数列通项公式的求法第2课时-累加法累乘法

合集下载

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法数列是一种非常常见的数学对象,它由一系列按照一定规律排列的数所组成。

数列中每一个数被称为该数列的项,数列中相邻的两项之间的差或比被称为公差或公比。

数列通项公式即指的是能够表示数列中第n项与n的关系的公式。

在数列通项公式中,最常见的两种形式分别是累加法和累乘法。

1.累加法:累加法指的是通过将数列中每一项与前面所有项的和相加来求得数列的通项。

累加法适用于具备递推关系的数列,即每一项可以通过前面的项得到。

例如,我们考虑一个最简单的等差数列:1,2,3,4,5,...。

这个数列的通项可以通过累加法来求得。

观察数列的规律,我们可以发现第n 项为n。

因此,这个等差数列的通项公式就是An=n,其中n为项数。

再例如,我们考虑一个等差数列:4,7,10,13,16,...。

这个数列的通项也可以通过累加法来求得。

观察数列的规律,我们可以发现每一项与前一项的差都是3,即公差为3、因此,我们可以得到公式An=4+(n-1)*3,其中n为项数。

2.累乘法:累乘法指的是通过将数列中每一项与前面所有项的积相乘来求得数列的通项。

累乘法适用于具备递推关系的数列,即每一项可以通过前面的项得到。

例如,我们考虑一个最简单的等比数列:2,4,8,16,32,...。

这个数列的通项可以通过累乘法来求得。

观察数列的规律,我们可以发现第n项为2的幂次方,即An=2^n,其中n为项数。

再例如,我们考虑一个等比数列:1,-2,4,-8,16,...。

这个数列的通项也可以通过累乘法来求得。

观察数列的规律,我们可以发现每一项与前一项的比都是-2,即公比为-2、因此,我们可以得到公式An=(-2)^(n-1),其中n为项数。

总结来说,数列通项公式之累加法和累乘法都是通过观察数列的规律,并通过对前面的数进行累加或累乘来得到通项公式。

这些公式的求得可以帮助我们更好地理解数列的性质,进而解决与数列有关的问题。

数列通项公式的求法——累加累乘

数列通项公式的求法——累加累乘

数列通项公式的求法之累加累乘概述:一般地,数列的通项公式需要根据递推关系确定,将递推关系式变形转化为等差数列或等比数列,但有时数列的递推关系还需要进一步探索出来。

1、递推公式满足:a n d = an g n型或a n j f (n) ( n_2)型思路:利用累加法,将a n-a n」=g( n-1),a n」. - a n/=g( n-2),,a2-a!=g(1),各式相加,正负抵消,得a.,即a n - a i ' (a2 一印)(a3 - a2)…(a n - a n」);n n用求和符号可以表示为:an=a^v (a -@_1)= ai八f(i)(n—2)0i =2 i=2例1:在数列ta n冲,a1= 0且a n彳=a n■ 2n -1,求数列、a n匚的通项公式。

■ 1例2:在数列”Gn :中,a1 = 3,a n d= a n - ,求数列:aj的通项公式n(n +1)例3:已知数列①:满足a n^a n 2 3n1,a^3,求数列①?的通项公式。

补充练习:1、已知数列ta n}满足a1=1, a n Hr = a n+ n ( n亡N+),则数列ia n}的通项公式为 ____________ 02、已知数列◎ }满足內=1, a n+ = an+3n)(n ^N+),则数列l a j的通项公式为 _________ 03、已知数列£n }满足印=丄,a^=an+ —1 -------------------------- ( n EN+),则数列^a j的通2 n2+3n + 2项公式为an 二 ________________________________________________________ 。

4、已知数列「aj 满足a n ^a n 8(工卫 2 , a —8,贝擞列 玄沖勺通项公式(2n +1)2(2 n+3)29 为 a n = _______________________________________________________________ 。

求数列通项公式的十种方法 (2)

求数列通项公式的十种方法 (2)

总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若③若④若例1解:由n a 例2解;由n a 3221((2333(1)3(1)3n a a a n n =++-=++⨯=++++-+=-+==练习1.已知数列{}n a的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=二、累乘法1.适用于:1()n n a f n a +=----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例4例4.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知1=+n a n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式三.。

