高等数学第二章练习及答案
高等数学第二章答案2 4
高等数学第二章答案2 4高等数学第二章答案2-4练习2?四1?求由下列方程所确定的隐函数y的导数(1)y2?2xy?9?0??(2)x3?y3?3axy?0?(3)xy?ex?y??(4)y?1?xey?解决(1)获得2yy??2岁?2xy??0所以(y?X)y??YYYYxdy?得到了DX(2)方程的导数3x2?3y2y??2ay?3axy??0??于是(y2?ax)y??ay?x2??是吗?x2y??2.y?ax(3)方程两边求导数得y?xy??ex?y(1?y?)??于是(x?ex?y)y??ex?y?y??前任?Yyyx?ex?y(4)方程两边求导数得yey?xeyy??于是(1?xey)yey?呃?Y1?xey在点(2a,2a)处的切线方程和法线方程?44求方程两边的导数,得到2?2x3?2y3y0?33112找到曲线X32了吗?y32?A3。
Y1x31y3在点(2a,2a)处y1?44切线方程是y?2a??(x?2a)?即x?y?2a?442正态方程是y?2a?(x?2a)?即x?y?0?44d2y3?求隐式函数y的二阶导数,由以下等式2确定?dx22(1) x?Y1.(2)b2x2?a2y2?a2b2?(3)y?tan(x?y)?(4)y?1?xey?解(1)方程两边的导数得到2x?2yy??0年??十、yy?xxy?xy?yy2?x2x1y???()???yy2y2y3y3(2)方程两边求导数得2b2x?2a2yy??02by2?x?ay2bx)y?x(??2y2y?xy?2abby?2?2??2?Ayay2a2y2?b2x24bb??2.23? 得到了aa2y3ay(3)方程的导数y??sec2(x?y)?(1?y?)?se2c(x?y)1y221? 秒(x?y)cos(x?y)?12sin(x?y)?二氧化碳(x?y)1 1.2.sin(x?y)y22(1?y2)221y3y??3(?1?2) 从yyy5(4)方程的两侧获得导数y??ey?xeyyYYYYEE??Y1.xey1?(y?1)2?是吗?(2?y)?是吗y(3?y)y?e2y(3年)y223(2年)(2年)(2年)4?用对数导数法求下列函数的导数?(1)y?(x)x?1.十、(2)y?55x?5?x2?2倍?2(3?x)4(3)y??(x?1)5(4)y?xsinx1?ex??解(1)两边取对数得莱尼?xln | x |?xln | 1?X |,两边的导数为11(?x)?x?1?y??lnx?x??ln1yx1?x于是y??(x)x[lnx?1]?1.x1?x1?取X(2)两边的对数lny?1ln|x?5|?1lnx(2?2)?525两边的推导111?1?2xyy5x?525x2?2.3.3?? 1555x?5.[1?1?2x]?2x2?2x?55x?2(3)两边取对数得lny?1lnx(?2)?4ln3(?x)?5lnx(?1)?2两边的推导1y??1?4?5?y2(x?2)3?xx?1x?2(3?x)41?4.5] 那么你呢??[2(x?2)x?3x?1(x?1)5(4)取两边的对数得到lny?1lnx?1lnsinx?1ln1(?ex)?224两边的推导x111et?ycox?y2x24(1?ex)xx1?ex[1?1coxt?ex]于是y??xsin2x24(1?e)x1ex2xsinx1?e[?2cotx?x]??4xe?15?求下列参数方程所确定的函数的导数阿迪?dx?十、at2(1)??2岁?英国电信??十、(1?罪?)(2)??y??cos??2dyy?解(1)?t?3bt?3bt?dxxt?2at2adyy?(2) 余弦罪1sincosdxxxetsint,时dy的值?6?已知?求当t?t3dx?y?ecost.dyyt?etcost?etsintcost?sint解?dxxt?etsint?etcostsint?cost1?3dy221?33?2?当t??时?dx1331?3.227? 在给定参数值的对应点写出下列曲线的切线方程和法线方程?xsint(1)在t??处?4.Ycos2t?十、3at?1.t2(2)?2.t=2?3at?Y1.泰迪?解决方案(1)?T2sin2t??dxxt?cost?)?2sin(2?dy4??2??22?x?2?y?0当t??时?00?2dx42cos42所求切线方程为?Y22(x?2)?22x?Y2.02所求法线方程为Y1(x?2)?2倍?4y?1.02?226at(1?t2)?3at2?2t6at?(2)yt(1?t2)2(1?t2)23a(1?t2)?3at?2t3a?3at2xt?(1? t2)2(1?t2)2dyyt6at2?2t2?dxxt?3a?3at1?tdy2?24 什么时候?两点钟??x0?6a?y0?12a?2dx1?2355切线方程是?y?12a??4(x?6a)?即4x?3y?12a?0?正常方程是y?12a?3(x?6a)?即3x?4y?6a?0?545d2y8?求由下列参数方程2确定的函数的二阶导数?dx2??x?t(1)?2?Y1.T十、成本(2)??y?bsint?。
李伟版高等数学第二章习题答案(天津科技大学)
习题2—1(A )1.下列论述是否正确,并对你的回答说明理由:(1)函数的导数是函数的平均变化率在自变量的增量趋于零时的极限;(2)求分段函数(),,()(),x x a f x x x a ϕφ<⎧=⎨≥⎩在分界点x a =处的导数时,一般利用左、右导数的定义分别求该点处的左、右导数.如果二者存在且相等,则在这一点处的导数就存在,且等于左、右导数,否则函数在这点不可导;(3) )(x f y =在0x 点可导的充分必要条件是)(x f y =在0x 点的左、右导数都存在; (4)函数)(x f y =在0x 点连续是它在0x 点可导的充分必要条件. 答:(1)正确.根据导数的定义.(2)正确.一般情况下是这样,但是若已知)(x f '连续时,也可以用)()(00--'='x f x f (即导函数的左极限),)()(00++'='x f x f (即导函数的右极限)求左右导数.(3)不正确.应是左、右导数都存在且相等.(4)不正确.)(x f 在0x 点连续仅是)(x f 在0x 可导的必要条件,而不是充分条件,如x y x y ==、3都在0=x 点连续,但是它们在0=x 点都不可导.2.设函数2x x y +=,用导数定义求它在1-=x 点处的导数.解:1lim 1lim)1(121-==+-+=-'-→-→x x x x y x x .3.设函数y =10=x 点处的导数. 解:2111lim 11lim)1(11=+=--='→→x x x y x x . 4.用定义求函数x y ln =在任意一点x (0>x )处的导数.解:xx x x x x x y x x x x x x 1e ln ])1ln[(lim ln )ln(lim1100==∆+=∆-∆+='∆→∆→∆. 5. 对函数x x x f 2)(2-=,分别求出满足下列条件的点0x : (1)0)(0='x f ; (2)2)(0-='x f .解:22)22(lim )2()](2)[(lim)(0220-=+-=--+-+='→→x h x hx x h x h x x f h h , (1)由0)(0='x f ,有0220=-x ,得10=x ; (2)由2)(0-='x f ,有2220-=-x ,得00=x . 6.已知某物体的运动规律为221gt s =,求时刻t 时物体的运动速度)(t v ,及加速度)(t a . 