,求恰好选中甲、乙两位同学的概率.22.(7分)如图,已知M 为△ABC 的边BC 上一点,请用圆规和直尺作出一条直线l ,使直线l 过点M ,且B 关于l 的对称点在∠A 的角平分线上(不写作法,保留作图痕迹).23.(8分)某校学生步行到郊外春游.一班的学生组成前队,速度为4 km/h ,二班的学生组成后队,速度为6 km/h .前队出发1 h 后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为a km/h .若不计队伍的长度,如图,折线A ﹣B ﹣C 、A ﹣D ﹣E 分别表示后队、联络员在行进过程中,离前队的路程y (km)与后队行进时间x (h)之间的部分函数图像.(1)联络员骑车的速度a = ▲ ;(2)求线段AD 对应的函数表达式;(3)求联络员折返后第一次与后队相遇时的时间?(第22题)y (第23题)24.(8分)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,点E 在BC 的延长线上,且∠DEC =∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB =12,CE =3时,求AC 的长.25.(8分)如图,A 、B 、C 三个城市位置如图所示,A 城在B 城正南方向180 km 处,C 城在B 城南偏东37°方向.已知一列货车从A 城出发匀速驶往B 城,同时一辆客车从B 城出发匀速驶往C 城,出发1小时后,货车到达P 地,客车到达M 地,此时测得∠BPM =26°,两车又继续行驶1小时,货车到达Q 地,客车到达N 地,此时测得∠BNQ =45°,求两车的速度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,sin26°≈25,cos26°≈910,tan26°≈12)(第25题)A(第24题)。

【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)

【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)

河北省衡水市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大愿共16个小题,1~10小题,每小题3分:11~16小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+42.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135° D.145°3.(3分)PM2.5是指大气中直径小于或等于0.00000025m的颗粒物,将0.00000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣8 C.25×10﹣6 D.0.25×10﹣74.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种5.(3分)下列运算正确的是()A.a2+a3=2a5B.(﹣a3)2=a9C.(﹣x)2﹣x2=0 D.(﹣bc)4÷(﹣bc)2=﹣b2c26.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A. B.C. D.7.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151° C.116° D.97°8.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75 C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.(3分)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A. B. C.D.11.(2分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.12.(2分)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠013.(2分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A. = B. = C. = D. =14.(2分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个D.5个15.(2分)如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42°C.45° D.48°16.(2分)将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A. B. C. D.二、填空题(17、18题每題3分,19题每空2分,共10分.把答案写在题中横线上)17.(3分)计算: = .18.(3分)阅读下面材料:如图,AB是半圆的直径,点D、E在半圆上,且D为弧BE的中点,连接AE、BD并延长,交圆外一点C,按以下步骤作图:①以点C为圆心,小于BC长为半径画弧,分别交AC、BC于点G、H;②分别以点G、H为圆心,大于GH的长为半径画弧,两弧相交于点M;③作射线CM,交连接A、D两点的线段于点I.则点I到△ABC各边的距离.(填“相等”或“不等”)19.(4分)将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列.如图所示有序排列.如:“峰1”中峰顶C的位置是有理数4,那么,(1)“峰6”中峰顶C的位置是有理数;(2)2008应排在A、B、C、D、E中的位置.三解答题(共68分)20.(本小题满分8分)(1)a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再添加c克糖,并全部溶解(c>0),则糖的质量与糖水的质量比为;生活常识告诉我们,添加的糖完全溶解后,频数 1 2 3 4 5 6 天图9糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是 ;.(2)我们的猜想正确吗?请你证明这个猜想。

河北省衡水市名校2023年中考数学模拟试题含解析

河北省衡水市名校2023年中考数学模拟试题含解析

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的( )A .(b2)3=b5B .x3÷x3=xC .5y3•3y2=15y5D .a+a2=a32.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是( )A .180°B .150°C .120°D .90°3.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a 小时及以内,免费骑行;超过a 小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的( )A .平均数B .中位数C .众数D .方差4.如图,矩形ABCD 中,12AB =,13BC =,以B 为圆心,BA 为半径画弧,交BC 于点E ,以D 为圆心,DA 为半径画弧,交BC 于点F ,则EF 的长为( )A .3B .4C .92D .55.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为( )A .5B .4C .3D .26.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°7.如图,△ABC 的面积为8cm2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm2B .3cm2C .4cm2D .5cm28.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD=60°,PD 交AC 于点D ,已知AB=a ,设CD=y ,BP=x ,则y 与x 函数关系的大致图象是( )A .B .C .D .9.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,5 10.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A 29B 34C .2D 41二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F .若∠ACF=65°,则∠E= .12.因式分解:4ax2﹣4ay2=_____.13.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:__________.15.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.16.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③:1:4ADF ABCS S∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,一次函数y=﹣13x+2的图象交x轴于点P,二次函数y=﹣12x2+32x+m的图象与x轴的交点为(x1,0)、(x2,0),且21x+22x=17(1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y=﹣12x2+32x+m的图象与一次函数y=﹣13x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.18.(8分)如图,已知在△ABC 中,AB=AC=5,cosB=45,P 是边AB 上一点,以P 为圆心,PB 为半径的⊙P 与边BC 的另一个交点为D ,联结PD 、AD .(1)求△ABC 的面积;(2)设PB=x ,△APD 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果△APD 是直角三角形,求PB 的长.19.(8分)如图,点B 在线段AD 上,BC DE ,AB ED =,BC DB =.求证:A E ∠=∠.20.(8分)先化简:241133a a a -⎛⎫÷+ ⎪--⎝⎭,再从3-、2、3中选择一个合适的数作为a 的值代入求值. 21.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.(10分)如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标A (7,1)、B (8,2)、C (9,0).(1)请在图中画出△ABC 的一个以点P (12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC 同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';(2)写出点A'的坐标.23.(12分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2、B【解析】 解:5622180n ππ⨯=,解得n=150°.故选B .考点:弧长的计算.3、B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的中位数,故选B .【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。

河北省衡水市中考数学模拟试卷

河北省衡水市中考数学模拟试卷

河北省衡水市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分) 3的相反数的倒数的绝对值是()A . 3B . ﹣3C .D . ﹣2. (2分)下列的运算中,其结果正确的是()A . 3x+2=5B . 16x2﹣7x2=9x2C . x8÷x2=x4D . x(﹣xy)2=x2y23. (2分) (2017九上·深圳期中) 如图所示,该几何体的俯视图是()A .B .C .D .4. (2分)如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A . ∠ABC=∠A′B′C′B . ∠BOC=∠B′A′C′C . AB=A′B′D . OA=OA′5. (2分)(2018·赣州模拟) 已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是()A .B .C .D .6. (2分)(2017·宜昌模拟) 某校参加校园青春健身操比赛的16名运动员的身高如表:身高(cm)172173175176人数(个)4444则该校16名运动员身高的平均数和中位数分别是(单位:cm)()A . 173cm,173cmB . 174cm,174cmC . 173cm,174cmD . 174cm,175cm7. (2分)如图,已知圆心角∠BOC=120°,则圆周角∠BAC的大小是()A . 60°B . 80°C . 100°D . 120°8. (2分)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A . 110°B . 115°C . 120°D . 130°9. (2分) (2016八下·宜昌期中) 在下列命题中,正确的是()A . 一组对边平行的四边形是平行四边形B . 有一个角是直角的四边形是矩形C . 有一组邻边相等的平行四边形是菱形D . 对角线互相垂直平分的四边形是正方形10. (2分)(2018·余姚模拟) 已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A .B . 2C . 3D . 6二、细心填一填 (共6题;共6分)11. (1分) (2018八上·如皋月考) 某电子显微镜的分辨率为0.000000026cm,请用科学记数法表示为________cm.12. (1分) (2020七下·张家港期末) 如图,在四边形ABCD中,∠B=120°,∠B与∠ADC互为补角,点E在BC上,将△DC E沿DE翻折,得到△DC′E,若AB∥C′E,DC′平分∠ADE,则∠A的度数为________°.13. (1分)(2018·乌鲁木齐模拟) 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为________.14. (1分)(2017·增城模拟) 如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为________.15. (1分)(2020·武汉模拟) 如图,已知四边形ABCD与四边形CFGE都是矩形,点E在CD上,点H为AG 的中点,,,,,则DH的长为________ .16. (1分)如图,直线l1 , l2交于点A,观察图象,点A的坐标可以看作方程组________的解.三、耐心做一做 (共9题;共77分)17. (10分) (2016七下·重庆期中) 计算:(1)﹣12017+|1﹣|﹣+ ;(2).18. (5分)(2019·苏州模拟) 解不等式组,并写出该不等式组的整数解.19. (5分)如图,在□ABCD中,对角线AC⊥BD于点O,∠ABC=58º.求∠BAC的度数.20. (10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?21. (5分)(2017·碑林模拟) 如图,点P是⊙O上一点,请用尺规过点P作⊙O的切线(不写画法,保留作图痕迹).22. (5分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?23. (10分)(2020·泸县) 如图,是的直径,点D在上,的延长线与过点B的切线交于点C , E为线段上的点,过点E的弦于点H .(1)求证:;(2)已知,,且,求的长.24. (15分)(2017·包头) 如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.25. (12分) (2020七下·思明月考) 对非负有理数x“四舍五入”到个位的值记为<x>.即n为非负整数时,如果时,则<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……尝试解决下列问题:(1)填空:①<3.49>=________;②如果<2a-1>=3,那么a的取值范围是________;(2)举例说明<x+y>=<x> + <y>不恒成立;(3)求满足<x>=的所有非负有理数x的值.参考答案一、精心选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、细心填一填 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、耐心做一做 (共9题;共77分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

