有理数单元:相反数与绝对值

合集下载

有理数的绝对值与相反数的教学指导

有理数的绝对值与相反数的教学指导

有理数的绝对值与相反数的教学指导有理数是我们在数学学习中经常接触到的概念之一。

而其中涉及到的绝对值和相反数的概念是我们需要特别关注和掌握的内容。

本文将围绕有理数的绝对值和相反数展开教学指导,并针对不同年级和学生的特点提供相应的教学方法和技巧。

一、绝对值的概念与性质绝对值是一个数的非负值,即一个数到原点的距离。

在教学中,我们可以通过生活中的例子来引入绝对值的概念,比如一个人走了20米的路程,那么他离起点的距离是多少?接下来,我们可以引入绝对值的符号记法,即|a|表示a的绝对值。

例如,|5|表示5的绝对值为5,|-3|表示-3的绝对值也是3。

在教学中,我们可以引导学生探索绝对值的性质,例如:1. 任何数的绝对值都不小于0。

2. 正数的绝对值等于它本身。

3. 负数的绝对值等于它的相反数。

4. 两个数的绝对值的和等于它们的和的绝对值。

通过实际的计算和练习题,学生可以加深对绝对值概念和性质的理解和掌握。

二、相反数的概念与性质相反数是指绝对值相等、但符号相反的两个数。

在教学中,我们可以通过类似于以下的例子来引入相反数的概念:小明手里有5元钱,他往花瓶里丢了1元,那么他手里还剩下多少钱?这个问题引导学生思考正数和负数之间的关系,从而引入相反数的概念。

然后,我们可以引入相反数的符号记法,即-a表示a的相反数。

例如,5的相反数是-5,-3的相反数是3。

在教学中,我们可以引导学生探索相反数的性质,例如:1. 一个数和它的相反数的和等于0。

2. 相反数的相反数等于原数本身。

通过实际的计算和练习题,学生可以巩固对相反数概念和性质的理解和运用。

三、教学方法与技巧针对不同年级和学生的特点,我们可以采用不同的教学方法和技巧来进行有理数的绝对值与相反数的教学。

以下是一些建议:1. 初级阶段:在初级阶段,学生可能对负数的概念和运算还不够熟悉,可以通过具体的实物和图形来引导学生理解绝对值和相反数的概念,例如通过表示温度的正负号来引导学生理解绝对值的概念。

有理数的相关概念-相反数和绝对值(教案)

有理数的相关概念-相反数和绝对值(教案)
同时,我也在思考如何将信息技术融入教学中,以增强学生的学习兴趣和课堂参与度。例如,利用多媒体课件展示数轴的动态变化,让学生更直观地理解相反数和绝对值的含义。
3.空间观念:借助数轴,让学生直观地理解绝对值的概念,培养空间观念和几何直观。
4.问题解决:通过实际问题的引入,使学生能够运用相反数和绝对值知识解决问题,提高解决问题的能力和数学应用意识。
5.沟通交流:在小组讨论和课堂互动中,培养学生清晰表达观点、倾听他人意见的能力,增强合作交流素养。
三、教学难点与重点
-难点四:理解相反数和绝对值在不同情境下的应用,如符号的转换、距离的计算等。
-突破方选择合适的数学工具解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的相关概念-相反数和绝对值》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和距离的概念?”(例如,温度的变化,数轴上的移动)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相反数和绝对值的奥秘。
有理数的相关概念-相反数和绝对值(教案)
一、教学内容
本节课选自七年级数学上册《有理数》章节,主要内容包括:
1.相反数的定义:相反数是指两个数绝对值相等,符号相反的数。如,+3的相反数是-3,-4的相反数是+4。
2.相反数的性质:一个数的相反数加上该数等于0。
3.绝对值的定义:绝对值是指一个数在数轴上对应的点到原点的距离。如,|+3|=3,|-3|=3。
1.教学重点
-重点一:相反数的定义及其性质。理解相反数的概念,掌握一个数的相反数就是符号相反的数,且它们的和为零。
-举例:强调+3和-3互为相反数,且(+3)+(-3)=0。

专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(解析版)

专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(解析版)