解:速度为gt hgt h gt h t g t s t v h h =+=-+='=→→)2(lim 2/2/)(lim)()(0220, 加速度为g g hgth t g t v t a h h ==-+='=→→00lim )(lim)()(. 7.求曲线x y ln =在点)01(,处的切线方程与法线方程. 解:切线斜率11)1(1=='==x xy k ,切线方程为:)1(10-⋅=-x y ,即01=--y x ; 法线方程为:)1(110--=-x y ,即01=-+y x . 8.若函数)(x f 可导,求下列极限:(1)x x f x x f x ∆-∆-→∆)()(lim000; (2)x x f x )(lim 0→(其中0)0(=f );(3)h h x f h x f h )()(lim000--+→; (4)x x f f x )sin 1()1(lim 0--→.解:(1)=∆--∆--=∆-∆-→∆→∆xx f x x f x x f x x f x x )()(lim )()(lim 000000)(0x f '-.(2)=--=→→0)0()(lim )(lim00x f x f x x f x x )0(f '. (3)hh x f h x f h )()(lim000--+→='+'=---+-+=→→)()()()(lim )()(lim00000000x f x f h x f h x f h x f h x f h h )(20x f '. (4)=⨯'=⋅---=--→→1)1(sin sin )1()sin 1(lim )sin 1()1(lim00f xx x f x f x x f f x x )1(f '. 9.讨论下列函数在指定点的连续性和可导性:(1)3x y =,在0=x 点;(2)⎪⎩⎪⎨⎧=≠=,,,,0001arctan )(2x x xx x f 在0=x 点; (3)2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点.解:(1)3x y =是初等函数,且在0=x 的邻域内有定义,因此3x y =在0=x 点连续,因为+∞==--→→32031lim 00limxx x x x (极限不存在),所以3x y =在0=x 点不可导. (2)因为21arctan lim 00)/1arctan(lim2020π==--→→xx x x x x , 所以⎪⎩⎪⎨⎧=≠=,,,,0001arctan )(2x x xx x f 在0=x 点可导,且2)0(π='f ,从而也连续. (3)因为1)1(1lim )1(1lim )1(211=====+-→+→-f x f x f x x ,,,有)1()(lim 1f x f x =→, 所以,2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点连续,又2)1(lim 11lim )1(111lim )1(1211=+=--='=--='---→→+→-x x x f x x f x x x ,,由)1()1(+-'≠'f f , 所以,2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点不可导.10.设函数⎩⎨⎧≥<=,,,,1e 1e )(x x x x f x 求(1)f '.解:因为e 1ee lim )1(e 11e lim e 1e e lim )1(1111=--='=--=--='---→+-→→-x x f x x f x x x x x ,,所以=')1(f e . 11.设函数⎩⎨⎧≥+<=,,,,0120cos )(x x x x x f 求()f x '.解:当0<x 时,x x x f sin )(cos )(-='=',当0>x 时,22lim )12(1)(2lim)12()(00==+-++='+='→→h h hx h x x x f ,当0=x 时,由20112lim )0(001cos lim )0(00_=--+='=--='+→+→-x x f x x f x x ,, 于是函数在0=x 点不可导,所以⎩⎨⎧><-='.020sin )(x x x x f ,,,习题2—1(B )1.有一非均匀细杆AB 长为20 cm ,M 为AB 上一点,又知AM 的质量与从A 点到点M 的距离平方成正比,当AM 为2 cm 时质量为8 g ,求: (1) AM 为2 cm 时,这段杆的平均线密度; (2)全杆的平均线密度; (3)求点M 处的密度.解:设x AM = cm ,则AM 杆的质量为2)(kx x m = g ,由2=AM 时,8=m ,得2=k ,所以,22)(x x m =,x h x hx h x x m h h 4)24(lim 2)(2lim)(0220=+=-+='→→ g/cm . (1)AM 为2 cm 时,这段杆的平均线密度为==282)2(m 4 g/cm . (2)全杆的平均线密度为==2080020)20(m 40 g/cm . (3)点M 处的密度为=')(x m x 4 g/cm .2.求b a ,的值,使函数⎩⎨⎧≥+<=00e )(x b ax x x f x ,,, 在0=x 点可导. 解:首先函数)(x f 要在0=x 点连续.而1e lim )0(0==-→-x x f ,b b ax f x =+=+→+)(lim )0(0,b f =)0(, 由)0()0()0(f f f ==+-,得1=b ,此时1)0(=f .又11e lim )0(0=-='-→-xf x x ,a x ax f x =-+='+→+11lim )0(0,由)0()0(+-'='f f 得1=a . 所以,当11==b a ,时,函数⎩⎨⎧≥+<=00e )(x b ax x x f x ,,, 在0=x 点可导. 3.讨论函数x y tan =在0=x 点的可导性.解:1tan lim 0tan lim )0(00-=-=-='--→→-x x x x f x x ,1tan lim 0tan lim )0(00==-='++→→+xxx x f x x 因为)0()0(+-'≠'f f ,所以函数x y tan =在0=x 点不可导. 4.若函数)(x f 可导,且)(x f 为偶(奇)函数,证明()f x '为奇(偶)函数. 证明:(1)若)(x f 是偶函数,有)()(x f x f =-, 因为)()()(lim )()(lim)(00x f hx f h x f h x f h x f x f h h '-=----=--+-=-'→→,所以)(x f '是奇函数.(2)若)(x f 是奇函数,有)()(x f x f -=-, 因为)()()(lim )()(lim)(00x f hx f h x f h x f h x f x f h h '=---=--+-=-'→→, 所以)(x f '是偶函数.5.设非零函数)(x f 在区间)(∞+-∞,内有定义,在0=x 点可导,)0()0(≠='a a f ,且对任何实数y x ,,恒有)()()(y f x f y x f =+.证明)()(x af x f ='.证明:由)()()(y f x f y x f =+,令0==y x ,有)0()0(2f f =,而0)(≠x f ,得1)0(=f .因为hx f h f x f h x f h x f h h )()()(lim )()(lim00-=-+→→)()0()()0()(lim )(1)(lim)(00x af f x f hf h f x f h h f x f h h ='=-=-=→→, 所以函数)(x f 可导,且)()(x af x f ='.6.