河北省衡水市2019-2020学年中考数学模拟试题(1)含解析

河北省衡水市2019-2020学年中考数学模拟试题(1)含解析

河北省衡水市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP 交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.32.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌3.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.54.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .6.有两组数据,A 组数据为2、3、4、5、6;B 组数据为1、7、3、0、9,这两组数据的( ) A .中位数相等 B .平均数不同 C .A 组数据方差更大 D .B 组数据方差更大7.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .6.7×106B .6.7×10﹣6C .6.7×105D .0.67×1078.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°,则∠C 的度数是( )A .40°B .65°C .70°D .80°9.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)10. sin60o 的值等于( )A .12B .22C .32D .111.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .4848944x x +=+- B .4848944+=+-x xC .48x +4=9D .9696944+=+-x x 12.-2的倒数是( ) A .-2 B .12- C .12 D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:212x x --= .14.分解因式:8a 3﹣8a 2+2a=_____.15.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.16.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM =AC ,BN =BC ,测得MN =200m ,则A ,B 间的距离为_____m .17.因式分解:2xy 4x -= .18.化简:18=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.20.(6分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k 的取值范围.21.(6分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。

2024年河北省衡水市中考一模数学试题

2024年河北省衡水市中考一模数学试题

2024年河北省衡水市中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.语句“x 的13与x 的和超过2”可以表示为( )A .23xx +≤B .23xx +>C .23xx +≥D .32x x+>2.嘉嘉一家去赵州桥参观.如图,嘉嘉站在点B 处,赵州桥在点A 处,则从点B 看点A 的方向是( )A .南偏东43︒B .南偏东47︒C .北偏西43︒D .北偏西47︒3.若()nmA m n =≠,则A 可以是( ) A .33n m --B .33n m ++C .n m --D .22n m4.有一个摊位游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置,玩的人可以从袋子里抽出一个弹珠,当摸到黑色的弹珠就能得到奖品,转盘和弹珠如下图所示,小明玩了一次这个游戏,则小明得奖的可能性为( )A .不可能B .不太可能C .非常有可能D .一定可以5.如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B = 30°,∠C = 100°,如图2.则下列说法正确的是A .点M 在AB 上 B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远6.交换一个两位数的十位数字和个位数字后得到一个新的两位数,若将这个新的两位数与原两位数相减,则所得的差一定是( ) A .11的倍数B .9的倍数C .偶数D .奇数7.设M =3a =-,2b =-,则M 的值为( ) A .2B .2-C .1D .1-8.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为( )A .55︒B .65︒C .70︒D .75︒9.综合实践课上,嘉嘉设计了“利用已知矩形ABCD ,用尺规作有一个内角为30︒角的平行四边形”.他的作法如下:如图1,分别以点A ,B 为圆心,以大于12AB 长为半径,在AB 两侧作弧,分别交于点E ,F ,作直线EF ;(2)如图2,以点A 为圆心,以AB 长为半径作弧,交直线EF 于点G ,连接AG ;(3)如图3,以点G 为圆心,以AD 长为半径作弧,交直线EF 于点H ,连接DH .则四边形AGHD 即为所求作的平行四边形,其中30GAD ∠=︒.根据上述作图过程,判定四边形AGHD 是平行四边形的依据是( ) A .一组对边平行且相等的四边形是平行四边形 B .两组对边分别相等的四边形是平行四边形 C .两组对边分别平行的四边形是平行四边形 D .两组对角分别相等的四边形是平行四边形10.将O e 的圆周12等分,点A 、B 、C 是等分点,如图,ADB ∠的度数可能为( )A .30︒B .45︒C .60︒D .65︒11.据报告,“羲和号”卫星科学载荷每天产生约1.1TB 的原始数据.已知101 TB 2GB =,101 GB 2MB =,101 MB 2KB =,101 KB 2B =,那么数据1.1 TB 等于( )A .401.12B ⨯ B .402.2BC .401.116B ⨯D .401.7610B ⨯12.若一个长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成,现在两部分已拼接完毕,如图所示,下列选项中能与它们拼成长方体的几何体可能是( )A .B .C .D .13.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的函数图象是( )A .B .C .D .14.如图,在ABC V 中,65B C ∠=∠=︒,将M N C V 沿MN 折叠得MNC '△,若MC '与ABCV 的边平行,则C MN '∠的度数为( )A .57.5︒B .25︒C .57.5︒或25︒D .115︒或25︒15.如图,以EBC V 的边BC 为边作正方形ABCD ,AD 与BE ,CE 分别交于点F ,G ,若BF EF =,1AF =,12BC =,则CE 的长为( )A .12B .24C .25D .2616.已知二次函数223y x x =-++,截取该函数图象在04x ≤≤间的部分记为图象G ,设经过点()0,t 且平行于x 轴的直线为l ,将图象G 在直线l 下方的部分沿直线l 翻折,图象G 在直线上方的部分不变,得到一个新函数的图象M ,若函数M 的最大值与最小值的差不大于5,则t 的取值范围是( )A .01t ≤≤B .11t -≤≤C .20t -≤≤D .10t -≤≤二、填空题17.多项式223264x kx y x --+-合并同类项后不含x 项,则k 的值是.18.如图,已知点()1,4A ,()7,1B ,点P 在线段AB 上,并且点P 的横、纵坐标均为整数. 经过点P 的双曲线为():0kl y x x=>.(1)当点P 与点B 重合时,k 的值为; (2)k 的最大值为.19.如图,在正六边形ABCDEF 中,以AD 为对角线作正方形APDQ ,AP ,DP 与BC 分别交于M ,N .(1)BAM ∠=︒;(2)若4AB =,则MN 的长为.三、解答题20.课间游戏时同学们设计了一个飞镖游戏,飞镖游戏的规则如下:如图,掷到A 区和B 区的得分不同,A 区为小圆内的部分,B 区为大圆内小圆外的部分(A 区B 区均不含边界,如果掷到边界上重新投掷,投掷在大圆以外的无效). 现在将投掷有效的每次位置用一个点标注,统计出小红和小华的有效成绩情况如下:小红得了65分,小华得了71分.(1)掷中A 区、B 区一次各得多少分? (2)按照这样的计分方法,小明得了多少分?21.已知A 、B 是两个整式,2452A a a =-+,2353B a a =--. (1)尝试计算当0a =时,A =______B =______ 当2a =时,A =______B =______(2)大胆猜测小军猜测:无论a 为何值,A ______B 始终成立. (3)小心验证请证明小军猜测的结论.22.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2).(1)已知条形图的数据正确,找出扇形图中的错误,并改正; (2)求这些学生阅读册数的平均数;(3)在求这些学生阅读册数的中位数时,嘉淇的分析过程如下:将5,9,6,4按照从小到大的顺序排列为4,5,6,9,取中间数5和6的平均数5.5即为所求,嘉淇的分析过程对吗?如果不对,请你求出正确结果.23.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.24.如图1所示的圆弧形混凝上管片是构成圆形隧道的重要部件.管片的横截面(阴影部分)如图2所示,是同心圆环的一部分,左右两边沿的延长线交于圆心,甲、乙、丙三个小组分别采用三种不同的方法,测算三片不同大小的混凝土管片的外圆弧半径.(1)如图2,BA ,CD 的延长线交于圆心O ,若甲组测得0.6m AB =,3m AD =,4m BC =,求OB 的长.(2)如图3,ED ,FC 的延长线交于圆心H ,若乙组测得0.8m DE =,»12m CD =,»15m EF =,直接写出EH 的长.(3)如图4,有一混凝土管片放置在水平地面上,底部用两个完全相同的长方体木块固定,管片与地面的接触点L 为»MP的中点,若丙组测得0.5m MN PQ ==,2m NL LQ ==,求该管片的外圆弧半径.25.如图,在平面直角坐标系中,一次函数12y x m =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()2,4C .(1)求m 的值及2l 的解析式;(2)若点M 是直线12y x m =-+上的一个动点,连接OM ,当A O M V 的面积是BOC V面积的2倍时,请求出符合条件的点M 的坐标;(3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.26.在四边形ABCD 中,AD BC ∥,=60B ∠︒,90C ∠=︒,83AD =,4AB =,AH BC ⊥于点H .在EFG V 中,2FG =,EG =90G ∠=︒.将EFG V 按如图1放置,顶点E 在AD 上,且EF AD ⊥,然后将EFG V 沿DA 平移至点E 与点A 重合,再改变EFG V 的位置,如图3,将顶点E 沿AB 移动至点B ,并使点H 始终在EF 上.(1)当点E 在DA 上运动时,如图1,连接AF ,当EG AF ∥时,求AE 的长;如图2,设FG 与BC 的交点为M ,当顶点G 落在CD 上时,求CM 的长;(2)如图3,点E 在AB 上运动时,EG 交AH 于点P ,设AE d =,请用d 表示PH 的长,并求出PH 长度的最小值.。