专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

考点2 有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

两个符号:符号相同是正数,符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。

2.1 认识有理数 第2课时 相反数、绝对值

2.1 认识有理数 第2课时 相反数、绝对值

置,分别记作
3
千米和 -5 千米.这样,利用有理数就可
以明确表示每辆汽车在公路上的位置了。
我们知道,出租汽车是计程收费的,这时我们只需要考虑
汽车行驶的距离,不需要考虑方向,当不考虑方向时,两辆汽
车行驶的距离就可以记为
3
千米和
做+3的绝对值,5叫做-5的绝对值。
5
千米,这里的3叫
新知小结
一个数的数量大小叫作这个数的绝对值,0的绝对
(2)你能仿照气温的比较将下列这组数按照从小到大的顺序进行
排列吗?
-1,0,-3,2.5,-1.5,4。
-3<-1.5<-1<0<2.5
典例精析
(3)你认为负数和正数应怎样比较大小?负数和0呢?两个负数呢?
与同伴进行交流。
正数大于0,负数小于0,正数大于负数。
两个负数,绝对值大的反而小。
典例精析
2
2
数量相等。我们称其中一个数为另一个数的相反数,也称这两个数
互为相反数。特别地,0的相反数是0。
思考
如何求一个数的相反数呢?
求一个数的相反数,就是在这个数的前面添上“-”号。
一般地,a的相反数是 -a
;-a的相反数是 a

即a和-a互为相反数。
针对练习:
(1)如果a=13,那么-a=____;(2)如果a=-5.4,那么-a=____;
5.已知a,b互为相反数,则a+b= 0

6.比较大小:-|- |

或“=”填空)




-(- ).(用“>”、“<”

课堂总结
相反

相反
数、
绝对

绝对

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

《1.3绝对值与相反数》

《1.3绝对值与相反数》

练一练
1.填空
(1)绝对值等于0的数是___, 0
(2)绝对值等于5.25的正数是_____, 5.25 (3)绝对值等于5.25的负数是______, -5.25 (4)绝对值等于2的数是_______. 2或-2
2.判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. ×
(2)|3|>0. √
3 5
5
-5 -4
3
3 5
3
1 2 3 4
5
5
-3 -2 -1
0
(2)观察各点在数轴上的位置,得到
3 3 3 3 |3|=3,|-3|=3;|5|=5,|-5|=5; | | ,| | . 5 5 5 5
二 相反数
观察与思考
观察例1中的三组数在数轴上的位置和绝对值的大小, 想一想这三组数的共同特点是什么? 符号不同
课后作业
见教材本课时习题
x x 3x 5. 的相反数是_____ ,-3x的相反数是___. 2 2
6.判断并改错: (1) 相反数等于它本身的数只有0; ﹙ (2) 符号不同的两个数互为相反数;﹙ ﹚ ﹚ ( )
(3)一个数的绝对值等于本身,则这个数一定是正数;
(4)一个数的绝对值等于它的相反数,这个数一定是负数;(
(5)如果两个数的绝对值相等,那么这两个数一如果两个数不相等,那么这两个数的绝对值一定不等;(
(7)有理数的绝对值一定是非负数. ( )
)
7. 化简下列各数,并求出它们的绝对值. (1)-(+10) (2)+(-0.15) (3)+(+3)
(4)-(-12)
解:
(5)+[-(-1.1)]

班课讲义有理数(二)绝对值相反数和比较大小

班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。

6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。

3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。

理解:代数定义:只有符号不同的两个数互为相反数。

0的相反数是0。

几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。

0的相反数是0。

说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。

“0的相反数是0”是相反数定义的一部分。

这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。

补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。

不能理解为只要符号不同的两个数就互为相反数。

另外,“0的相反数是0”也是相反数定义的一部分。

关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。

关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

如5与-5是互为相反数。

(3)0的相反数是0。

也只有0的相反数是它的本身。

2024秋七年级数学上册第2章有理数2.4绝对值与相反数2相反数说课稿(新版)苏科版

2024秋七年级数学上册第2章有理数2.4绝对值与相反数2相反数说课稿(新版)苏科版
7. 教学反馈表:准备一份教学反馈表,用于收集学生对课堂教学的反馈和建议,以便改进教学方法和内容。
五、教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
- 设计预习问题:围绕“相反数与绝对值”课题,设计一系列具有启发性和探究性的问题,引导学生自主思考。
重点:
1. 相反数的概念及其运用
2. 绝对值的定义及其性质
难点:
1. 相反数的推导和应用
2. 绝对值在不同情况下的计算方法
解决办法:
1. 对于重点内容,通过具体的例子和练习题,让学生反复练习,巩固概念。
2. 对于难点内容,可以通过分步骤讲解、引导学生自主探究和小组讨论,以动画或实物演示等方式,帮助学生形象理解。同时,设计具有梯度的练习题,让学生在练习中逐步克服困难,掌握知识点。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
作用与目的:
- 帮助学生提前了解“相反数与绝对值”课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过故事、案例或视频等方式,引出“相反数与绝对值”课题,激发学生的学习兴趣。
2024秋七年级数学上册 第2章 有理数2.4绝对值与相反数 2相反数说课稿(新版)苏科版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、课程基本信息
1.课程名称:七年级数学上册第2章 有理数2.4绝对值与相反数