求曲线xx y 1+=上的水平切线方程. 解:hx x h x h x h x y h x y x y h h )/1()]/(1[lim )()(lim )(00+-+++=-+='→→211])(11[lim xh x x h -=+-+=→,由0)(='x y ,得±=x ,当1=x 时,2=y ,此时水平切线是)1(02-=-x y ,即2=y ; 当1-=x 时,2-=y ,此时水平切线是)1(02-=+x y ,即2-=y .7.在抛物线21x y -=上求与直线0=-y x 平行的切线方程. 解:对21x y -=,导函数为:x h x hx h x h x y h x y x y h h h 2)2(lim )1(])(1[lim )()(lim )(02200-=+-=--+-=-+='→→→,设切点为)1(2t t -,,则切线斜率为t t y k 2)(-='=,而直线斜率为11=k , 根据已知,有1k k =,即12=-t ,得2/1-=t ,切点为)4/32/1(,-, 切线方程为:)21(143+⋅=-x y ,即0544=+-y x . 8.已知曲线2ax y =与曲线x y ln =相切,求公切线方程.解:设切点为),(00y x ,则两曲线在切点处的斜率分别为012ax k =,02/1x k =.由两曲线在0x x =时相切,有⎩⎨⎧==./12ln 00,020x ax x ax 得21ln 0=x ,即e 0=x ,此时,e 21=a ,210=y ,公切线斜率为e1=k , 公切线方程为)e (e 121-=-x y ,化简得021e1=+-x y . 习题2—2(A )1.下列论述是否正确,并对你的回答说明理由:(1)在自变量的增量比较小时,函数的微分可以近似刻画函数的增量,但是二者是不会相等的;(2)函数)(x f y =在一点x 处的微分x x f x f ∆'=)()(d 仅与函数在这点处的导数有关; (3)函数在一点可微与在这点可导是等价的,在一点可微的函数在这点必然连续,但反过来不成立,即在一点连续的函数在这点未必可微.答:(1)前者正确,根据微分的定义y x o y y d )(d ≈∆+=∆;后者不正确,如对线性函数b ax y +=,恒有)(d x a y y ∆==∆.(2)不正确.因为x x f x f x x ∆'==)()(d 00,可见0)(d x x x f =不仅与)(0x f '有关,还与自变量x 在该点的增量x ∆有关.(3)正确.这就是本章定理2.1与定理1.2所述. 2.求下列函数在x 点处的微分y d :(1)x y ln =; (2)3x y =(0≠x ); (3)xy 1=(0≠x ); (4)22x x y +=.解:(1)因为x y 1=',所以xxy d d =. (2)因为3222332033031)()(1lim lim )(xx h x x h x h x h x x y h h ⋅=++++=-+='→→,所以,323d d xx y ⋅=.(3)因为x x h x x x xhx h h x x h x h x x y h h h 211lim 1lim /1/1lim)(0200-=++-=++-=-+='→→→,所以,xx x y 2d d -=.(4)因为)1(2)22(lim )2(])()(2[lim)(0220x h x hx x h x h x x y h h +=++=+-+++='→→, 所以x x y d )1(2d +=.3.求下列函数在0x x =点处的微分0d x x y =:(1) x y cos =,20π=x ; (2)xx y 1+=,10=x . 解:(1)因为x y sin -=',所以x x x yx x d d sin d 2/2/-=⋅-===ππ.(2)因为211xy -=',所以0d 0d ]11[d 121=⋅=⋅-===x x xy x x . 4.设函数y =10=x ,1.0=∆x 时函数的微分y d .解:因为x x h x h x h x y h h 211lim lim00=++=-+='→→, 所以05.02d 1.011.01=∆==∆==∆=x x x x xx y.5.用函数的局部线性化计算下列数值的近似值:(1)0330sin '; (2)05.1; (3)002.1ln .解:(1)取6/30360/610330sin )(0ππ==='== x x x x f ,,,x x f cos )(=', 由)())(()(000x f x x x f x f +-'≈,得 5076.05000.00076.0217203213606cos 0330sin =+≈+=+⋅≈'πππ.(2)取105.1)(0===x x x x f ,,,x x f 2/1)(=',由)())(()(000x f x x x f x f +-'≈,得025.1105.02105.1=+⨯≈. (3)取)1ln()(x x f +=,当1<<x 时,先证明x x ≈+)1ln(, 事实上,取00=x ,则0)0()(0==f x f 10)1ln(lim)0()(00=--+='='→x x f x f x ,由)())(()(000x f x x x f x f +-'≈,得x x x =+-⋅≈+0)0(1)1ln(, 利用x x ≈+)1ln(,得002.0)002.01ln(002.1ln ≈+=. 6.讨论下列函数在0=x 点的可微性:(1)32)(x x f =; (2)x x x f =)(; (3)⎩⎨⎧≥<=.0sin 0)(3x x x x x f ,,,解:(1)因为∞==--→→303201lim 00lim xx x x x ,则32)(x x f =在0=x 点不可导,所以32)(x x f =在0=x 不可微. (2)因为0lim 00lim==--→→x x x x x x ,则x x x f =)(在0=x 点可导,所以x x x f =)(在0=x 点可微.(3)因为10sin lim )0(000lim )0(030=--='=--='+-→+→-x x f x x f x x ,,)0()0(+-'≠'f f , 得⎩⎨⎧≥<=0sin 0)(3x x x x x f ,,,在0=x 点不可导,所以在0=x 点也不可微.习题2—2(B )1.已知单摆的振动周期glT π2=,其中980=g cm/s 2是重力加速度,l 是摆长(单位:cm ).设原摆长为20 cm ,为使周期T 增加0.05 s ,问摆长大约需要增加多少? 解:02244.020201lim 220/202/2limd d 202020≈=+=--=→→=gl g l g g l lT l l l ππππ由l T T ∆'≈∆)20(,得23.202244.005.0)20(≈≈'∆≈∆T T l ,即为使周期T 增加0.05 s ,摆长大约需要加长2.23 cm .2.用卡尺测量圆钢的直径D ,如果测得03.60=D mm ,且产生的误差可能为0.05 mm ,求根据这样的结果所计算出来的圆钢截面积可能产生的误差的大小. 