2023年河北省衡水市部分学校中考基础摸底考试(一)数学试题(含答案解析)

2023年河北省衡水市部分学校中考基础摸底考试(一)数学试题(含答案解析)

2023年河北省衡水市部分学校中考基础摸底考试(一)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算2m m⋅=()A.m B.3m C.3m D.22m【答案】C【分析】直接运用同底数幂乘法法则进行计算即可.【详解】解:2m m⋅=21m+=3m故选:C【点睛】本题主要考查了同底数幂的乘法,熟练掌握运算法则是解答本题的关键.2.如图,光线自点P射入,经镜面EF反射后经过的点是()A.A点B.B点C.C点D.D点【答案】B【分析】利用轴对称变换的性质判断即可.【详解】解:如图,过点P,点B的射线交于一点O,故选:B.【点睛】本题考查轴对称变换的性质,解题的关键是理解题意,灵活运用所学知识解决问题.3.若“()2-+□”的值为负数,则“□”不可能是()A.中线B.高线【答案】B【分析】根据点到直线的距离的定义进行判断即可.【详解】点A到BC的距离是三角形高线的长度,即线段故选B.【点睛】本题考查点到直线的距离的定义,掌握点到直线的距离的定义是解题的关键.5.下列计算正确的是()A.235+=B.33-【答案】D【分析】根据二次根式的性质对断;根据二次根式的乘法法则对【详解】解:A.2和3不是最简同类二次根式,B.33323-=,所以B选项不符合题意;A .AF HG =B .FAH ∠【答案】D【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵在正六边形ABCDEF ∴AB AF =,AB HG =,∴AF HG =,故A 选项正确,不符合题意;∵在正六边形ABCDEF 和正方形∴FAB CBA ∠=∠,HAB ∠=∠∴FAH CBG ∠=∠,故B 选项正确,不符合题意;∵多边形ABCDEF 是正六边形,∴该多边形内角和为:62()-⨯∴C E FAB ABC ∠=∠=∠=∠=A .54π【答案】C【分析】根据AOB ∠得30BOD ∠=︒,可得.【详解】解:∵120AOD ∠=︒,下列结论错误的是()A .四边形EBCF 是平行四边形B .四边形EBCF 与矩形ABCD 的面积相同C .CD EF ⊥D .四边形EBCF 与矩形ABCD 的周长相同【答案】B【分析】根据挤压长度不变以及矩形的性质和平行四边形的判定和性质,进行判断即可.【详解】解:由图形可知矩形ABCD ,会产生变形,但,,AD EF AB BE CD CF ===.在矩形ABCD 中:,,AD BC AB CD ==90BCD ∠=︒,∴,,EF BC BE CF ==∴四边形EBCF 是平行四边形,故A 选项正确,不符合题意;∵拉成平行四边形后,高变小了,但底边大小没变∴四边形EBCF 比矩形ABCD 的面积小了,故B 选项不正确,符合题意;∵四边形EBCF 是平行四边形,∴EF BC ∥,∵90BCD ∠=︒,∴190BCD ∠=∠=︒,∴CD EF ⊥,故C 选项正确,不符合题意;∵四边形ABCD 变成四边形EBCF 的过程中每条边的长度没变,∴周长没变,故D 选项正确,不符合题意;故选:B .【点睛】本题主要考查了矩形的性质和平行四边形的判定和性质,弄清图形变化中的变与不变是解答此题的关键.13.如图,将三角形纸片ABC 沿虚线剪掉两角得五边形CDEFG ,若DE CG ∥,FG CD ∥,根据所标数据,则A ∠的度数为()A .54︒B .64︒C .66︒D .72︒【答案】B【分析】根据邻补角的性质可得54AED ∠=︒,62BGF ∠=︒,再由平行线的性质可得54B AED ∠=∠=︒,62C BGF ∠=∠=︒,然后三角形内角和定理,即可求解.【详解】解:如图,根据题意得:126DEF ∠=︒,118FGC ∠=︒,∴18012654AED ∠=︒-︒=︒,18011862BGF ∠=︒-︒=︒,∵DE CG ∥,FG CD ∥,∴54B AED ∠=∠=︒,62C BGF ∠=∠=︒,∴18064A B C ∠=︒-∠-∠=︒.故选:B .【点睛】本题主要考查了平行线的性质,邻补角的性质,三角形内角和定理,熟练掌握平行线的性质,邻补角的性质,三角形内角和定理是解题的关键.14.用一些完全相同的小正方体摆成一个几何体,如图是该几何体的左视图和俯视图,针对该几何体所需小正方体的个数m ,三人的说法如下,甲:若6m =,则该几何体有两种摆法;乙:若7m =,则该几何体有三种摆法;丙:若8m =,则该几何体只有一种摆法.下列判断正确的是()甲:若6m=,则第一层已经摆放5个,第二层只放图如图①②③所示三种,故甲错;m=,则第二层可放2个,可得主视图如④⑤⑥所示三种,故乙对;乙:若7m=,则第一层放5个,第二层放丙:若8正方体上,主视图如图⑦所示,只有一种摆法,故丙对,故选:C【点睛】本题主要考查了简单组合体的三视图,的关键.15.电影《刘三姐》中有这样一个对歌的场景.罗秀才:三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?刘三姐的姐妹们:九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.该歌词表达的是一道数学题,其大意是:把是奇数,其中一个群,狗的数量少;另外三个群,狗的数量多且数量相同.问:应该如何分?设狗数量多的三个群均为x条,则正确的是(300x-条A.依题意狗数量少的群是()C.x有最小值,但无最大值【答案】D【分析】设狗数量多的三个群均为x条,一判断即可得答案.【详解】设狗数量多的三个群均为x 条,∵一个群,狗的数量少,三个群,狗的数量多且数量相同,狗的总数为300条,∴狗的数量多的三个群的的总数为3x ,狗数量少的群是()3003x -条,故A 选项错误,∴3003x x -<,故B 选项错误,解得:75x >,∵3300x <,∴100x <,∴75100x <<,∵x 为奇数且为整数,∴x 有最小值77,最大值为99,∴x 有最小值也有最大值,99x =是正确解,但不是唯一解,故C 选项错误,D 选项正确,故选:D .【点睛】本题考查一元一次不等式的应用,正确得出不等关系列出不等式是解题关键.16.如图,等腰ABC 中,AB AC =,D 为边AC 上一点.用尺规按如下的步骤操作:①以点A 为圆心,AB 长为半径画弧,交BD 的延长线于点E ,连接AE ;②作CAE ∠的角平分线,交射线BD 于点P ,交 CE于点Q .结论Ⅰ: BCQE =;结论Ⅱ:APB ACB ∠=∠.对于结论Ⅰ和Ⅱ,下列判断正确的是()A .Ⅰ不对Ⅱ对B .Ⅰ对Ⅱ不对C .Ⅰ和Ⅱ都对D .Ⅰ和Ⅱ都不对【答案】A【分析】根据圆周角定理和角平分线的概念逐项判断即可.【详解】∵AQ 是CAE ∠的角平分线,∴»»2ECQE =,∵D 为边AC 上一点,∴ EC不一定等于»2BC ,∴ BC不一定等于 QE ,∴Ⅰ不对;∵AQ 是CAE ∠的角平分线,∴2CAE CAQ ∠=∠,∵2CAE CBE ∠=∠,∴CAQ CBE ∠=∠,又∵BDC ADP ∠=∠,∴ACB APB ∠=∠,∴Ⅱ对.故选:A .【点睛】此题考查了圆周角定理定理,角平分线的概念等知识,解题的关键是掌握以上知识点.二、填空题【答案】13【分析】根据题意得,任意闭合一个开关,有三种等可能的结果,只闭合最上面的开关小灯泡才能发亮,即可得.【详解】解:∵任意闭合一个开关,有三种等可能的结果,只闭合最上面的开关小灯泡才能发亮,∴任意只闭合其中的1个开关,小灯泡发亮的概率为故答案为:13.【点睛】本题考查了概率公式,解题的关键是理解题意,掌握概率公式.18.一种燕尾夹如图1所示,图(1)DE与BC是否平行?______(填“是”或“(2)BC=______.【答案】是48【分析】(1)根据AE ADBE DC=可得DE BC∥;(1)若点A坐标为()6,4三、解答题20.如图,点A ,B 均在数轴上,点B 在点A 的右侧,点A 对应的数字是4-,点B 对应的数字是m .(1)若2AB =,求m 的值;(2)将AB 线段三等分,这两个等分点所对应数字从左到右依次是1a ,2a ,若20a >,求m 的取值范围.【答案】(1)2-(2)m>2【分析】(1)根据2AB =和点A 表示的数即可求出m 的值;(2)首先根据题意表示出4AB m =+,然后根据三等分点的特点表示出2a ,最后利用20a >求不等式即可.【详解】(1)∵2AB =,∴422m =-+=-,四、填空题五、解答题22.某校甲、乙两名运动员连续8次射击训练成绩的折线统计图及统计表如下(统计图中乙的第8次成绩缺失)甲、乙两人连续8次射击成绩统计表(1)补全统计图和统计表;(2)若规定7环及以上为优秀,试比较甲、乙两人谁的优秀率高;(3)若甲再射击1次,命中7环,则甲的射击成绩的方差变”).【答案】(1)见解析,7,8,6(2)甲的优秀率高(2)解:甲命中7环及以上的次数为5次,优秀率为乙命中7环及以上的次数为3次,优秀率为3100%8⨯ 37.5%62.5%<,∴甲的优秀率高;(3)解:甲再射击1次,命中7环,(1)当光线1l 经过点()2,4-时,求出(2)若光线1l 与2l 的交点落在第一象限内,取值个数.【答案】(1)3m =;点(2,4-∠的大小及OF的长;(1)求AOB(2)请在图中画出线段PQ,用其长度表示劣弧并求弦CD的长.【答案】(1)120︒,23由对称性可知6OD O D '==,即6O E O F O D '''===,∵O 与OA ,OB 相切于点E ,F ∴O E OA '⊥,O F OB '⊥,作法:过O 作OP CD ⊥交CD 于P 理由:由折叠可知:CD 垂直平分OO ∴PQ 是 CD所在弓形的高,即PQ 的长度是劣弧 CD上的点到弦(1)求抛物线的解析式及顶点坐标D ;(2)如图1,点(),E x y 是线段BD 上的动点(不与形OFEC 的面积为S ,求S 与x 之间的函数关系式,并求(3)如图2,将抛物线23y ax bx =++向下平移k 轴的交点是A ',B '.若A B D '''△的外心在该三角形的内部,直接写出。