有理数中相反数、绝对值、倒数(真题)

有理数中相反数、绝对值、倒数(真题)

有理数中相反数、绝对值、倒数(真题)1.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.2.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.3.倒数.倒数的性质:(1)同符号,不同数值;(2)乘积为1的两个数叫做倒数,0没有倒数.4.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.5.有理数的运算(1)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.典题精炼:1. 计算﹣(﹣3)=,|﹣3|=,(﹣3)=,(﹣3)=.2、化简﹣(﹣)的结果是.3、 2019的相反数是.4、数5的相反数是.5、计算:|﹣4|﹣()=.6、点A在数轴上的位置如图所示,则点A表示的数的相反数是.7、有理数9的相反数是. 8、﹣2011的相反数是.9、﹣5的相反数是. 10、﹣4的绝对值是.11、﹣3的相反数是;的立方根是.12、已知a与b的和为2,b与c互为相反数,若=1,则a=.13、﹣1的相反数是,﹣0.1的倒数是,﹣11的绝对值是.14、的相反数的倒数是15、下列说法错误的是(只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示:③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.16、-的相反数是;的倒数是.17、点A在数轴上的位置如图所示,则点A表示的数的相反数是.18、计算:﹣(﹣2)=.19、某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数.有理数加减及混合运算一.知识要点:1.加法法则:同号相加符号不变,并把绝对值相加;异号加法绝对值相减,符号取绝对值大的符号;互为相反数相加和为0;0与任何数相加仍得这个数.2.减法法则:减去一个数,等于加上这个数的相反数.3.加减混合运算:连加、连减和加减混合,统一转化为省略加号的和的形式,即代数和.4.代数和简便计算:(1)正负数归类 (2)互为相反数对消(3)凑整数(或局部对消) (4)同分母计算(避免通分)二、典题精炼【题型一 有理数加减计算】1.计算:(1)-17+24+(-16)-(-6) (2)1-(-2)+32---5(3)(-9)-(+9)-(-18)-9 (4)(-30)-(+8)+(-6)-(-17)(5)(71-)-(72-)-731+1 (6)(431-)+877-432-853-25三、典题精炼【题型二 有理数乘除法计算】(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32(3)(+)﹣(﹣)﹣|﹣3| (4)(5)﹣64÷3×(6)∣-2∣2+∣+7∣7+∣0∣(7)(8)(9)﹣2+3×(﹣1)﹣(﹣4)×2.(10)[(﹣1)+(1﹣)×]÷(﹣3+2)(11)(﹣3)÷2÷(﹣)+4+2×(﹣)(12)2﹣(﹣+)×36.。

相反数及绝对值

相反数及绝对值

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“-”号结果为负,有偶数个“-”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“-”,如a的相反数是-a,m+n的相反数是-(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)-a(a<0)一、选择题(共5小题)1.a-|a|的值是()A.0B.2a C.2a或0D.不能确定2.如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q,r,s.若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=()A.7B.9C.11D.13A.负数B.正数C.非正数D.非负数4.当|a|=5,|b|=7,且|a+b|=a+b,则a-b的值为()A.-12B.-2或-12C.2D.-25.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R二、填空题(共5小题)(除非特别说明,请填准确值)6.绝对值小于5的非负整数有.7.如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为8.|x|=7,则x= ;|-x|=7,则x= .9.一个数的绝对值是4,则这个数是.10.化简|π-4|+|3-π|= .三、解答题(共5小题)(选答题,不自动判卷)11.若x>0,y<0,求|x-y+2|-|y-x-3|的值.解:12.如图,化简|b-c|-|a+b|+|c-a|.解:13.已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b-1)2=0.现将A、B之间的距离记作|AB|,定义|AB|=|a-b|.(1)|AB|=______;(2)设点P在数轴上对应的数是x,当|PA|-|PB|=2时,求x的值.解:14.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)同样道理|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是______.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.解:15.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?解:。

绝对值与相反数(基础)知识讲解

绝对值与相反数(基础)知识讲解

绝对值与相反数(基础)责编:康红梅【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.下列各组数互为相反数的是( )A .18-和0.8+ B .13和0.33- C .6-和(6)-- D . 3.14-和π 【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】C【解析】18-的相反数是18,而不是0.8+;13的相反数是13-,而不是0.33-,-6的相反数就是(6)--,所以C 正确; 3.14-的相反数是3.14,不是π.【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( )A.-1B.0C.1D.2【答案】B类型二、多重符号的化简2.(2014秋•本溪校级月考)化简:(1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)]}.【答案与解析】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.类型四、比较大小4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-&&______-1.384; -π______-3.14.【答案】>;=;>;>;<类型五、绝对值非负性的应用5. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0所以m =2,n =3故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型六、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【总结升华】绝对值越小,越接近标准.【变式】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.。