解:设圆钢的截面积为4/)(2D D A A π==,2)2(lim 44/]4/)([lim )(0220Dh D h D h D D A h h ππππ=+=-+='→→;2/)(D D D D A A ∆⋅=∆'≈∆π,当05.003.60≤∆=D D ,时,715.42/04.003.601416.3≈⨯⨯≤∆A mm 2, 所以绝对误差大约为4.715 mm 2;0017.003.6005.0224/2/2≈⨯≤∆⋅=∆⋅≈∆D D D D D A A ππ,所以相对误差大约为0.17%. 3.若函数)(x f 在0=x 点连续,且1)(lim=→xx f x ,求0d =x y .解:由1)(lim=→xx f x ,及分母极限0lim 0=→x x ,得分子极限0)(lim 0=→x f x ;又因为函数)(x f 在0=x 点连续,所以=)0(f 0)(lim 0=→x f x ,1)(lim 0)0()(lim)0(00==--='→→xx f x f x f f x x ,x x f y x d d )0(d 0='==.4.设函数()f x 在点0x 可微,且2)(0='x f ,求极限yyx d lim 0∆→∆.解:由已知,有x y ∆=2d ,所以101]2)(1[lim d )(d lim d lim000=+=∆∆+=∆+=∆→∆→∆→∆x x o y x o y y y x x x .习题2—3(A )1.下列叙述是否正确?并根据你的回答说出理由:(1)求复合函数的导数时要根据复合函数的关系,由“外”到“里”分别对各层函数求导,再把它们相乘;(2)求任意函数的微分首先要求出该函数的导数,然后将该导数乘以自变量的微分. 答:(1)正确.这就是复合函数求导定理推广到多重复合的情形,通常称为复合函数的“链式求导法则”,又形象地俗称为“扒皮法”,要注意不能漏项.(2)不一定.还可以用微分法则及一阶微分形式不变性求函数的微分. 2.求下列函数的导数:(1)3232++=xx y ; (2))1(2x x x y +=; (3)32(1)x y x-=; (4)ln y x x =; (5)x x x y xsin tan 2-+=; (6)cos 1cos xy x=+. 解:(1))3()1(2)(32'+'+'='xx y xx x xx x 12012-=+-=.(2)252123232323)()(---='+'='x x x x y )11(233xx -=.(3)132)33(2312-+-='-+-='--xx x x xy . (4)1ln /ln )(ln ln +=+='+'='x x x x x x x x y . (5)2sin )(sin )(tan )2(x x x x x x y x'-'-'+'=22sin cos sec 2ln 2xx x x x x --+=. (6)22)cos 1(sin )cos 1()cos 1(cos )cos 1()(cos x xx x x x x y +-=+'+-+'='.3.求下列函数在指定点的导数或微分:(1)x x x f cos sin )(-=,求()3f π'与()2f π';(2)3523x x y +-=,求0d =x y 与2d =x y.解:(1)x x x f sin cos )(+=',()3f π'2313sin 3cos +=+=ππ, ()2f π'12sin 2cos =+=ππ.(2)22223)5(2)5()1(2)3()52(x x x x x x y +-=+--⨯-='+'-=, 因为938492)2(252)0(=+='='y y ,,所以==0d x y x d 252,==2d x y x d 938. 4.求下列函数的导数:(1)7(2)y x =-; (2)cos(32)y x =+; (3)xy arctan e=; (4)x y -=1tan ;(5)x y 2e arcsin =; (6)1arccosy x=; (7)y = (8)21sin x y +=; (9))2ln 1(cos 2x y +=; (10)ln(y x =+. 解:(1)66)2(7)2()2(7x x x y --='--='. (2))23sin(3)23)(23sin(+-='++-='x x x y .(3)2arctan arctan 1e )(arctan exx y xx+='='. (4)xx x xx x x y ---='---='--='121sec )1(121sec )1(1sec222.(5)xx xx x x x y 4242222e1e 2e1)2(e )e (1)e (-=-'=-'='.(6)111)/1(1)/1(2222-=-⋅=-'-='x x x x x x x y .(7)xx x xx x xx y 2222sin 1cos sin sin 12)(sin sin 2sin 12)(sin +=+'=+'='.(8)22222221cos 11cos 12)()1(1cos x x x x x x x x y ++=++'='++='.(9))2ln 1)(2ln 1sin()2ln 1cos(2])2ln 1)[cos(2ln 1cos(2'+++-='++='x x x x x yxx x x x )2ln 22sin(]2)2(0)[2ln 22sin(+-='++-=. (10)xx x x xxx xx x x y ++=++=+'+='21)11(212)2(.5.求下列函数的微分y d :(1)3ln 33++=x x y ; (2)x x y 2sin 2=; (3)2ln (1)y x =+; (4))1(sec 2x y -=; (5)21x x y -=; (6)2tan(12)y x =+;(7)21arctan x y +=; (8)x y 2sin 2-=.解:(1)x x x x x x x y xxxln3)d 33(d 0d 3ln 3d 3)3(ln d )3(d )(d d 223+=⋅++=++=. (2)x x x x x x x x x x x x x x x y d )2cos 2(sin 2d 2cos 2d 2sin 2)2(sin d )(d 2sin d 222+=+=+=. (3)x xx x x x x x y d 1)1ln(2)d(11)1ln(2)]1[ln(d )1ln(2d ++=+++=++=.(4))d(1)1tan()1(sec 2)1sec(d )1sec(2d 2x x x x x y ---=--=x x x d )1tan()1(sec 22---=.(5)因为2/32222)1(11)1/(11x x x x x x y -=-----⋅=',所以,2/32)1(d d x x y -=. (6)因为)21(sec 44)21(sec 2222x x x x y +=⋅+=',所以x x x y d )2(1sec 4d 22+=. (7)因为222221)2(122)1(11xx x xx x y ++=+⋅++=',所以221)2(d d xx x x y ++=.(8)因为x xx x y 22sin 2sin22sin 2ln )sin (2ln 2--⋅⋅-='-⋅=',所以x x y x d 22sin 2ln d 2sin -⋅⋅-=. 6.在括号内填入适当的函数,使下列等式成立:(1)d( )2=d x ; (2)d( )21x=+d x ; (3)d( )2sin 2x =d x ; (4)d( )=x ;(5)d( )nx =d x (1-≠n ); (6)d( )211x+=d x . 