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)③

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)③

河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)③一.有理数的混合运算(共1小题)1.(2023•石家庄一模)算式的值与下列选项的值相等的是( )A.B.﹣2×3×2C.﹣2×3+2D.二.因式分解-提公因式法(共1小题)2.(2023•石家庄一模)若20232023﹣20232021=2024×2023n×2022,则n的值是( )A.2024B.2023C.2022D.2021三.分式的乘除法(共1小题)3.(2023•唐山一模)若÷运算的结果为整式,则“□”中的式子可能是( )A.y﹣x B.y+x C.2x D.四.分式的混合运算(共1小题)4.(2023•保定一模)在计算时,嘉嘉和琪琪使用方法不同,但计算结果相同,则( )嘉嘉:===1琪琪:====1A.嘉嘉正确B.琪琪正确C.都正确D.都不正确五.由实际问题抽象出二元一次方程组(共1小题)5.(2023•唐山一模)《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是( )A.依题意B.依题意C.一只雀的重量为斤D.一只燕的重量为斤六.根的判别式(共1小题)6.(2023•邢台一模)嘉淇准备解一元二次方程4x2+7x+□=0时,发现常数项被污染,若该方程有实数根,则被污染的数可能是( )A.3B.5C.6D.8七.高次方程(共1小题)7.(2023•秦皇岛一模)将关于x的一元二次方程x2﹣px+q=0变形为x2=px﹣q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x•x2=x(px﹣q)=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:x2﹣x﹣1=0,且x>0,则x4﹣2x3+x的值为( )A.﹣2B.﹣1C.0D.3八.一次函数图象上点的坐标特征(共1小题)8.(2023•秦皇岛一模)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P 作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2023的横坐标为( )A.﹣21011B.﹣21010C.﹣22023D.﹣22022九.一次函数的应用(共1小题)9.(2023•石家庄一模)如图是某台阶的一部分,每一级台阶的宽度和高度之比为2:1,在如图所示的平面直角坐标系中,点A的坐标是(﹣20,2),若直线y=kx+b(k≠0)同时经过点A,B,C,D,E,则kb的值为( )A.﹣6B.6C.﹣5D.5一十.反比例函数的性质(共1小题)10.(2023•邢台一模)已知反比例函数y=﹣,当x≤﹣2时,y有( )A.最小值2B.最大值2C.最小值﹣2D.最大值﹣2一十一.反比例函数的应用(共1小题)11.(2023•武安市一模)初三年级甲、乙、丙、丁四个级部举行了知识竞赛,如图,平面直角坐标系中,x轴表示级部参赛人数,y轴表示竞赛成绩的优秀率(该级部优秀人数与该级部参加竞赛人数的比值),其中描述甲、丁两个级部情况的点恰好在同一个反比例函数的图象上,则这四个级部在这次知识竞赛中成绩优秀人数的多少正确的是( )A.甲>乙>丙>丁B.丙>甲=丁>乙C.甲=丁>乙>丙D.乙>甲=丁>丙一十二.二次函数图象与几何变换(共1小题)12.(2023•秦皇岛一模)将抛物线向左平移1个单位长度,得到抛物线C2,则抛物线C2的解析式为( )A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2一十三.抛物线与x轴的交点(共1小题)13.(2023•邢台一模)关于抛物线C1:y1=2x2﹣1与C2:y2=2(x﹣2)2﹣3,下列说法不正确的是( )A.两条抛物线的形状相同B.抛物线C1通过平移可以与C2重合C.抛物线C1与C2的对称轴相同D.两条抛物线均与x轴有两个交点一十四.二次函数的应用(共1小题)14.(2023•秦皇岛一模)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.70一十五.认识立体图形(共1小题)15.(2023•武安市一模)图中的长方体是由下面A、B、C、D的四个小几何体拼成的,那么图中第四部分对应的几何体是( )A.B.C.D.一十六.专题:正方体相对两个面上的文字(共1小题)16.(2023•保定一模)如图,一个正方体骰子的六个面上分别标有1至6共六个数字,且相对面数字之和相同,将骰子按如图所示方式放置并按箭头方向无滑动翻转后停止在M处,则停止后骰子朝上面的数字为( )A.3B.4C.5D.6一十七.平行线的性质(共1小题)17.(2023•石家庄一模)将一个直角三角形按如图所示的方式放置在两条平行线之间,∠EFG=90°,∠EGF=65°,∠AEF=55°,则∠EGD的度数为( )A.100°B.80°C.70°D.60°一十八.三角形三边关系(共1小题)18.(2023•武安市一模)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A.6B.7C.8D.9一十九.多边形内角与外角(共1小题)19.(2023•武安市一模)如图,已知在Rt△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数是( )A.120°B.180°C.240°D.270°二十.菱形的性质(共1小题)20.(2023•安次区一模)对于定理:菱形的两条对角线互相垂直,甲乙两位同学的证明方法如下:甲:证明:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∴△ABD是等腰三角形,在等腰△ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD,乙:证明:∵AB=5,OA=4,OB=3,52=42+32,∴AB2=OA2+OB2,∴△AOB是直角三角形,∴AC⊥BD.下列说法正确的是( )A.甲的证法正确,乙的证法错误B.甲的证法错误,乙的证法正确C.甲、乙的证法都正确D.甲、乙的证法都错误二十一.三角形的外接圆与外心(共1小题)21.(2023•邢台一模)如图,在由小正方形组成的网格中,点A,B,C,D,E,F,O均在格点上.下列三角形中,外心不是点O的是( )A.△ABC B.△ABD C.△ABE D.△ABF二十二.弧长的计算(共1小题)22.(2023•秦皇岛一模)如图,等腰梯形MNPQ的腰长为3,正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN进行翻滚,翻滚到有一个顶点与N重合即停止滚动,求正方形在翻滚过程中点A所经过的路线长( )A.B.C.D.二十三.轴对称的性质(共1小题)23.(2023•武安市一模)如图,Rt△ABC中,∠A=90°,∠C=30°,AB=1,AC=,动点P在边AB上(不与A、B重合),点P关于BC,AC的对称点分别为点E,F,连接EF,交AC,BC分别为点M,N.甲:我发现线段EF的最大值为2,最小值为;乙:我连接PM,PN,发现△PMN一定为钝角三角形.则下列判断正确的是( )A.甲对乙对B.甲对乙错C.甲错乙对D.甲错乙错二十四.翻折变换(折叠问题)(共2小题)24.(2023•武安市一模)如图所示,在△ABC中,∠ADB=90°,把△ABC沿AD翻折180°,使点B落在点C的位置,则线段AD( )A.是边BC上的中线B.是边BC上的高C.是∠BAC的角平分线D.以上三种都成立25.(2023•秦皇岛一模)如图,在正方形纸片ABCD上,E是AD上一点(不与点A,D重合).将纸片沿BE折叠,使点A落在点A处,延长EA'交CD于点F,则∠EBF=( )A.40°B.45°C.50°D.不是定值二十五.旋转的性质(共1小题)26.(2023•秦皇岛一模)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为( )A.B.C.3D.4二十六.相似三角形的判定与性质(共1小题)27.(2023•秦皇岛一模)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H 为AF与DG的交点.若AC=6,则DH=( )A.2B.1C.0.5D.1.5二十七.位似变换(共1小题)28.(2023•邢台一模)如图,在平面直角坐标系中,△ABC与△DEF关于原点O位似,且OB=2OE,若S△ABC=4,则S△DEF为( )A.1B.2C.D.二十八.解直角三角形的应用-仰角俯角问题(共1小题)29.(2023•邢台一模)如图,电线杆AB的中点C处有一标志物,在地面D处测得标志物的仰角为32°.若D到电线杆底部B的距离为a,则电线杆AB的长为( )A.2a•cos32°B.2a•tan32°C.D.二十九.由三视图判断几何体(共2小题)30.(2023•武安市一模)如图是个一不倒的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB 分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=25°,则∠APB的度数为( )A.50°B.60°C.25°D.90°31.(2023•邢台一模)某个几何体的三视图如图所示,该几何体是( )A.B.C.D.三十.中位数(共1小题)32.(2023•武安市一模)已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a的值可能是( )A.7B.8C.9D.10三十一.概率公式(共1小题)33.(2023•邢台一模)下列说法正确的是( )A.“将三条线段首尾顺次相接可以组成三角形”是必然事件B.如果明天降水的概率是50%,那么明天有半天都在降雨C.数据4,5,5,4,3中没有众数D.若A,B两组数据的平均数相同,s A2=0.01,s B2=1,则A组数据较稳定三十二.