第三节相反数与绝对值

第三节相反数与绝对值

第三节相反数与绝对值内容讲解相反数与绝对值是有理数单元中的两个重要概念.通过数轴,我们可以看到它们之间的联系.一个数的绝对值在数轴上表现为该数对应的点到原点的距离,表示同一个绝对值的点有两个,它们在原点两侧,且到原点的距离相等.即是说,一个数的绝对值只有一个, 但等于同一绝对值的数有两个,它们互为相反数.利用两个数是相反数,那么它们的和为0,其商为-1,以及一个数的绝对值为非负数的性质,再结合数轴,使有理数的计算问题更加丰富多彩.当a、b互为相反数时,有a+b二0, -=-l (bHO). b匕|=严0),-a(a < 0);例题剖析例1 if t? - ----- + -- ----- - -- ----- o2006 2005 2007 2006 2007 2005分析:先比较绝对值符号内两数差值的正负,然后去绝对值号后再算.解:原式=一(---- 一---- )一(--- 一--- )+ (----- 一---- )2006 2005 2007 2006 2007 2005〜1 + 1 一1 十1 + 1 一1 P2006 2005 2007 2006 2007 2005评注:如果绝对值号内的数直接求差太麻烦,通常都是先去绝对值号,然后再算会简单得多.例2 若I a+1 | + | 3b-1 | =0,求a2OO6-5b2的值.分析:因为I a+1 |与| 3b-l |都是非负数,若它们的和为0,必有a+l=0与3b-l=0, 从而先求出a. b的值,再求关于冬b的代数式的值.解:V I a+1 I + I 3b-l | 二0,/. a+l^Ot 3b-l=0,得a二一1, b二一・31 5 4则原式二(-1) ^-5X (1 ) 2=i—二=工・3 9 9评注:这里运用了两个非负数和为0的性质,这在讨论非负数的问题中.常常会遇到.例3求式子—+ —的最大值与最小值的平方和.I m I Ini分析:式中有m、n两数的绝对值| m |与| n | ,要去掉绝对值号,需考虑n的符号,分不同情况进行讨论.解:•••当m>0, n>0 时,原式=- + -=2:m n当m>0, n〈0 时,原式二巴■ + /-=():m -n当m<0, n〉0 时,原式二—+ -=0:-m n当m〈0, n〈0 时,原式二— + —=-2.-m -n英最大值与最小值的平方和为2讣(-2):二8・评注:分m、n的正、负不同情况讨论时,要考虑全而.例如,这里就不能只考虑m、n同号或异号两种情况.例4在数轴上,求岀所有的整数点P,使得它到点100和点(-100)的距离之差大于20,苴和等于200,求岀这些整数点的个数以及它们的和.分析:利用数轴,找岀不满足两个条件的整数点,然后得到所有符合条件的整数点P, 再求这些整数点的个数,以及它们的和.解:如下图,观察数轴上-10与10之间的整数点,以及区间-100与100以外的整数点・得知±10, ±9, ±8,…,±1, 0,这些点与点±100的距离之差不大于20:而点-100与点100以外的点,也不满足到点(-100)与点100的距离之和等于200的条件.所以符合条件的整数点P,只能是±lb ±12, ±12,…,±100,共有201-21=180 个.且 11+ (-11) +12+ (-12) +-+100+ (-100)二0・评注:根据题设条件,充分利用数轴上的点的直观性,排岀不符合条件的整数点,从 而得到问题的正确答案.例5已知a 与b 互为相反数,且| a-2b | =-,求代数式上匸砂二二的值.2 cr +ab+b-\分析:先由亦b 二0与2a-2b 二土,求出a 与b 的值,再代入所求代数式求值,即得 解:与b 互为相反数…"+b 二0・ ①3 3 又T I a-2b | =- , .\a-2b=± 二.② 2 2则 2a-ab-b 2 _ 2a-b(a + b) _ 2a a 2 +ab + b-\ a (a + /?) + b -1 b -11 1 ?/• -P l a= — , b 二-—时,原式二-—:2 2 3当a 二-丄,b 二丄时,原式二2・2 2评注:等于同一绝对值的数有两个,它们互为相反数,所以本例有两解,遇到类似情 况,注意不要遗漏其中任意一解.巩固练习1. 选择题:(1) 在数轴上,点X 表示到原点距离小于5的那些点,那么I x+5 | + | X-5 |等于()(A) 10 (B) -2x (C) -10 (D) 2x由①、②解得“b£2' _丄 ~2(2)若x=-— i 化简| x+1 | - | x+2 | + | x+3 | - | x+4 | +•••- | x+10 | 得()2(A) 2x+7 (B) 2x-7 (C) -2x-7 (D) -2x+7(3)绝对值小于3/r的所有整数的乘枳为()(A) 9龙2 (B) 3兀(C) n(D) 02.填空题:(1)若x〈3,贝IJ | x-3 | - | 3-x | 的值为 :(2)绝对值不小于3但小于5的所有整数的乘积为__________ :(3)已知| x | =L | y | =3> 且xy<0» 则y (x+2)二___ ・3.已知a2+ | 5a-4b+3 | 二0,求a2006-8b3的值.4•在数轴上,找岀所有整数点P,使它们到点1003和点- 1003的距离之和等于2006, 并求出这些整数的和.5.若la-l| + | ab-2 I二0,求聞阿+・・・+吋丽莎面的值.6.表示数冬b、c、d的点在数轴上的位置,如图所示:化简I b-c | - | a-2c | - | d+b | + | d | .b d oc a7.已知|丄+xf | =- |丄+x-n |,其中m、n、x是数轴上的数,求证:m=n3-3n. x x。