解:(1)因为2)2(='+C x ,所以x C x d 2)2(d =+. (2)因为x C x +='++12)1ln 2(,所以d(C x ++1ln 2)21x=+d x . (3)x C x 2sin 2)sin 2(2='+,所以d(C x +2sin 2)2sin 2x =d x ,或因为x C x 2sin 2)2cos (='+-,所以d(C x +-2cos )2sin 2x =d x . (4)因为xC x 21)(='+,所以d(C x +)=x .(5)因为nn x C n x ='+++)1(1,所以d(C n x n +++11)n x =d x (1-≠n ). (6)因为211)(arctan x C x +='+,所以d(C x +arctan )211x +=d x .习题2—3(B )1.如图所示的,,A B C 三个圆柱型零件.当圆柱A 转过x 圈时,B 转过u 圈,从而带动C 转过y 圈.通过计算周长知道,32uy u x ==,因此3d d 21d d ==x u u y ,,求xy d d . 解:23321d d d d d d =⨯==x u u y x y . 2.求下列函数的导数:(1)x x y xsin e =; (2)x y ln ln ln =;(3))ln(22x a x y ++=; (4))cot ln(csc x x y -=;(5)xxy -+=11ln ; (6)a x a x a x y arcsin 22222+-=; (7)xxy +-=11arcsin ; (8)x x x x y 12)2(+=.解:(1))cos sin (sin e )(sin e sin )e (sin e x x x x x x x x x x x y xx x x ++='+'+'='.(2)xx x x x x x x x x x y ln ln ln 1ln ln ln 1ln ln ln )(ln ln ln )ln (ln ⋅⋅=⋅⋅=⋅'='='.(3)2222222222/1)(x a x a x x a x x a x x a x y +=++++=++'++='.(4)x xx xx x x x x x y csc cot csc csc cot csc cot csc )cot (csc 2=-+-=-'-='. (5)xx x x x x x x y )1(1)1(21)1(21])1[ln(])1[ln(-=-++='--'+='.(6)2222222)/(1/1222a x aa x a x x a y -+---='2222222222222222222x a x a x a xa a x a x x a -=-+-=-+---=. (7))1(2)1(1)1()1()1(112111112x x x x x x xx x x y -+-=+--+-+-+--='. (8)因为xx xx xxx x y 2ln ln 212ee)2(+=+=,所以x xxx x x x xx x x x x x y 12222ln ln 2)2(2ln 1)2ln 2(2ln 1e)2ln 2(e -++=-++='. 3.若函数)(x f 可微,求下列函数的导数:(1))(2x f y =; (2))(2x f y =; (3))]([x f f y =; (4)]e 1ln[)(x f y +=. 解:(1))(2))((222x f x x x f y '=''='. (2))()(2])()[(2x f x f x f x f y '='='.(3))()]([])()][([x f x f f x f x f f y ''=''='.(4))()()()()()(e1)(e e 1])([e e 1]e 1[x f x f x f x f x f x f x f x f y +'=+'=+'+='. 4.设可导函数)(x f 满足方程x xf x f 3)1(2)(=+,求)(x f '. 解:(方法1)等式两边对x 求导,有223)1)(1(2)(xx x f x f -=-'+',用x 1替换上式中的x ,有223)(2)1(x x f x x f -='-',从而得212)(xx f +='.(方法2)用x 1替换题中等式里的x ,有x x f xf 3)(2)1(=+, 由此得x x x f 12)(-=, 所以,212)(x x f +='.5.设]1)([2x x g f y -=,其中)()(u g u f ,可微,求y d .解:x x x g f xx g x g x x g x x g f y d ]1)([]1)()(2[]1)([d ]1)([d 2222-'+'=--'=.6.试写出垂直与直线0162=+-y x 且与曲线5323-+=x x y 相切的直线方程. 解:x x x y 63)(2+=',设切点的横坐标为t x =,则切线斜率t t t y k 63)(2+='=, 而直线0162=+-y x 的斜率3/11=k ,由已知11-=kk ,有122-=+t t ,得1-=t ,切点为)31(--,,切线斜率为3-=k ,于是,所求切线方程为)1(33+-=+x y ,即063=++y x .习题2—4(A )1.下列论述是否正确?并根据你的回答说出理由:(1)如果()y f x =的导数()f x '大于零,那么()y f x =的二阶导数也一定大于零; (2)变速直线运动的加速度大于零,该变速运动一定是加速运动. 答:(1)不正确.如x x f ln )(=(0>x ),01)(>='x x f ,但是01)(2<-=''xx f . (2)正确.由0)()(>='t a t v ,有速度的变化率是正的,即运动是加速运动. 2.求下列函数的二阶导数:(1)22ln y x x =+; (2)y =;(3)x y arctan =; (4))21sin(x y -=; (5)x x y arcsin 12-=; (6)x y xcos e =;(7)y =(8)2ln(1)y x =+;(9))1ln(2-+=x x y ; (10)x x y sh =.解:(1)x x y 22+=',222xy -=''.(2)121242--++=x xx y ,22342----='x xx y ,328232xxx y +⋅+=''. (3)211x y +=',22)1(2x xy +-=''. (4))21cos(2x y --=',)21sin(4x y --=''. (5)1arcsin 12+--='x xx y ,22/3222222221)1(arcsin 111arcsin )1(1/1x xx x xx x x x x x x y ----=-⋅----+--=''. (6))sin (cos e x x y x-=',x x x x x y xxsin e 2)cos sin sin (cos e -=---=''. (7)32-='x x y ,2/322222)3(333/3--=----=''x x x x x y . (8)212x x y +=',222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+=''. (9)1111/1222-=-+-+='x x x x x y ,2/32212)1(])1[(--='-=''-x xx y . (10)x x x y ch sh +=',x x x x x x x y sh ch 2sh ch ch +=++=''.3.设函数24()32f x x x x =+++,求)0(f '''及)0()4(f.