列表法与树状图法(共1小题)34.(2023•石家庄一模)如图是某地铁站的进站口,共有3个闸机检票通道口,若甲、乙两人各随机选择一个闸机检票口进站,则甲、乙两人从同一个闸机检票通道口进站的概率是( )A.B.C.D.河北省2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题)③参考答案与试题解析一.有理数的混合运算(共1小题)1.(2023•石家庄一模)算式的值与下列选项的值相等的是( )A.B.﹣2×3×2C.﹣2×3+2D.【答案】A【解答】解:=(﹣2﹣)×3=﹣2×3﹣×3.故选:A.二.因式分解-提公因式法(共1小题)2.(2023•石家庄一模)若20232023﹣20232021=2024×2023n×2022,则n的值是( )A.2024B.2023C.2022D.2021【答案】D【解答】解:∵20232023﹣20232021=20232021(20232﹣1),2024×2023n×2022=(2023+1)(2023﹣1)×2023n=2023n(20232﹣1),∴20232021(20232﹣1)=2023n(20232﹣1),∴n=2021.故选:D.三.分式的乘除法(共1小题)3.(2023•唐山一模)若÷运算的结果为整式,则“□”中的式子可能是( )A.y﹣x B.y+x C.2x D.【答案】C【解答】解:÷=,∵运算的结果为整式,∴“□”中的式子可能是含x的单项式,故选:C.四.分式的混合运算(共1小题)4.(2023•保定一模)在计算时,嘉嘉和琪琪使用方法不同,但计算结果相同,则( )嘉嘉:===1琪琪:====1A.嘉嘉正确B.琪琪正确C.都正确D.都不正确【答案】D【解答】解:∵====2,∴嘉嘉第一步出错;琪琪第三步出错;两个人计算都不正确,故选:D.五.由实际问题抽象出二元一次方程组(共1小题)5.(2023•唐山一模)《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是( )A.依题意B.依题意C.一只雀的重量为斤D.一只燕的重量为斤【答案】A【解答】解:设一只雀的重量为x斤,一只燕的重量为y斤,根据题意得:,解得:,∴一只雀的重量为斤,一只燕的重量为斤,故A正确.故选:A.六.根的判别式(共1小题)6.(2023•邢台一模)嘉淇准备解一元二次方程4x2+7x+□=0时,发现常数项被污染,若该方程有实数根,则被污染的数可能是( )A.3B.5C.6D.8【答案】A【解答】解:设被污染的数为a,根据题意可得:72﹣4×4a≥0,解得:,则被污染的数可能是3.故选:A.七.高次方程(共1小题)7.(2023•秦皇岛一模)将关于x的一元二次方程x2﹣px+q=0变形为x2=px﹣q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x•x2=x(px﹣q)=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:x2﹣x﹣1=0,且x>0,则x4﹣2x3+x的值为( )A.﹣2B.﹣1C.0D.3【答案】见试题解答内容【解答】解:∵x2﹣x﹣1=0,∴x2=x+1,∴x4﹣2x3+x=(x2)2﹣2x2•x+x=(x+1)2﹣2(x+1)•x+x=x2+2x+1﹣2x2﹣2x+x=﹣x2+x+1=﹣(x2﹣x﹣1)=0.故选:C.八.一次函数图象上点的坐标特征(共1小题)8.(2023•秦皇岛一模)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P 作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2023的横坐标为( )A.﹣21011B.﹣21010C.﹣22023D.﹣22022【答案】A【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=22n,∴P2020的横坐标为22×505=21010,∴P2021的横坐标为21010,∴P2022的横坐标为﹣21011,∴P2023的横坐标为﹣21011,故选:A.九.一次函数的应用(共1小题)9.(2023•石家庄一模)如图是某台阶的一部分,每一级台阶的宽度和高度之比为2:1,在如图所示的平面直角坐标系中,点A的坐标是(﹣20,2),若直线y=kx+b(k≠0)同时经过点A,B,C,D,E,则kb的值为( )A.﹣6B.6C.﹣5D.5【答案】B【解答】解:如图所示,设y=kx+b(k≠0)与x,y轴的交点分别为G,F,BH⊥AH于点H,∴依题意,AH∥GO,BH∥FO,∴∠BAH=∠FGO,∠AHB=∠GOF=90°∴△ABH∽△GOF∵每一级台阶的宽度和高度之比为2:1,∴∴,即∴直线解析式为,将点A(﹣20,2)代入得,解得:b=12∴,故选:B.一十.反比例函数的性质(共1小题)10.(2023•邢台一模)已知反比例函数y=﹣,当x≤﹣2时,y有( )A.最小值2B.最大值2C.最小值﹣2D.最大值﹣2【答案】B【解答】B解:反比例函数中,k=﹣4<0,∴函数图象经过第二、四象限,且在每一象限内y随x的增大而增大,∵当x=﹣2时,y=﹣=2,∴当x≤﹣2时,y≤2,∴当x≤﹣2时,有最大值2.故选:B.一十一.反比例函数的应用(共1小题)11.(2023•武安市一模)初三年级甲、乙、丙、丁四个级部举行了知识竞赛,如图,平面直角坐标系中,x轴表示级部参赛人数,y轴表示竞赛成绩的优秀率(该级部优秀人数与该级部参加竞赛人数的比值),其中描述甲、丁两个级部情况的点恰好在同一个反比例函数的图象上,则这四个级部在这次知识竞赛中成绩优秀人数的多少正确的是( )A.甲>乙>丙>丁B.丙>甲=丁>乙C.甲=丁>乙>丙D.乙>甲=丁>丙【答案】D【解答】解:根据题意,可知xy的值即为该校的优秀人数,∵描述甲、丁两级部情况的点恰好在同一个反比例函数的图象上,∴甲、丁两级部的优秀人数相同,∵点乙在反比例函数图象上面,点丙在反比例函数图象下面,∴乙级部的xy的值最大,即优秀人数最多,丙级部的xy的值最小,即优秀人数最少,故选:D.一十二.二次函数图象与几何变换(共1小题)12.(2023•秦皇岛一模)将抛物线向左平移1个单位长度,得到抛物线C2,则抛物线C2的解析式为( )A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【答案】D【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴抛物线向左平移1个单位长度后得到的抛物线的解析式为:y=(x﹣1+1)2+2,即y=x2+2,故选:D.一十三.抛物线与x轴的交点(共1小题)13.(2023•邢台一模)关于抛物线C1:y1=2x2﹣1与C2:y2=2(x﹣2)2﹣3,下列说法不正确的是( )A.两条抛物线的形状相同B.抛物线C1通过平移可以与C2重合C.抛物线C1与C2的对称轴相同D.两条抛物线均与x轴有两个交点【答案】C【解答】解:y1=2x2﹣1与C2:y2=2(x﹣2)2﹣3的形状相同,故A正确,不符合题意;将抛物线y1=2x2﹣1向右平移2个单位,向下平移2个单位,得到y2=2(x﹣2)2﹣3,所以抛物线C1通过平移可以与C2重合,故B正确,不符合题意;抛物线y1=2x2﹣1关于y轴对称,y2=2(x﹣2)2﹣3的顶点坐标为(2,﹣3),对称轴是直线x=2,抛物线C1与C2的对称轴不相同,故C不正确,符合题意;当y1=2x2﹣1=0时,Δ=0﹣4×2×(﹣1)=8>0,故抛物线与x轴有两个交点,当y2=2(x﹣2)2﹣39=0时,Δ=64﹣4×2×5=24>0,故抛物线与x轴有两个交点,故D 正确,不符合题意.故选:C.一十四.二次函数的应用(共1小题)14.(2023•秦皇岛一模)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.70【答案】D【解答】解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,故选:D.一十五.认识立体图形(共1小题)15.(2023•武安市一模)图中的长方体是由下面A、B、C、D的四个小几何体拼成的,那么图中第四部分对应的几何体是( )A.B.C.D.【答案】A【解答】解:由几何体的图形可知,第四部分,看到的一个,后面三个,故选:A.一十六.专题:正方体相对两个面上的文字(共1小题)16.(2023•保定一模)如图,一个正方体骰子的六个面上分别标有1至6共六个数字,且相对面数字之和相同,将骰子按如图所示方式放置并按箭头方向无滑动翻转后停止在M处,则停止后骰子朝上面的数字为( )A.3B.4C.5D.6【答案】D【解答】解:∵一个正方体骰子的六个面上分别标有1至6共六个数字,且相对面数字之和相同,∴1的对面是6,2的对面是5,3的对面是4,∴翻转第一次时3朝下,4朝上;翻转第二次时2朝下,5朝上;翻转第三次时4朝下,3朝上;翻转四次时1朝下,6朝上.故选:D.一十七.平行线的性质(共1小题)17.(2023•石家庄一模)将一个直角三角形按如图所示的方式放置在两条平行线之间,∠EFG=90°,∠EGF=65°,∠AEF=55°,则∠EGD的度数为( )A.100°B.80°C.70°D.60°【答案】B【解答】解:∵AB∥DC,∴∠AEG=∠EGC,∵∠EFG=90°,∠EGF=65°,∴∠GEF=25°,∵∠AEF=55°,∴∠GEA=80°,∴∠EGD=80°.故选:B.一十八.三角形三边关系(共1小题)18.(2023•武安市一模)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A.6B.7C.8D.9【答案】D【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.一十九.多边形内角与外角(共1小题)19.(2023•武安市一模)如图,已知在Rt△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数是( )A.120°B.180°C.240°D.270°【答案】D【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣(∠A+∠B)=270°.