例2n 满足S n 点评②数列{a 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n {+a n dn +-1,式.a 例6解法一:2n n a a -=又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。

高中数学:累加法、累乘法、已知前n项和求数列通项

高中数学:累加法、累乘法、已知前n项和求数列通项
数列是高中数学中的重点内容之一在高考中数列部分的考查既是重点又是难点也是每年高考的必考内容之一数列的通项公式在求数列问题中尤其重要不论是选择题或填空题中对基础知识的检验还是压轴题中与其他章节知识的综合抓住数列的通项公式通常是解题的关键本讲给出了求数列通项公式的几种常用方法
高中数学:累加法、累乘法、已知前n项和求数列通项
数列是高中数学中的重点内容之一,在高考中数列部分的考查既是重点又是难点也是每年高考的必考内容之一,数列的通项公式,在求数列问题中尤其重要其他章节知识的综合,抓住数列的通项公式通常是解题的关键,本讲给出了求数列通项公式的几种常用方法.

数列通项公式的求法时累加法累乘法

数列通项公式的求法时累加法累乘法

和a1求出{sn
nan}的通项公式,
然后利用由 sn求an , 最后用累乘法求得)
谢谢大家!
有问题随时欢迎大家提问
1、已知数列{an}满足a1
1.an
an-1
n -1 (n n 1
2)求其通项公式。
2、已知数列{an}满足a1
1, an1
2an an 2
, 求其通项公式。
3、已知数列{an}满足a1 1, an an-1 2(n n 2), 求其通项公式。
4、设数列{an}的前n项和为sn,a1 1{, sn nan}为常数列, 求其通项公式。
a3 2
an 1
a2
3
a1 n
a4 3
a3
4
an 1
...
1n
an n -1 注意:有n-1个式子
a n -1
n
1 an n
二、累乘法
3、注意事项:
适用题型:已知a1且
an an-1
f (n)(n
2)
或者会写成: an an-1 f (n)
将n=2,3,4...n代入给出得式子列出各式
数列通项公式的求法 第2课时
累加法,累乘法,倒数法
主讲人:张佩
本节课主要内容
一、了解什么题型使用累加法及累加法的具体使用步骤 二、了解什么题型使用累乘法及累乘法的具体使用步骤 三、了解什么题型使用倒数法及倒数法的具体使用步骤 四、总结并区分(灵丹妙药) 五、过关斩将
一、累加法
1、累加法适用题型:已知a1且an - an-1 f (n)(n 2) 2、例题: 已知数列{an}满足an - an-1 3n - ( 2 n 2), a1 1, 求其通项公式。
将各式相乘时要注意哪些项约掉了