解:3441)(x x x f ++=',2124)(x x f +='',x x f 24)(=''',24)()4(=x f,024)0(0=='''=x x f ;2424)0(0)4(===x f .4.计算下列各题:(1)12e)(+=x x f ,求)()5(x f;(2)(1)ln y x x =+,求33d d xy;(3)x y sin ln =,求y '''. 解:(1)12e2)(+='x x f ,12e4)(+=''x x f ,12e8)(+='''x x f ,12)4(e 16)(+=x x f ,12)5(e 32)(+=x x f .(2)x x x y 11ln d d ++=,22211d d x x x y -=,33233221d d xxx x x y -=+-=. (3)x xxy cot sin cos ==',x y 2csc -='',x x x x x y cot csc 2)cot csc (csc 22⋅=-⋅-='''. 5.验证函数x x C C y λλ-+=e e 21(其中21,C C 为任何常数)满足关系式(微分方程) 20y y λ''-=.证明:因为x x C C y λλλλ--+='e )(e 21,y C C y x x 22221e )(e λλλλλ=-+=''-,所以20y y λ''-=. 6.验证函数x y xsin e =满足关系式220y y y '''-+=. 证明:因为x x y xxcos e sin e +=',x x x x x y x x x x x cos e 2sin e cos e cos e sin e =-+++='',所以0sin e 2)cos e sin e (2cos e 222=++-=+'-''x x x x y y y xxxx习题2—4(B )1.挂在弹簧上的一个重物,从静止位置往下拉长5 cm ,并松开使其上下振动.记松开时的时刻为0=t ,在时刻t 时物体的位置为t s cos 5=.求时刻t 时物体的速度和加速度.解:物体的速度t t s t v sin 5d d )(-==;物体的加速度t t vts t a cos 5d d d d )(22-===. 2.设函数2arcsin442xx x y --=,求y ''. 解:2244/14/144224xx x x x xx x y --=----=',2/32222)4(244/)2(4x x xx x x x x x x x y --=------=''. 3.设函数x y arcsin =,求)0()10(y .解:由x y arcsin =是奇函数,则)(x y '是偶函数,)(x y ''是奇函数,)(x y '''是偶函数, 以此类推)()10(x y是奇函数,根据初等函数导数的性质,)()10(x y 在0=x 点有定义,所以0)0()10(=y .4.求下列函数的n (3≥n )阶导数:(1)x x y e =; (2)x x y cos 2=; (3)x x y ln 2=;(4)0111a x a x a x a y n n n n ++++=-- (其中),,2,1(n i a i =为常数,0≠n a ). 解:(1)(方法1))1(e e e +=+='x x y x x x ,)2(e e )1(e +=++=''x x y x x x ,)3(e e )2(e +=++='''x x y x x x ,以此类推)(e )(n x yx n +=.(方法2))(e )e ()e ()e ()()1()()()(0)(n x x n x x C yx n x n x k n x k nk kn n +='+==--=∑. (2))()(20)()(cos )(k n k nk kn n x x C y-=∑= )2(2)1(2)(2)(cos )(2)1()(cos )()(cos --''-+'+=n n n x x n n x x n x x )()(2)cos )(1()(sin 2)2cos(n n x n n x nx n x x --+++=π)2sin(2)2cos()(22ππn x nx n x n n x ++++-=.(3)(方法1))()(20)()(ln )(k n k nk kn n x x C y-=∑= )2(2)1(2)(2)(ln )(2)1()(ln )()(ln --''-+'+=n n n x x n n x x n x x 231212)!3()1)(1()!2()1(2)!1()1(--------+--+--⋅=n n n n n n x n n n x n nx x n x 21)!3()1(2----=n n x n .(方法2)x x x y +='ln 2,3ln 2+=''x y ,2123)2()2()()3()1(2)3()1(2)3ln 2()(--------=--=+=''=n n n n n n n x n x n x y y.(4))(0)(1)(11)()()()()()(n n n n n n n n n a x a x a x a y ++++=--!000!n a n a n n =++++= .5.若函数)(x f 满足(sin )cos 2csc f x x x '=+,求)(x f ''.解:由x x x x x f sin 1sin 21csc 2cos )(sin 2+-=+=',有xx x f 121)(2+-=', 所以2214)121()(xx x x x f --='+-=''. 6.若函数()y f x =存在二阶导数,分别求)(2x f y =及2()y f x =的二阶导数. 解:对)(2x f y =,)()(2x f x f y '=',=''y )()(2)]([2])()(2[2x f x f x f x f x f ''+'='';对2()y f x =,)(22x f x y '=',=''y ])(2[2''x f x )(4)(2222x f x x f ''+'=.7.若函数)(x f 有任意阶导数,且)()(2x f x f =',证明)(!)(1)(x f n x fn n +=.证明:用数学归纳法进行证明, 当1=n 时显然成立, 设k n =时成立,即)(!)(1)(x f k x fk k +=,当1+=k n 时,等式)(!)(1)(x f k x fk k +=两边同时对x 求导,得)()!1()()()!1()()()1(!)(22)1(x f k x f x f k x f x f k k x f k k k k +++=+='+=,即对1+=k n ,式子)(!)(1)(x f n x f n n +=,所以根据数学归纳法原理,对任何正整数n 都有)(!)(1)(x f n x fn n +=.习题2—5(A )1.判断下列论述是否正确,并说明理由:(1)求由方程(,)0F x y =所确定的隐函数)(x y y =的导数时,所得到的()y x '是x 的一元函数,若再求)(x y y =的二阶导数,直接对x 的函数()y x '求导即得;(2)求由参数方程(),()x t y t ϕψ=⎧⎨=⎩所确定的函数的导数时,在()0t ϕ'≠的条件下,若再求22d d x y ,只需将所求得的xyd d 对t 再继续求导数即可; (3)在知道两个变量,x y 中的一个对第三个变量t 的变化率,求另一个变量对t 的变化率时,应首先求出两个变量,x y 之间满足的解析式(假设这样的解析式存在),从而得到,x y 对变量t 的变化率之间的关系.