故选:D.二十.菱形的性质(共1小题)20.(2023•安次区一模)对于定理:菱形的两条对角线互相垂直,甲乙两位同学的证明方法如下:甲:证明:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∴△ABD是等腰三角形,在等腰△ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD,乙:证明:∵AB=5,OA=4,OB=3,52=42+32,∴AB2=OA2+OB2,∴△AOB是直角三角形,∴AC⊥BD.下列说法正确的是( )A.甲的证法正确,乙的证法错误B.甲的证法错误,乙的证法正确C.甲、乙的证法都正确D.甲、乙的证法都错误【答案】A【解答】解:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∴△ABD是等腰三角形,在等腰△ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD,即甲的证法正确;而乙令AB=5,OA=4,OB=3,属于个例,不具有全面性,故乙的证法错误,故选:A.二十一.三角形的外接圆与外心(共1小题)21.(2023•邢台一模)如图,在由小正方形组成的网格中,点A,B,C,D,E,F,O均在格点上.下列三角形中,外心不是点O的是( )A.△ABC B.△ABD C.△ABE D.△ABF【答案】C【解答】解:∵OA=OB==,OE=2,∴OA=OB≠OE,∴点O不是△ABE的外心,故选:C.二十二.弧长的计算(共1小题)22.(2023•秦皇岛一模)如图,等腰梯形MNPQ的腰长为3,正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN进行翻滚,翻滚到有一个顶点与N重合即停止滚动,求正方形在翻滚过程中点A所经过的路线长( )A.B.C.D.【答案】A【解答】解:作图如图;∵点A绕点D翻滚,然后绕点C翻滚,半径分别为1、,翻转角分别为90°、90°,,故选:A.二十三.轴对称的性质(共1小题)23.(2023•武安市一模)如图,Rt△ABC中,∠A=90°,∠C=30°,AB=1,AC=,动点P在边AB上(不与A、B重合),点P关于BC,AC的对称点分别为点E,F,连接EF,交AC,BC分别为点M,N.甲:我发现线段EF的最大值为2,最小值为;乙:我连接PM,PN,发现△PMN一定为钝角三角形.则下列判断正确的是( )A.甲对乙对B.甲对乙错C.甲错乙对D.甲错乙错【答案】C【解答】解:连接CP,CE,CF,PM,PN,∵点P关于BC,AC的对称点分别为点E,F,∴CP=CE,CP=CF,∠PCN=∠ECN,∠PCM=∠FCM,∴∠ECF=2∠ACB=60°,∴△ECF是等边三角形,由于点P不与A、B重合,则CP不存在最大值与最小值,故甲错误;由对称性知,∠E=∠CPN=60°,∠F=∠CPM=60°,∴∠MPN=120°,∴△PMN是钝角三角形,故乙正确,故选:C.二十四.翻折变换(折叠问题)(共2小题)24.(2023•武安市一模)如图所示,在△ABC中,∠ADB=90°,把△ABC沿AD翻折180°,使点B落在点C的位置,则线段AD( )A.是边BC上的中线B.是边BC上的高C.是∠BAC的角平分线D.以上三种都成立【答案】D【解答】解:∵把△ABC沿直线AD翻折180°,使点B落在点C的位置,∴AB=AC,BD=CD,∠BAD=∠CAD,∠ADB=∠ADC=180°=90°,∴AD⊥BC,∴线段AD是边BC上的中线,也是边BC上的高,还是∠BAC的平分线,故选:D.25.(2023•秦皇岛一模)如图,在正方形纸片ABCD上,E是AD上一点(不与点A,D重合).将纸片沿BE折叠,使点A落在点A处,延长EA'交CD于点F,则∠EBF=( )A.40°B.45°C.50°D.不是定值【答案】B【解答】解:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°∵折叠∴AB=A'B,∠ABE=∠A'BE∴A'B=BC,且BF=BF∴Rt△BCF≌Rt△BA'F(HL)∴∠A'BF=∠CBF∵∠ABE+∠A'BE+∠A'BF+∠CBF=90°∴∠EBF=45°故选:B.二十五.旋转的性质(共1小题)26.(2023•秦皇岛一模)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为( )A.B.C.3D.4【答案】D【解答】解:如图,连接CD,在Rt△ABC中,∠ACB=90°,BC=2,∠ABC=60°,则∠A=30°,∴AB=2BC=4,由旋转可知,A'B'=4,∵D是A'B'的中点,∴,在△BCD中,利用三角形三边关系可得BD≤BC+CD(当B,C,D三点共线时取等号),∴BD≤BC+CD=4,∴BD的最大值为4,故选:D.二十六.相似三角形的判定与性质(共1小题)27.(2023•秦皇岛一模)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H 为AF与DG的交点.若AC=6,则DH=( )A.2B.1C.0.5D.1.5【答案】B【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴,∵EF∥AC,∴△BEF∽△BAC,∴,即,解得:EF=2,∴.故选:B.二十七.位似变换(共1小题)28.(2023•邢台一模)如图,在平面直角坐标系中,△ABC与△DEF关于原点O位似,且OB=2OE,若S△ABC=4,则S△DEF为( )A.1B.2C.D.【答案】A【解答】解:∵△ABC与△DEF关于原点O位似,OB=2OE,∴△ABC与△DEF相似比为:2:1,∴△ABC与△DEF面积之比为4:1,∵S△ABC=4,,S△DEF=1.故选:A.二十八.解直角三角形的应用-仰角俯角问题(共1小题)29.(2023•邢台一模)如图,电线杆AB的中点C处有一标志物,在地面D处测得标志物的仰角为32°.若D到电线杆底部B的距离为a,则电线杆AB的长为( )A.2a•cos32°B.2a•tan32°C.D.【答案】B【解答】解:由题意可知:AB=2BC,BD=a,∠CDB=32°,AB⊥BD.在Rt△BDC中,∵tan∠CDB=,∴BC=BD•tan∠CDB=a•tan32°.∴AB=2BC=2a•tan32°.故选:B.二十九.由三视图判断几何体(共2小题)30.(2023•武安市一模)如图是个一不倒的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB 分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=25°,则∠APB的度数为( )A.50°B.60°C.25°D.90°【答案】A【解答】解:连接OB,∵OA=OB,∴∠OAB=∠OBA=25°,∴∠AOB=130°,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OP⊥AB,∴∠OAP+∠OBP=180°,∴∠APB+∠AOB=180°;∴∠APB=50°.故选:A.31.(2023•邢台一模)某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】B【解答】解:根据俯视图知第一层有3个,前面一排有2个,故排除掉A、C选项,根据主视图和左视图知第二层第一列有1个,排除掉D,故选:B.三十.中位数(共1小题)32.(2023•武安市一模)已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a的值可能是( )A.7B.8C.9D.10【答案】D【解答】解:∵数据1,2,3,4,5,a,b的平均数是4,∴1+2+3+4+5+a+b=4×7,∴a+b=13,若a=7,则b=6,此时中位数为4,不符合题意,舍去;若a=8,则b=5,此时中位数为4,不符合题意,舍去;若a=9,则b=4,此时中位数为4,不符合题意,舍去;若a=10,则b=3,此时中位数为3,符合题意;故选:D.三十一.概率公式(共1小题)33.(2023•邢台一模)下列说法正确的是( )A.“将三条线段首尾顺次相接可以组成三角形”是必然事件B.如果明天降水的概率是50%,那么明天有半天都在降雨C.数据4,5,5,4,3中没有众数D.若A,B两组数据的平均数相同,s A2=0.01,s B2=1,则A组数据较稳定【答案】D【解答】解:A.“将三条线段首尾顺次相接可以组成三角形”是随机事件,此选项错误;B.如果明天降水的概率是50%,那么明天降雨的可能性有一半,此选项错误;C.数据4,5,5,4,3中众数是4和5,此选项错误;D.若A,B两组数据的平均数相同,s A2=0.01,s B2=1,则A组数据较稳定,此选项正确;故选:D.三十二.列表法与树状图法(共1小题)34.(2023•石家庄一模)如图是某地铁站的进站口,共有3个闸机检票通道口,若甲、乙两人各随机选择一个闸机检票口进站,则甲、乙两人从同一个闸机检票通道口进站的概率是( )A.B.C.D.【答案】B【解答】解:设三个闸口分别用A、B、C表示,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表格可知一共有9种等可能性的结果数,其中甲、乙两人从同一个闸机检票通道口进站的结果数有3种,∴甲、乙两人从同一个闸机检票通道口进站的概率为,故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河北省衡水中学中考招生数学模拟试卷(一)一、选择题(本大题共10小题,每小题4分,共30分,以下每小题给出代号为A、B、C、D的四个选项中,只有一项是符合题目要求的)1.(4分)﹣的倒数是()A.﹣B.﹣C.D.2.(4分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.(4分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×1010 4.