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法数列是指一列按照一定规律排列的数。

数列通项公式是指数列中每一项与该项所在的位置之间的关系式。

数列通项公式有很多种求法,其中比较常用的有累乘法和累加法。

下面将以两种方法分别介绍数列通项公式的求解过程。

一、累乘法:累乘法是指通过乘法运算,逐步求出数列的每一项。

以下是求解数列通项公式的步骤:1.确定数列的通项公式为f(n)。

2.基于数列的前几项,找出数列中各项之间的乘法关系。

3.根据乘法关系推导数列的通项公式。

示例1:已知数列的前三项分别为1、2、4,求数列的通项公式。

解:根据数列的前三项,可以得到乘法关系:2=1*2,4=2*2、则可以推测数列的通项公式为f(n)=f(n-1)*2、再通过f(1)=1确定通项公式。

根据递推式可以列出数列的前n项:f(1)=1f(2)=f(1)*2=2f(3)=f(2)*2=4通过不断应用递推式,可以得到f(n)=2^(n-1)。

示例2:已知数列的前三项分别为2、6、24,求数列的通项公式。

解:根据数列的前三项,可以得到乘法关系:6=2*3,24=6*4、则可以推测数列的通项公式为f(n)=f(n-1)*n。

再通过f(1)=2确定通项公式。

根据递推式可以列出数列的前n项:f(1)=2f(2)=f(1)*2=4f(3)=f(2)*3=12通过不断应用递推式,可以得到f(n)=2*3*4*...*n。

二、累加法:累加法是指通过加法运算,逐步求出数列的每一项。

以下是求解数列通项公式的步骤:1.确定数列的通项公式为f(n)。

2.基于数列的前几项,找出数列中各项之间的加法关系。

3.根据加法关系推导数列的通项公式。

示例1:已知数列的前三项分别为1、3、6,求数列的通项公式。

解:根据数列的前三项,可以得到加法关系:3=1+2,6=3+3、则可以推测数列的通项公式为f(n)=f(n-1)+n-1、再通过f(1)=1确定通项公式。

根据递推式可以列出数列的前n项:f(1)=1f(2)=f(1)+1=2f(3)=f(2)+2=4通过不断应用递推式,可以得到f(n)=1+2+3+...+(n-1)=n(n-1)/2示例2:已知数列的前三项分别为2、5、9,求数列的通项公式。

数列的通项公式求法 (2)

数列的通项公式求法 (2)

数列的通项公式求法一、累加法:一阶递推数列,系数相等1.(全国高考)已知数列{}n a 满足a 1=1,a n =a n-1+3n-1 (n ≥2) ; 求a n .2.已知数列{}n a 满足a 1=1, a n =a n-1+)2(,)1(1≥-n n n , 求a n3.已知数列{}n a 满足a 1=1, a n+1=a n +lg )11(n+求a n4.已知数列{}n a 满足a 1=1, nnn na a a +=+11, 求a n二.累乘法: 形如)(1n f a a n n=+ 1.数列{}n a 中,0)1(,0,121211=-⋅++>=++n n n n n na a a a n a a 且求数列的通项公式a n2.已知数列{}n a 中,a 1=1,n n n a nn a a 求,21+=+3.已知数列{}n a 满足n n n a a n S a 求,,2121⋅==三.构造等比数列:一阶递推数列,系数不相等1.已知数列{}n a 满足a 1=2,231+=+n n a a , 求a n2.已知数列{}n a 满足a 1=1, 1211+-=+n n a a ,求a n3,设二次方程36260112=+-=+-+βαβαβα满足,有两根x a x a n n 试用1+n n a a 表示 (2) 当{}的通项公式。

时,求n a a 671=四、公式法:⎩⎨⎧≥-==-)2(,)1(,11n S S n S a n n n1.已知数列{}n a 满足前n 项和S n =n 2+1,数列{}12+=n n a b ,且前n 项和为T n ,设n n n T T c -=+12.(1)求{}n a 和{}n b 的通顶公式; (2)判断{}n c 的单调性。

2.已知数列{},6921n S n a n n n -=⋅-项和的前则数列{}n a 的通项公式为______________3.(全国高考)已知数列{}n a 满足:n n S a a 31,111==+ (1)求a n ; (2) 求n a a a 242+++4.已知数列{}n a 满足 a n >0,其前n 项和为S n ,2111322,32++=+=n n n a S S a 且满足 (1)求数列{}n a 的通项公式; (2) .49111122242322<++++≥n a a a a n 时,求证:当5.设 数列{}n a 其前n 项和为S n , 且01,)1(,其中-≠-+=λλλn n a S (1)证明:数列{}n a 是等比数列;(2)设 数列{}n a 的公比为q=f(λ),数列 {}n b 满足)2,)((,2111≥∈==*-n N n b f b b n n , 求{}n b 的通项公式; (3)记{}.),11(1n n nn n T n C b a C 项和的前求数列,-==λ6.已知数列{}n a 满足,25212121221n a a a n n +=+++ 求{}n a 和前n 项和S n.7.(山东高考)数列{}n a 满足)(,333313221*-∈=++++N n na a a a n n (1)求a n ; (2)设{}n nn b a nb 求数列,=的前n 项和S n .五、.构造等差数列、等比数列 1. 数列{}n a 满足:a 1=1,221+=+n nn a a a , 求 a n_2数列 {}n a 中,)2(,2,111≥⋅==-n S S a a n n n , 求a n ;3、数列 {}n a 中,a 1=1,当)21(22-=≥n n n S a S n 时,有(1)求S n 的表达式; (2)设12+=n S b nn , 求数列{}n b 的前n 项和T n .4.已知)0(,3,2)(,≥x x f x 等差数列,又数列 {}n a 中a n >0,a 1=3,前n 项和S n 对的正整数都有1≥∀n )(S 1-=n n S f(1) 求数列{}n a 的通项公式; (2) 设{}n n n nn n T n b T a a b 项和,求的前为的等比中项,且是1,11+.5、 数列 {}n a 中,a n >0,前n 项和为,,21n nn n S a a S =+且 求a n6、正数数列{}n a 的前n 项和为S n ,且对任意正整数n 都有12+=n n a S (1)求数列{}n a 的通项公式; (2) 设11+⋅=n n n a a b ,求{}n b 的前n 项和T n .7、正数数列{}n a 中,前n 项和S n 满足2)2(81+=n n a S (1)求数列{}n a 的通项公式; (2) 若{}项和。