答:(1)不正确.在)(x y '的表达式中不仅含有变量x ,还含有函数)(x y ,在用求导法则求)(''=''y y 时,凡是遇到含有y 的项,都要将其视为x 的函数,按复合函数进行求导.(2)不正确.xyd d 要先对t 求导,再乘以t 对x 的导数(或除以x 对t 的导数).这是因为 )(/))()((d d d d ))()((d d ))()((d d )d d (d d d d 22t t t t x t t t t t t x x y x xy ϕϕψϕψϕψ''=⋅''='==. (3)正确.如果变量y x ,有函数关系)(x f y =,两边同时对t 求导,有txx f t y d d )(d d '=,这就是y 对t 的变化率t y d d 与x 对t 的变化率txd d 之间的关系. 2.设函数)(x y y =由下列方程确定,求xyd d :(1)012=++xy y ; (2)3330x y xy +-=; (3)yx xy +=e; (4)xy y e 2ln -=.解:(1)方程012=++xy y 两边同时对x 求导,有0d d d d 2=++⋅xyx y x y y ,解得 xy yx y +-=2d d . (2)方程3330x y xy +-=两边同时对x 求导,有0d d 33d d 3322=--+xyx y x y yx , 解得22d d y x x y x y ---=. (3)方程y x xy +=e 两边同时对x 求导,有)d d 1()d d 1(e d d xyxy x y x y x y y x +=+=++, 解得)1()1(d d ---=y x x y x y . (4)方程xy y e 2ln -=两边同时对x 求导,有x x y xyx y y e d d e d d 1--=,解得 xxy y x y e1e d d 2+-=. 3.求曲线yx y e 1-=上对应于0=x 点处的切线方程.解:将0=x 代入方程y x y e 1-=,得1=y ,切点坐标为)10(,,方程y x y e 1-=两边同时对x 求导,有y x y y y '--='e e ,用0=x ,1=y 代入,得1)0(-='y ,即切线斜率为1-=k ,切线方程为)0(11--=-x y ,即01=-+y x .4.求星形线3/23/23/2a y x =+在点)42,42(a a 处的切线方程与法线方程. 解:方程3/23/23/2a y x =+两边同时对x 求导,有032323/13/1='+--y y x , 用a y a x 42,42==,得1)42(-='a y ,即切线斜率1-=k , 切线方程为)42(142a x a y -⋅-=-,即022=-+a y x ; 法线方程为)42(142a x a y -⋅=-,即0=-y x . 5.设函数)(x y y =由下列方程确定,求22d d xy:(1)y y x 222=+; (2)yx y e 1+=. 解:(1)方程y y x 222=+两边同时对x 求导,有x y x y yx d d 2d d 22=+,得yxx y -=1d d , 所以3322222)1(1)1()1()1()(1)1(d d y y x y y y x y y x x y x -=-+-=-'---='-=. (2)方程y x y e 1+=两边同时对x 求导,有xyy x y x x y y y y d d )1(e d d e e d d -+=+=,得 y x y y -=2e d d ,所以32222)2()3(e )2()(e )2(e d d y y y y y y x y y y y --=-'---'=. 6.用对数求导法求下列函数的导数xy d d : (1)xx y 1)1(+=; (2)xx y x-=1;(3)xx y x sin e 12+=; (4)0=-xy y x .解:(1)将xx y 1)1(+=两边取对数,有xx y )1ln(ln +=,两边再同时对x 求导,有)1()1ln()1()1ln()1/(22x x x x x x x x x y y +++-=+-+=',所以 )1()1ln()1()1()1()1ln()1(d d 212x x x x x x x x x x x y x y x+++-⋅+=+++-⋅=. (2)将xx y x-=1两边取对数,有)1ln(ln ln x x x y --=,两边再同时对x 求导,有)]ln 1)(1(1[11111ln x x xx x y y +-+-=---+=',所以 )]ln 1)(1(1[)1()]ln 1)(1(1[)1(d d 2x x x x x x x y x y x +-+-=+-+-=. (3)将xx y x sin e 12+=两边取对数,有x x x y sin ln )1ln(21ln 2--+=,两边再同时对x 求导,有x x x y y cot 2)1(21--+=',所以 =x y d d )cot 2411(sin 2e 1]cot 2)1(21[2x x x xx x x x y x --++=--+. (4)将xy y x =两边取对数,有y x x y ln ln =,两边再同时对x 求微分,有yyx x y x x y y x d d ln d d ln +=+⋅,即y x x y xy x y y x xy d d ln d d ln 22+=+⋅,解得 22ln ln d d x x xy y y xy x y --=,或写作)1(ln )1(ln d d 22--=y x x y x y . 7.求由下列参数方程所确定的函数)(x y y =的导数xyd d : (1)⎩⎨⎧-==;,3212/t y t x (2)⎩⎨⎧--=++=;,t y t x 1111 (3)⎩⎨⎧==;t y t x tt cos e ,sin e (4)⎩⎨⎧-=+=.arctan )1ln(2t t y t x ,解:(1)因为t t x t t y ='-=')(3)(2,,所以t tt t x t y x y 33)()(d d 2-=-=''=.(2)因为tt x tt y +='-='121)(121)(,,所以ttx y -+=1212d d t t -+=11. (3)因为t t t x t t t y t t t t cos e sin e )(sin e cos e )(+='-=',,所以x y d d t t t t t t t t tt t t sin cos sin cos sin e cos e sin e cos e +-=+-=,或写作tt x y 2sin 12cos d d +=. (4)因为222212)(1111)(t t t x t t t t y +='+=+-=',,所以=++=)1/(2)1/(d d 222t t t t x y 2t. 8.写出下列曲线在所指定点处的切线方程:(1)⎩⎨⎧-==,,2232t t y t x 在点)12(,处; (2)cos ,cos 2,x t y t =⎧⎨=⎩ 在4π=t 处. 解:(1)切点)12(,对应参数1=t ,切线斜率21243d d 11-=-====t t t xyk ,切线方程为)2(211--=-x y ,即042=-+y x . (2)将4π=t 代入方程,得切点为)02/2(,,切线斜率22sin 2sin 2d d 44=--====ππt t xx xyk ,切线方程为)2/2(220-=-x y ,即0222=--y x .9.