第二章有理数(相反数-绝对值分类题型复习-)

第二章有理数(相反数-绝对值分类题型复习-)

有理数【一、相反数】例1:(1)-2的相反数的值等于;2018的相反数是(3)已知a+2的相反数是-3,那么a的相反数例2:如图所示,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,则在数轴上表示出原点O的位置.【变式】1、①已知x的相反数是-2,且2x+3a=5,求a的值.②已知-[-(-a)]=8,求a的相反数.2、如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?3、写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,−21,−(−32),+(-4.5),0,-(+3)例3:化简下列各式+(-7)= ,-(+1.4)= ,+(+2.5)= ,-[+(-5)]= ; -[-(-2.8)]= ,-(-6)= ,-[-(+6)]= .例4:一滴墨水洒在一个数轴上,如图所示,由图中标出的数值,判断墨迹盖住的整数共有多少个?有多少对相反数被盖住呢?【练习】1、-2的相反数是 .2、化简:(1)-[-(-8)]; (2)-|-23|3、在数轴上画出表示下列各数以及它们的相反数的点:-4,0.5,3.4、一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.5、有理数a,b在数轴上的位置如图所示.(1)在数轴上分别用A、B两点表示-a,-b.(2)若数b与-b表示的点相距20个单位长度,则b与-b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a与-a表示的数是多少?【二、绝对值】例1:(1)-2018的绝对值是 . (2)写出一个数,使这个数的绝对值等于它的相反数: .【变式】1、绝对值不大于5的整数共有 个.2、绝对值大于2且不大于5的整数有 .3、如果|x|=3,那么x 是4、四人做传数游戏:甲任报一个数传给乙,乙把这个数减1传给丙,丙再把所得的数的绝对值传给丁,丁把所听到的数减1报出答案:(1)如果甲报的数为x ,则乙报的数为x-1,丙报的数为 ,丁报的数为 ;(2)若丁报出的答案为2,则甲报的数是多少?例2:如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 .例3:若|x|=5,|y|=12,且x >y ,则x+y 的值为 。

第1章《有理数》易错题集(02):12数轴、相反数与绝对值

第1章《有理数》易错题集(02):12数轴、相反数与绝对值

第1章《有理数》1.2 数轴、相反数与绝对值选择题1.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<132.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣33.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或20064.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣35.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.56.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣27.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.08.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或29.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>310.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a11.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数A.3 B.﹣1 C.±1或±3 D.3或﹣113.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<014.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a 15.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边16.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+617.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数18.在数轴上,表示点中,在原点右边的点有()A.4个B.3个C.2个D.1个19.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<020.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q填空题21.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________.22.若|a|=3,则a的值是_________.23.﹣|﹣2|的绝对值是_________.24.绝对值比2大比6小的整数共有_________个.25.数,,,﹣|﹣5|,﹣0.5中,分数有_________个.26.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=_________.。

有理数总结,绝对值,相反数

有理数总结,绝对值,相反数

有理数 2013.3基础知识:一、正数与负数1、正数,负数的定义:大于0的数叫做______ 小于0的数叫做_______。

2、0既不是正数也不是负数。

正数都大于0,负数都小于0,正数大于一切负数.注意:带有正号的数不一定是正数,同样带有负号的数不一定是负数。

有理数1、有理数的分类:①按整数、分数分:有理数0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数正分数分数负分数②按数的正、负分:有理数0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数负分数负整数负有理数负分数注意:只有能化成分数的数才是有理数。