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°6.(4分)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,﹣2)7.(4分)若x=4是分式方程=的根,则a的值为()A.6B.﹣6C.4D.﹣48.(4分)某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位:cm),则这五名运动员身高的中位数是()A.181cm B.180cm C.178cm D.176cm9.(4分)抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)10.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD二、填空题(本大题共4小题,每小题4分,共16分);把答案填写在答题卡对应题号后面的横线上.11.(4分)已知|x|=3,则x的值是.12.(4分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)13.(4分)一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.14.(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.三、解答题(本大题共6分,共54分):解答应写出必要的文字说明,证明过程或演算步骤.15.(10分)(1)计算:﹣(3.14﹣π)0﹣4cos45°(2)化简:÷﹣x16.(6分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.17.(8分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)18.(8分)某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为人,其中“非常满意”的人数为人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.19.(10分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积.20.(10分)如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12,求AC的长.一、填空题(每小题4分,共20分);把答案直接卸载答题卡上对应题号后面的横线上.21.(4分)已知m+n=3mn,则+的值为.22.(4分)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.23.(4分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD 可构成以BC为腰的等腰三角形,则BC的长为.24.(4分)如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l 将这个图案分成面积相等的两部分,则直线l的函数解析式为.25.(4分)如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为.二、解答题(本大题共3小题,共30分);解答应写出必要的文字说明,证明过程或演算步骤.26.某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?27.(10分)如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.28.(12分)如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N 两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.2018年四川省甘孜州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共30分,以下每小题给出代号为A、B、C、D的四个选项中,只有一项是符合题目要求的)1.(4分)﹣的倒数是()A.﹣B.﹣C.D.【分析】依据倒数的定义求解即可.【解答】解:﹣的倒数是﹣.故选:B.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(4分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3.(4分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将4400000000用科学记数法表示为:4.4×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形、中心对称图形的定义,找出既是轴对称图形又是中心对称图形的图形即可.【解答】解:根据轴对称图形的定义,选项中图形为轴对称的有A、C、D.根据中心对称图形的定义,选项中图形为中心对称的有B、D.综上可知,既是轴对称图形又是中心对称图形的是D.故选:D.【点评】本题考查了中心对称图形以及轴对称图形,牢记中心对称图形及轴对称图形的定义是解题的关键.5.(4分)如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【分析】设DE与AB相交于点F,由∠1=70°,可得∠AFE的度数,再根据平行线的性质,即可得到∠B的度数.【解答】解:设DE与AB相交于点F,因为∠1=70°,所以∠AFE=110°,因为DE∥BC,所以∠B=∠AFE=110°,故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.(4分)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,﹣2)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点A(2,3)关于y轴对称点的坐标为B(﹣2,3).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(4分)若x=4是分式方程=的根,则a的值为()A.6B.﹣6C.4D.﹣4【分析】把x=4代入分式方程,得到关于a的一元一次方程,通过解新方程求得a的值.【解答】解:将x=4代入分式方程可得:=,化简得=1,解得a=6.故选:A.【点评】本题主要考查分式方程及其解法.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.8.(4分)某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位:cm),则这五名运动员身高的中位数是()A.181cm B.180cm C.178cm D.176cm【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据从小到大的顺序排列为173,176,178,180,181,∴这组数据的中位数是178.故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.9.(4分)抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)【分析】根据顶点式直接可得顶点坐标.【解答】解:∵y=﹣2(x﹣3)2﹣4是抛物线的顶点式,∴顶点坐标为(3,﹣4).∴则答案为C故选:C.【点评】本题考查了二次函数的性质,熟练运用二次函数的解析式的特点解决问题.10.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD【分析】根据垂径定理得出=,=,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.二、填空题(本大题共4小题,每小题4分,共16分);把答案填写在答题卡对应题号后面的横线上.11.(4分)已知|x|=3,则x的值是±3.【分析】根据绝对值相等的点有两个,可得答案.【解答】解:|x|=3,解得:x=±3;故答案为:±3.【点评】本题考查了绝对值,绝对值相等的点有两个,注意不要漏掉.12.(4分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.13.(4分)一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.14.(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.【分析】根据菱形的性质分别求出OB、OC,根据勾股定理求出BC,根据菱形的面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=3,OC=AC=4,在Rt△BOC中,由勾股定理得,BC==5,∵S=×OB×OC=×BC×OF,△OBC∴OF=,∴EF=.故答案为.【点评】本题考查的是菱形的性质,掌握菱形的面积公式、菱形的性质定理是解题的关键.三、解答题(本大题共6分,共54分):解答应写出必要的文字说明,证明过程或演算步骤.15.(10分)(1)计算:﹣(3.14﹣π)0﹣4cos45°(2)化简:÷﹣x【分析】(1)根据二次根式的性质以及零指数幂的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解(1)原式=2﹣1﹣4×=2﹣1﹣2=﹣1(2)原式=•﹣x=x(x+1)﹣x=x2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.17.(8分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)【分析】在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt △ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.