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法数列是数学中常见的一种数的排列形式,其中通项公式是指能够表示该数列中任意一项的数学公式。

有时候,我们需要计算数列的累加和或累乘积,这时候累加法和累乘法是非常有用的工具。

一、累加法:累加法是指计算数列项的和的方法。

我们可以使用累加法来计算一个数列的累加和。

具体的步骤如下:1.确定数列的通项公式。

数列的通项公式用来表示数列中任意一项的公式。

例如,对于等差数列1,4,7,10,13,...,其通项公式为an = 1 + 3(n-1),其中n为项数。

2.确定累加的上限。

累加的上限是指要计算数列的前多少项的和。

通常我们用n来表示累加的上限值。

3.将通项公式中的n替换成累加的上限。

通过将通项公式中的n替换成累加的上限值,我们可以得到每一项的具体数值。

4.将每一项相加得到累加和。

将每一项的具体数值相加,即可得到数列的累加和。

举例说明:1. 确定通项公式:an = 1 + 3(n-1)2.确定累加的上限:n=103.将通项公式中的n替换成累加的上限:a10=1+3(10-1)=284.将每一项相加得到累加和:1+4+7+10+13+...+25+28=190因此,等差数列1,4,7,10,13,...的前10项的和为190。

二、累乘法:累乘法是指计算数列项的积的方法。

我们可以使用累乘法来计算一个数列的累乘积。

具体的步骤如下:1.确定数列的通项公式。

与累加法类似,数列的通项公式用来表示数列中任意一项的公式。

2.确定累乘的上限。

累乘的上限是指要计算数列的前多少项的积。

通常我们用n来表示累乘的上限值。

3.将通项公式中的n替换成累乘的上限。

通过将通项公式中的n替换成累乘的上限值,我们可以得到每一项的具体数值。

4.将每一项相乘得到累乘积。

将每一项的具体数值相乘,即可得到数列的累乘积。

举例说明:1. 确定通项公式:an = 2^n2.确定累乘的上限:n=53.将通项公式中的n替换成累乘的上限:a5=2^5=32总结:累加法和累乘法是计算数列累加和和累乘积的常用方法。

求数列通项公式的三种常用方法

求数列通项公式的三种常用方法

在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。

数列通项公式的求法第2课时-累加法累乘法ppt课件

数列通项公式的求法第2课时-累加法累乘法ppt课件

.
四、总结并区分(灵丹妙药)
1、累加法的适用条件:已 a 1 且 知 a n-a n -1f(n )( 2 n) 2、累乘法的适用条件:已知 a1且aann-1 f(n)(n2) 3、倒数法的适用条件:已a知 1且 anpanan-1-11(n2)
.
五、过关斩将
1、已{ 知 an}满 数 a1 足 列 1.anan-1n n -1 1(n2)求其通项公
.
三、倒数法
1、倒数法适用题型:已a知 1且 anpanan-1-11(n2) 分式的形式
2、例题: 已知{a 数 n}满 列 a足 n3aa n-n1-11(n2)a ,11,求其通项公
解:将原式两边同时取倒数得:
1 1 (n -1) 3 3n - 2
1 3an-113 1
an
an
an-1
2、已知 {an}数 满列 a足 11,an1a2nan2,求其通项公式。 3、已{ 知 an}满 数 a1 足 列 1,anan-12( n n2) ,求其通项
4、设{an数 }的列 n项 前和 sn,a1为 1{ , snnna}为常数列, 求其通项公式。
.
五、过关斩将答案
1、 ann22n(提示:本 法题 的在 时用 候累 , 算 乘 等 结式 果右 是边 保 前两项的分 项子 的与 分最 母后 )两
有问题随时欢迎大家提问
.
.
.
.
2、an
2(提示:倒数同法时,取两倒边数) n1
3、 an2n1-( 3 提示:累 右加 边法 是, 一等 个 前 n-1式 等 项比 的
4、 ann21n (提示:先 和 a1根 求{据 s出 nn常 na}的 数 通 列 项公 然后利 sn求 a用 n,最 由 后用累 . 乘法求得)