① 是无限不循环小数,不能写成分数形式,不是有理数。

② 有限小数和无限循环小数都可化成分数,都是有理数。

例:有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 , 非负数是 。

2、数轴是具有 、 、 的一条直线。

★在数轴上表示的两个数,右边的数总比左边的数_____. 例:判断(1)正整数集合和负整数集合并在一起,构成整数集合. ( ) (2)正数集合和负数集合并在一起,构成有理数集合. ( ) (5)31.25不是分数,所以不是有理数. ( )(6)在小学学过的数的前面添上“-”号,就是负数. ( )(7)一个物体可以左右移动,设向左移动为正,那么向右移动3m 应记作3m. ( )3、相反数:(1)只有符号不同的两个数称互为相反数,0的相反数是__0___.互为相反数的两个数在数轴上位于原点两旁,且与原点的距离相等. (2)求有理数的相反数在一个数的前面添上“-”号,用这个新数表示原来那个数的相反数. (3)相反数的表示方法以及多重符号的化简★ 数a 的相反数是-a ,这里的数a 是任意有理数,即a 可以是正数、负数或0。

多重符号的化简方法:若一个正数前面有偶数个“-”号,则可以把“-”号一起去掉;若一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号,0前面不论有多少个“-”号,化简后仍是0。

有理数2.3绝对值与相反数

有理数2.3绝对值与相反数

相反数 绝对值 教学目的 1理解并掌握绝对值及相反数的概念 2知道绝对值的表示方法3会在数轴上表示绝对值寻找关系重点难点1在数轴上寻找关系确定数之间的距离2学会绝对值的化简3多重符号的化简教学内容 2.4绝对值与相反数1.定义:数轴上表示一个数的点与 的距离,叫做这个数的绝对值。

【例1】求4、-3.5的绝对值.【例2】已知一个数的绝对值是25,求这个数.[例1]的绝对值是( ) A .B .C .D .[例2]如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( )A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <1知识模块1绝对值的概念经典例题透析1.定义: 不同, 相同的两个数互为相反数,其中一个数是另一个数的相反数。

2.注意:①只有符号不同的两个数,叫做互为相反数,0的相反数是0;②a 与b 互为相反数,则a+b=0、a=-b ;③在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等;④绝对值是同一个正数的数有两个,它们互为相反数;反过来,互为相反数的两个数的绝对值相等。

[例1]-9的相反数是 ( )A.91B.91 C.-9 D.9[例1]一个数的相反数是非负数,这个数一定是( )A .正数或零B .非零的数C .负数或零D .零[例2]下列结论正确的有( )①任何有理数都有相反数;②符号相反的两个数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a ,b 互为相反数,则它们一定异号.A .1个B .2个C .3个D .4个[例3]下列几组数中互为相反数的是()A .和0.7B .和-0.333C .-(-6)和6D .和0.25知识模块2相反数的概念 经典例题透析一般的,数a 的相反数表示成-a,这里a 是任意的数,可以是整数、负数或0-⎪⎭⎫ ⎝⎛-213=[例1]-7的相反数的倒数是( )A .7B .-7C .D .[例2]若a 的相反数比-2的相反数少1,则a 为( )A .3B .-3C .1D .-1一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0。

《有理数:数轴、相反数、绝对值》教学设计

《有理数:数轴、相反数、绝对值》教学设计
3.对表格重点内容作强调
1.口答完成判断题
2.师引导学生完成填空题
3.用大卡分组完成解答题
4.展示大卡,并讲评学生做题情况
5.小结
1.师生总结本节课所学内容
2.师生总结学习的解题方法
3.名言寄语希望
板书
设计
有理数:数轴、相反数、绝对值
1பைடு நூலகம்数轴
相反数绝对值
2.探究方法:(1)定义;(2)表示法
(3)在数轴上的特点(4)性质
教学重点
对概念和性质的理解与掌握。
过程和方法:初步培养学生从特殊到一般,再到特殊的数学学习的常用方法,分类讨论的思想方法,一题多解的解题方法等。
教学难点
对概念的适度拓展和性质的灵活运用。
情感态度、价值观:培养学生的整体意识,团结合作的能力,持之以恒的意志品质。
以一道数学题引入本课,体现问题是数学的灵魂。
《有理数:数轴、相反数、绝对值》教学设计
教学
目标
知识和能力:1.理解数轴、相反数、绝对值的概念;2.会在数轴上准确找点,会观察数轴上点的位置与数的大小关系,并会应用于解决实际问题;3.会利用相反数和绝对值的性质进行相关的化解和运算;4.初步学会分类讨论的方法和数形结合的方法解决相关的问题;5.初步培养学生对所学知识进行归纳整理的能力。
课反
后思
初步培养学生对所学知识进行归纳整理的能力,观察分析的能力。
由易到难,符合学生认知规律,有利于调动学生学习积极性,对概念掌握和性质的活用都得到了强化和巩固(能力提高部分可作课后作业)
引导学生展示交流,教师及时进行归纳、反思,从而才有举一反三,“见一知十”的效果。
教师出示问题幻灯片导入
1.出示表格
2.引导学生梳理表格内容