【解答】解答:在Rt△ABC中,AC=AB•sin45°=4×=2,∵∠ABC=45°,∴AC=BC=2,在Rt△ADC中,AD=2AC=4,AD﹣AB=4﹣4≈1.66.答:改善后滑板会加长1.66米.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.18.(8分)某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为50人,其中“非常满意”的人数为18人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.【分析】(1)满意的有20人,占40%,即可得到调查中接受调查的人数,进而得到“非常满意”的人数;(2)画树状图可得共有12种等可能的结果,选择的市民均来自甲区的有2种情况,即可得到结果.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);故答案为:50,18;(2)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.19.(10分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)先找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论.【解答】解:(1)令反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=﹣2,则﹣2=,解得:x=﹣4,∴点B的坐标为(﹣4,﹣2).∵一次函数过A、B两点,∴,解得:,.∴一次函数的解析式为y=x+2.(2)令y=x+2中x=0,则y=2,∴点C的坐标为(0,2),∴S=OC•(x A﹣x B)=×2×[4﹣(﹣2)]=6.△AOB【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A、B的坐标;(2)找出点C的坐标;本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.20.(10分)如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12,求AC的长.【分析】(1)先判断出∠CAD+∠D=90°,进而判断出∠CAD+∠PAC=90°,即可得出结论;(2)先判断出∠B=∠ACF,进而判断出△ABC∽△ACF,得出比例式即可得出结论.【解答】(1)∵AD是⊙O的直径∴∠ACD=90°;∴∠CAD+∠D=90°∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,∴∠PAD=90°,∴PA⊥AD,∵点A在⊙O上,∴PA是⊙O的切线(2)∵CF⊥AD,∴∠ACF+∠CAD=90°,∵∠CAD+∠D=90°,∴∠D=∠ACF,∴∠B=∠ACF,∵∠BAC=∠CAF,∴△ABC∽△ACF,∴,∴AC2=AF•AB∵AF•AB=12,∴AC2=12,∴AC=2.【点评】此题主要考查了圆的切线的判定,圆周角定理,相似三角形的判定和性质,判断出∠B=∠ACF是解本题的关键.一、填空题(每小题4分,共20分);把答案直接卸载答题卡上对应题号后面的横线上.21.(4分)已知m+n=3mn,则+的值为3.【分析】原式通分后可得出,代入m+n=3mn即可求出结论.【解答】解:原式=+=,又∵m+n=3mn,∴原式==3.故答案为:3.【点评】本题考查了分式的加减法,利用通分将原式变形为是解题的关键.22.(4分)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为20.【分析】利用频率估计概率,然后解方程即可.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.【点评】本题考查了利用频率估计概率:一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.23.(4分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD 可构成以BC为腰的等腰三角形,则BC的长为2或2.5.【分析】根据两种情况进行解答即可.【解答】解答:如图∵AB=2,AD=7,∴BD=BC+CD=5,∵BC作为腰的等腰三角形,∴BC=AB或BC=CD,∴BC=2或2.5.故答案为:2或2.5【点评】此题考查等腰三角形的判定,关键是根据两种情况解答.24.(4分)如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l 将这个图案分成面积相等的两部分,则直线l的函数解析式为y=x.【分析】根据点A,B的坐标可得C的坐标,再根据待定系数法可求直线l的函数解析式.【解答】解:∵点A,B的坐标分别为(3,5),(6,1),∴C的坐标为(4,2.5),设直线l的函数解析式为y=kx,依题意有2.5=4k,解得k=.故直线l的函数解析式为y=x.故答案为:y=x.【点评】考查了待定系数法求正比例函数解析式,正方形的性质,关键是得出C点的坐标.25.(4分)如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为.【分析】连接OD,AD,根据OC平分∠BCD,BC=DC,即可得到BD⊥CO,依据AB是直径,可得AD⊥BD,进而得出AD=CO=1,再根据Rt△ABD,利用勾股定理可得BD=.【解答】解:如图,连接OD,AD,∵BC=DC,BO=DO,∴∠BDC=∠DBC,∠BDO=∠DBO,∴∠CDO=∠CBO,又∵OC=OB=OD,∴∠BCO=∠DCO,即OC平分∠BCD,又∵BC=DC,∴BD⊥CO,又∵AB是直径,∴AD⊥BD,∴AD∥CO,又∵AE=AO=2,∴AD=CO=1,∴Rt△ABD中,BD===.故答案为:.【点评】本题主要考查了圆周角定理以及勾股定理的综合运用,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.二、解答题(本大题共3小题,共30分);解答应写出必要的文字说明,证明过程或演算步骤.26.某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式,然后化为顶点式即可解答本题.【解答】解:(1)由题意得,商品每件降价x元时单价为(100﹣x)元,销售量为(128+8x)件,则y=(128+8x)(100﹣x﹣80)=﹣8x2+32x+2560,即y与x之间的函数解析式是y=﹣8x2+32x+2560;(2)∵y=﹣8x2+32x+2560=﹣8(x﹣2)2+2592,∴当x=2时,y取得最大值,此时y=2592,∴销售单价为:100﹣2=98(元),答:A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.27.(10分)如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.【分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE=,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.【点评】本题考查三角形综合题、等腰三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.28.(12分)如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N 两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由BC2+BD2=CD2可证出△BCD为直角三角形;(3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论.【解答】解:(1)将A(1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴此二次函数解析式为y=x2﹣4x+3.(2)△BCD为直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).当x=0时,y=x2﹣4x+3=3,∴点C的坐标为(0,3).∵点B的坐标为(3,0),∴BC==3,BD==,CD==2.∵BC2+BD2=20=CD2,∴∠CBD=90°,∴△BCD为直角三角形.(3)设直线BC的解析式为y=kx+c(k≠0),将B(3,0),C(0,3)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=﹣x+3,∴将直线BC向上平移t个单位得到的直线的解析式为y=﹣x+3+t.联立新直线与抛物线的解析式成方程组,得:,解得:,,∴点M的坐标为(,),点N的坐标为(,).∵点A的坐标为(1,0),∴AM2=(﹣1)2+(﹣0)2=t2+5t+7﹣(1+t),AN2=(﹣1)2+(﹣0)2=t2+5t+7+(1+t),MN2=(﹣)2+(﹣)2=18+8t.∵△AMN为直角三角形,∴分三种情况考虑:①当∠MAN=90°时,有AM2+AN2=MN2,即t2+5t+7﹣(1+t)+t2+5t+7+(1+t)=18+8t,整理,得:t2+t﹣2=0,解得:t1=1,t2=﹣2(不合题意,舍去);②当∠AMN=90°时,有AM2+MN2=AN2,即t2+5t+7﹣(1+t)+18+8t=t2+5t+7+(1+t),整理,得:t2﹣2t﹣8=0,解得:t1=4,t2=﹣2(不合题意,舍去);③当∠ANM=90°时,有AN2+MN2=AN2,即t2+5t+7+(1+t)+18+8t=t2+5t+7﹣(1+t),整理,得:(1+t+)=0.∵t>0,∴该方程无解(或解均为增解).综上所述:当△AMN为直角三角形时,t的值为1或4.【点评】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.。

相关文档
最新文档