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法数列通项公式是指能够描述数列中每一项与其位置之间的关系的公式。

本文将介绍数列通项公式的两种求解方法:累乘法和累加法。

一、累乘法累乘法是指通过逐项将数列中的各项相乘来得到通项公式的求解方法。

这种方法常用于数列中每一项与前一项之间存在乘法关系的情况。

例如,考虑以下数列:1,2,4,8,16,32,64......我们可以观察到,这个数列中的每一项都是前一项的两倍。

因此,我们可以使用累乘法来求取通项公式。

首先,我们设数列的第n项为aₙ,第n-1项为aₙ₋₁。

根据数列的定义,我们有aₙ=2*aₙ₋₁。

然后,我们观察到数列的第一项是1,即a₁=1利用递推关系aₙ=2*aₙ₋₁和初始条件a₁=1,我们可以开始求解通项公式。

根据递推关系,我们可以得到a₂=2*a₁=2,a₃=2*a₂=4,以此类推。

我们可以得到一个结论:第n项的值是2的n-1次方,即aₙ=2^(n-1)。

通过累乘法,我们成功地求解了数列的通项公式。

二、累加法累加法是指通过逐项将数列中的各项相加来得到通项公式的求解方法。

这种方法常用于数列中每一项与前一项之间存在加法关系的情况。

例如,考虑以下数列:1,3,6,10,15,21,28......我们可以观察到,这个数列中的每一项都是前一项加上一个特定的常数。

因此,我们可以使用累加法来求取通项公式。

首先,我们设数列的第n项为aₙ,第n-1项为aₙ₋₁。

根据数列的定义,我们有aₙ=aₙ₋₁+n。

然后,我们观察到数列的第一项是1,即a₁=1利用递推关系aₙ=aₙ₋₁+n和初始条件a₁=1,我们可以开始求解通项公式。

根据递推关系,我们可以得到a₂=a₁+2=1+2=3,a₃=a₂+3=3+3=6,以此类推。

我们可以得到一个结论:第n项的值可以通过前n个自然数的累加来得到,即aₙ=1+2+3+⋯+n=n*(n+1)/2通过累加法,我们成功地求解了数列的通项公式。

综上所述,通过累乘法和累加法,我们可以求解数列的通项公式。

求数列通项公式的十一种方法

求数列通项公式的十一种方法

递推数列的通项公式的十一种求法一、累加法:a n = a 1 +(a 2―a 1)+……+(a n ―a n ―1)。

型如a n+1=a n +f (n )的递推数列例1 已知a n+1=a n +2n+1 ,a 1=1 ,求数列{ a n }的通项公式。

解:112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= ∴通项公式为2n a n =例2 已知a n +1 = a n +2×3n+1,a 1 = 3,求数列{ a n }的通项公式。

解: 已知得 a n +1 -a n = 2×3n+111232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+- ∴ 3 1.nn a n =+-例3 已知a n +1 = 3a n +2×3n+1,a 1 = 3,求数列{ a n }的通项公式。

解:已知两边除以13n + , 得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+ 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++,则 21133.322n n n a n =⨯⨯+⨯- 关键是把13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式。

求数列通项的方法总结

求数列通项的方法总结

求数列通项的方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f (n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

通项公式的求法

通项公式的求法

(条件:若 {an }的相邻两项关系式可化为: 条件: Aan+1 ⋅ an + Ban+1 + Can + D = 0 (A ≠ 0) 可用这种方法;(其中方程 Ax + (B + C)x + D = 0 可用这种方法; 其中方程
2
该数列的特征根) 的根称为该数列的特征根)
可视an +1与an都为x得到x的一元二次方程求出特 征根
6
三、待定系数法
类型:an +1 = k ⋅ an + b
例 6:在数列{an}中,a1 = 1, an+1 = 3 ⋅ an − 1, 求 an .
7
四 Sn与 n及 的 系 , 通 an .知 a n 关 式 求 项
(n =1 ) S1 类 :应 公 an = 型 用 式 求 解 Sn − Sn−1(n ≥ 2)
17
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:

2 a1 = 2, an +1 = 3an + 6an + 2 ,求 17:数列 {a n }满足 :
数列 {a n }的通项公式
18
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:
的图象上,其中n = 1, 2,3,⋯,求数列{an }的通项公式。
13
引 拓 :an+1 = qan + An + Bn +C 伸 展
2
例13 :已知数列{an } 满足a1 = 1, 且an +1 = 2an + n − n + 1,

数列求通项公式的五种重要方法

数列求通项公式的五种重要方法

求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例12、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +=== ,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

数列通项公式的五种求法

数列通项公式的五种求法

(n≥2),求 {an}的 通 项 公 式 。
解:因为 an=a1+2a2+3a3+……+(n-1)an-1(n≥2)

所以 an+1=a1+2a2+3a3+……+(n-1)an-1+nan

用②式-①式得 an+1-an=nan。

an+1=(n+1)an(n≥2)故
an+1 an

2.在应用性质时要注意 性 质 的 前 提 条 件 ,有 时 需 要 进 行 适 当变形。
2a2,则
a2=a1, 又 知
a1=1,则
a2=1, 代 入 ③得
an=
n! 2
(n≥2)。
≥1
综上,an 的通项公式为 an= n! 2
n=1 n≥2 本题解题的关键是
把递推关系式
an+1=(n+1)an(n≥2)转 化 为
an+1 an
=n+1 (n ≥2), 进
而求出
an an-1
·an-1 an-2
∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈
撼,难道他们不应该好好地了解这段历史吗? 总之,历史情境的 设计必须切合教材和学生的实际,才能达到预期的目的,提高 学生对历史的兴趣。
四、用通俗生动的语言导入新课 语言的魅力无穷,教师通过对文字的艺术加工,用喜闻乐 见的形式生动地展示出来,学生乐于接受。 如讲初一历史《南宋 与金对峙时的中国》,我编了一段导言:“话说南宋高宗年间,天 下实不太平,战乱频起,这情形造就个英雄岳飞,他从小受母训 导,精忠报国,尽心尽力。 堰城大战,杀得那金人哭爹叫娘、溃不 成军,差点儿把金的头目兀术送上了黄泉路。 这兀术不甘心,巧

2019年高考数学高频考点 专题45数列数列的通项2叠加法累乘法求通项 (文数)含解析

2019年高考数学高频考点 专题45数列数列的通项2叠加法累乘法求通项 (文数)含解析

专题45 数列 数列的通项2( 叠加法、累乘法求通项)【考点讲解】 一、具本目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.(2)数列{}n a 的前n 项和n S 和通项n a 的关系:.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值 得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。

3. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 4. 递推公式推导通项公式方法: (1)叠加法:叠加法(或累加法):已知,求数列通项公式常用叠加法(或累加法)即.(2)累乘法:已知求数列通项公式用累乘法.(3)待定系数法:(其中,p q 均为常数,)解法:把原递推公式转化为:,其中pqt -=1,再利用换元法转化为等比数列求解.(4)待定系数法:(其中,p q 均为常数,). (或,其中,,p q r均为常数).解法:在原递推公式两边同除以1+n q,得:,令n nn qa b =,得:,再按第(3)种情况求解.(5)待定系数法: 解法:一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出y x ,,从而转化为是公比为p 的等比数列.(6)待定系数法: 解法:一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出y x ,,从而转化为是公比为p 的等比数列.(7)待定系数法:(其中,p q 均为常数).解法:先把原递推公式转化为其中,s t 满足s t ps t q+=⎧⎨=-⎩,再按第(4)种情况求解. (8)取倒数法:解法:这种类型一般是等式两边取倒数后换元转化为,按第(3)种情况求解.(,解法:等式两边同时除以1n n a a +⋅后换元转化为,按第(3)种情况求解.).(9)取对数rnn pa a =+1解法:这种类型一般是等式两边取以p 为底的对数,后转化为,按第(3)种情况求解.5. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.类型1解法:把原递推公式转化为,利用叠加法求解例1.设数列{}n a 中,,则通项n a = .故应填()112n n ++.【答案】()112n n ++类型2.解法:把原递推公式转化为)(1n f a a nn =+,利用叠乘法求解。