2024年冀教版七年级上册第一章 有理数绝对值与相反数

2024年冀教版七年级上册第一章  有理数绝对值与相反数

课时目标1.经历用数轴理解绝对值与相反数的过程,体会数形结合的数学思想方法,培养学生的数学素养.2.经历探索正数、负数和0的绝对值与相反数的过程,体会分类讨论与由特殊到一般的数学思想方法,培养学生的抽象概括能力.3.掌握求一个有理数的绝对值与相反数的方法,并能用一般形式表示,发展学生的数学抽象能力.学习重点理解绝对值、相反数的意义,会求一个数的相反数和绝对值.学习难点理解绝对值的意义、性质,并会去绝对值符号.课时活动设计复习引入1.数轴三要素是什么?画数轴时应注意什么?2.如图,观察数轴上表示有理数的点A,B,C,D,E.思考下列问题:(1)数轴上的点A,B,C,D,E表示的有理数分别是什么?(2)表示这些数的点到原点的距离分别是多少?设计意图:复习回顾数轴的三要素及数轴上的点与有理数的对应关系,为引入绝对值和相反数的概念作铺垫.探究新知探究1绝对值的概念思考:通过观察教学活动1中的数轴可知,点A和点D到原点的距离相等,都为4;点B和点E到原点的距离也相等,都为2.像这样在数轴上成对出现的点,它们到原点的距离相等,对应的数的符号却相反.你能根据这类数的特征.尝试给绝对值下一个定义吗?学生先独立思考,然后试着说一说,教师给予适当引导.绝对值的概念:在数轴上,表示一个数的点到原点的距离叫作这个数的绝对值.有理数a的绝对值表示为|a|,读作“a的绝对值”.例如,在数轴上,表示-5的点到原点的距离是5,所以-5的绝对值是5,表示为|-5|=5.问题1:(1)在数轴上表示下列数.-4,-2.5,-2,-1.5,1,1.5,2,3,3.5,4.(2)观察表示这些数的点到原点的距离,并写出这些数的绝对值.选一名同学到黑板作答,其他同学在练习本上作答.教师巡视,给予指导,最后统一订正,并给予评价.解:(1)如图所示.(2)观察各点在数轴上的位置,得到|-4|=4,|-2.5|=2.5,|-2|=2,|-1.5|=1.5,|1|=1,|1.5|=1.5,|2|=2,|3|=3,|3.5|=3.5,|4|=4.思考:如何求一个有理数的绝对值呢?学生先独立思考,然后小组讨论,最后小组代表发表见解.探究2相反数的概念思考:问题1中,有到原点的距离相等的点吗?请找出来,并说明这些数有什么特点?在数轴上的位置又有什么特点?(从数与形的角度考虑)学生先独立思考,然后小组讨论,最后得出答案.解:到原点距离相等的点有-4与4,-2与2,-1.5与+1.5;每组数的符号不同,绝对值相同,在数轴上表示它们的点分别在原点的两侧,且到原点的距离相等.教师适时归纳相反数的概念:像-4与4,-2与2,-1.5与+1.5等这样符号不同、绝对值相等的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数.规定0的相反数为0.思考:(1)互为相反数的两个数在现实生活中有什么意义呢?举例说明.(2)如何表示一个数的相反数呢?学生先独立思考,然后小组讨论,各组作出解答,教师给予点评.总结:表示一个数的相反数时,可以在这个数的前面添加一个“-”.因此,有理数a的相反数可以表示为-a.例如,-4的相反数可以表示为-(-4).因为-4的相反数是4,所以-(-4)=4.(3)如图,设a是一个正数,数轴上与原点距离是a的点有几个?这些点表示什么数?它们之间有什么关系?在数轴上,与原点距离是a的点有2个,分别表示-a和a,它们之间互为相反数,且绝对值相等.问题2:化简下列各数:-(-11),-(+2),-(-3.75),-+解:因为-11的相反数是11,所以-(-11)=11.因为+2的相反数是-2,所以-(+2)=-2.同理,-(-3.75)=3.75,-(+813)=-813,-[-(-3)]=-3,-[+(-2.3)]=2.3.思考:你发现了什么规律?学生交流讨论.总结:如果一个数前面有奇数个“-”,则结果为负;如果一个数前面有偶数个“-”,则结果为正.探究3绝对值的性质通过问题1我们总结出了求一个有理数的绝对值的方法,即①在数轴上用点表示这个有理数;②求这个点到原点的距离;③写出这个有理数的绝对值.结合问题1思考:不画数轴,你能求出一个正数、负数或0的绝对值吗?从哪几方面考虑?学生小组讨论,代表发言,教师归纳总结.总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.符号表示:用字母a表示一个有理数,那么当a是正数时,|a|=a;当a=0时,|a|=0;当a是负数时,|a|=-a.问题3:求下列各数的绝对值:-2.5,2.5,-38,38.师生活动:选一名学生到黑板作答,其他学生独立完成,教师巡视指导.解:|-2.5|=2.5.|2.5|=2.5.=38.=38思考:如果一个数的绝对值等于它本身,那么这个数是非负数;如果一个数的绝对值等于它的相反数,那么这个数是非正数.符号表示:若|a|=a,则a≥0;若|a|=-a,则a≤0.设计意图:通过数轴认识并理解绝对值和相反数的概念和性质,培养学生的抽象概括能力.由具体的相反数让学生总结一般的相反数的表示方法,经历由特殊到一般的研究过程,培养学生的数学思维;让学生思考从哪几个方面考虑求一个数的绝对值,培养学生思维的严谨性,用符号语言表示绝对值的性质,培养学生的符号意识.巩固训练1.2024的绝对值是(B)A.-2024B.2024C.12024D.-120242.下列计算结果为2的是(A)A.-(-2)B.+(-2)C.-(+2)D.-|-2|3.下列说法正确的是(D)A.有理数的绝对值一定是正数B.绝对值等于它本身的数只有1个C.正数的绝对值一定大于负数的绝对值D.互为相反数的两个数的绝对值相等4.若|a-1|与|b-2|互为相反数,则a+b的值为3.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.课堂小结本节课我们研究了有理数的相反数与绝对值,请同学们带着以下问题进行总结:(1)如何求一个有理数的相反数?如何求一个有理数的绝对值?(2)在学习有理数的相反数与绝对值的过程中,你经历了什么?这个过程中用到了哪些数学方法?积累了哪些活动经验?设计意图:学生通过自主反思,可进一步加深对有理数的绝对值与相反数的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第14,15页习题A组第1,2,3,4题,B组第6,7题.2.七彩作业.教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版)2020七年级上册
有理数单元:相反数与绝对值
考点一:求一个数(或式子)的相反数
考点解读:先求出这个数(或式子),然后在其前面加“-”号
典型例题:﹣(﹣9)的相反数是_______
思路解析:﹣(﹣9)=9,所以其相反数是-9.
考点二:与倒数的结合
考点解读:求倒数是分子、分母交换位置
典型例题:如果一个数的倒数的相反数是3,那么这个数是()
A.B.C.﹣D.﹣
思路解析:本题需要运用逆推法,3化成假分数为,先求出它的相反数为-,再求出其倒数为-,所以选D。