求数列通项公式的八种方法

求数列通项公式的八种方法

求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

:例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ ]例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、an

1 n2
(提示:先根据常数列 n
和a1求出{sn

nan}的
然后利用由 sn求an , 最后用累乘法求得)
谢谢大家!
有问题随时欢迎大家提问
将各式相乘时要注意哪些项约掉了
三、倒数法

1、倒数法适用题型已:知a1且an

an-1 (n pan-1 1
2)
分式的

2、例题已: 知数列{an}满足an

an-1 (n 3an-1 1

2), a1
1,求其
解:将原式两边同时取倒数得:
1 1 (n -1) 3 3

3、倒数法的适用条件已:知a1且an

an-1 (n pan-1 1
2)
五、过关斩将
1、已知数列{an}满足a1
1.an

an-1

n -1 (n n 1

2)求其通项
2、已知数列{an}满足a1

1,
an1

2an an 2
, 求其通项公式
3、已知数列{an}满足a1 1, an an-1 2(n n 2), 求其通
1 3an-1 1 3 1
an
an
a n-1
an -1
1 an 3n - 2
1 - 1 3
an an-1
所以{ 1 }是以 1 1为首项, d 3的等差数列
an
a1Leabharlann 三、倒数法
3、注意事项:
适用题型:已知a1且an

an-1 (n pan-1 1
2)

将式子两侧同时取倒数得到{a1n
}是以
1 a1
为首项,
p为公差的

利用{
1 an
}的通项公式求出
{an
}的通项公式
四、总结并区分(灵丹妙药)
1、累加法的适用条件已:知a1且an - an-1 f (n)(n 2)

2、累乘法的适用条件已:知a1且
an an-1

f (n)(n
2)
a3 2
an 1
a2
3
a1 n
a4 3
a3
4
an 1
...
1n
an n -1 注意:有n-1个式子
a n -1
n
1 an n
二、累乘法


3、注意事项:
适用题型已:知a1且
an an-1

f (n)(n
2)
或者会写成: an an-
将n=2,3,4...n代入给出得式子列出各式
解:将n=2,3,4...n分别代入上式得: 将上述各式左右分别相
a2 - a1 4 a3 - a2 7 a4 - a3 10 ...
a2 - a1 a3 - a2 a4 - a 4 7 10 ... 3n - 2
an
-
a1

(n
-1)(4 2
3n
-
2)
an
数列通项公式的求法 第2课时
累加法,累乘法,倒数法
主讲人:张佩
本节课主要内容
一、了解什么题型使用累加法及累加法的具体使 二、了解什么题型使用累乘法及累乘法的具体使 三、了解什么题型使用倒数法及倒数法的具体使 四、总结并区分(灵丹妙药) 五、过关斩将
一、累加法
1、累加法适用题型已:知a1且an - an-1 f (n)(n 2) 2、例题已:知数列{an}满足an - an-1 3n - ( 2 n 2), a1 1, 求其
二、累乘法

1、累乘法适用题型:已知a1且
an an-1

f (n)(n
2)


2解、:例将题n=已 :2,知3,数 4..列.n{分an别}满代足入上aann-式1 得n:n-1(将n 上2述),各a1式左1,右求分其别通相
a2 1
a1
2
a2 a3 a4 an 1 a1 a2 a3 an-1 2
4、设数列{an}的前n项和为sn,a1 1{, sn nan}为常数列, 求其通项公式。
五、过关斩将答案
1、an

2 n2
(提示:本题在用累乘法的时候,等式右边运算 n
前两项的分子与最后两项的分母)
2、an

2 (提示:倒数法,两边同时取倒数) n 1
3、an 2n1 -(3 提示:累加法,等式 右边是一个等比数列的
-
1

3n
2
-n 2
-
2
an - an-1 3n - 2
注意:有n-1个式子 an

3n2 2
n
一、累加法
3、注意事项:
适用题型:已知a1且an - an-1 f (n)(n 2)
或者会写成: an an-1 f (n)
将n=2,3,4...n代入给出得式子列出各式 将各式相加时要注意一共有n-1项
相关文档
最新文档