考点三:运用绝对值比较负数的大小
考点解读:比较两个负数的大小的方法是比较它们的绝对值,其绝对值大的反而小
典型例题:用“>”或“<”填空:﹣________﹣
思路解析:因为﹣的绝对值是,﹣的绝对值是,<,所以填“>”号。

考点四:绝对值与相反数、倒数的结合
考点解读:互为相反数的两个数和为0,互为倒数的两个数积为1
典型例题:已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则a+b+mn-x=.思路解析:因为a、b互为相反数,所以a+b=0,因为m、n互为倒数,mn=1,因为x的绝对值为2,所以x=+2或-2,分别代入,所以原式得-1或3.
考点五:绝对值与字母的结合
考点解读:结合绝对值,得出字母取值的正负性和题目的其它限制条件
典型例题:已知|a|=3,|b|=5,且a+b>0,那么a-b的值等于__________
思路解析:因为|a|=3,所以a=3或-3,因为|b|=5,所以b=5或-5,因为a+b>0,则当a=3时,b=5;当a=-3时,b=5,所以a-b=-2或-8.
考点六:绝对值与数轴的结合
考点解读:结合数轴,得出字母取值的正负性和代数式取值的正负性
典型例题:已知有理数a、b、c在数轴上的位置如图,请化简:|c﹣b|+|a﹣b|﹣|a+c|
思路解析:由数轴可知,c>0,b>0,a<0,且|c|>|a|,所以c-b>0,a-b<0,a+c>0,根据绝对值的性质,化简原式得:-2a。

相关文档
最新文档