求由下列参数方程所确定的函数)(x y y =的二阶导数22d d xy:(1)⎩⎨⎧+==;,t y t x 12/2 (2)⎩⎨⎧=-=-;,tt t y x e e (3)⎩⎨⎧==;,t b y t a x sin cos (4)⎩⎨⎧=+=.cos 12t y t x ,解:(1)t t t x y tt1)2/()1(d d 2=''+=,32221/1)(/)1(d d t t t t x t x y t =-=''=. (2))1(e )e ()e (d d 2t t x y t tttt +='-'=-,)23(e e )23(e )(])1(e [d d 32222t t t x t x y t t t t t +=+=''+=-.(3)t a b t a t b x y ttcot )cos ()sin (d d -=''=, ta b t a t a b t x t a b x y t 32222sin )sin /(csc )(/)cot (d d -=-=''-=. (4)tt t t x y t t2sin )1()(cos d d 2-='+'=, 32224cos sin 2/sin cos 21)(/)2sin (d d tt t t t t t t t t x t t x y t -=--=''-=. 习题2—5(B )1.有一长度为5m 的梯子铅直地靠在墙上,假设其下端以3m/min 的速率沿地板离开墙脚而滑动.问当其下端离开墙脚2m 时,梯子上端下滑的速率为多少?解:设时刻t 时梯子上端距墙脚y m ,下端距墙脚x m ,则2522=+y x ,两边同时对时间t求导,有0d d 2d d 2=+t y y t x x,将3d d 212===t x y x 、、代入,有0d d 21212=+ty ,得31.17212d d -≈-=t y ,即梯子上端下滑的速率大约为min /m . 2.一个气球从距观察员500 m 处离开地面铅直上升,其上升速率为120 m/min ,当气球升高到500 m 时,求观察员视线的仰角α的增加速率. 解:设时刻t 时气球的高度为h ,则500arctanh=α(观察员身高忽略不计),两边同时对时间t 求导,有thh t h h t d d 500500d d )500/(115001d d 222+=+=α,将500=h 120d d =t h ,代入,得12.0253d d ==t α,,即观察员视线的仰角α的增加速率为0.12 (rad/min). 3.一正圆锥形水池,深8m ,上口直径也为8m ,现以min /m 33速率向水池内注水,当水深为5m 时,求水面上升的速率.解:设时刻t 时容器内水深为h ,水的体积为V ,此时水面的直径h d =,则123πh V =,两边同时对时间t 求导,有thh t V d d 4d d 2π=,将3d d 5==t V h ,代入,有t h d d 4253π=,得。
高数课后习题及答案 第二章 2.8
222222221111(1)1()32()3201x 21lim,2321(1)(1)1lim lim lim 2,032(2)(1)21()2x x x x x f x x x f x x x x x x x x x x x x x x x x x x f x x →→→→-=-+-+≠-=∞=-+-+-+===-=-+---==解:是一个初等函数,由分母可知除x=,=外f(x)有意义由于所以是一个无穷间断点由于所以是一个可去间断点综上所述,是一个可去间断点,是()f x 的无穷间断点01(2)1()sin cos 1()x 001lim sin cos 0,0x f x x xf x x x x x →=≠==解:是一个初等函数,由中可知除x=外f(x)有意义由于所以是一个可去间断点 1021(5)1()ln 1()ln 10.0,210,1ln 11,0ln 11,2ln 11()x x x f x x f x x x x x x x x x x x f x →-→→-=++≠≠≠-==-+=∞=+=∞=-+=-解:是一个初等函数,由对数的特点可知x=-1不在f(x)的定义域内,另外由可知也不在f(x)的定义域内.由于lim所以是一个可去间断点由于lim 所以是一个无穷间断点由于lim所以是一个无穷间断点综上所述,是一个可去间02()x x f x ==-断点,,是的无穷间断点2220022tan 26()(1)sin (1)sin 0tan 24tan 22lim lim 0,(1)sin tan 2tan 2lim lim (1)sin x x x x x x x x x xy x e x y e x x x xx x e xx x xx x x e x ππππππ→→→→=-<<--≠±±⋅==-⋅=-)解:函数是一个初等函数,由可知x=0,x=不在y 的定义域内,另外又由的特点可知x=不在y 的定义域内.由于从而x=0点是函数y 的可去间断点由于22222442121tan lim ,(1)sin 1cos 1tan 2tan 2limlim (1)sin (1)sin 44x x x x x x x e x e x e x x x x e x e x πππππππππππ→→→---=⋅=---=+∞=-∞--±±±从而x=点是函数y 的可去间断点由于且从而x=点是函数y 的无穷间断点综上所述,x=0,x=是函数y 的可去间断点,x=点是函数y 的无穷间断点。
高等数学第二章答案
高等数学第二章答案【篇一:高等数学第二章复习题及答案】>第二章一、填空题f(a?x)?f(a?x)?x?0xf(3?h)?f(3)?2、设f?(3)?2,则lim。
h?0______________2h1、设f(x)在x?a可导,则lim。
3、设f(x)?e,则limh?0?1xf(2?h)?f(2)?。
_____________hcosx?,f?(x0)?2,(0?x0?),则f(x0)?。
_______________________1?sinx2dy?5、已知x2y?y2x?2?0,则当经x=1、y=1时,。
dx_______________4、已知f(x)?6、f(x)?xex,则f???(ln2)?_______________。
__________7、如果y?ax(a?0)是y?x2?1的切线,则a?。
8、若f(x)为奇函数,f?(x0)?1且,则f?(?x0)?9、f(x)?x(x?1)(x?2)?(x?n),则f?(0)?10、y?ln(1?3?x),则y??11、设f?(x0)??1,则limx?0______________________________________________________。
x。
?___________f(x0?2x)?f(x0?x)_________________________12、设x?y?tany,则dy?。
13、设y?y???(0)?。
_______________14、设函数y?f(x)由方程xy?2lnx?y4所确定,则曲线y?f(x)在点(1,1)处的切线方程是______________________。
1???xcos15、f(x)??x??0_______________________x?0x?0。
,其导数在x?0处连续,则?的取值范围是16、知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为二、选择题。
高等数学课后习题答案第二章
=
1 4
1 tan
x 2
sec 2
x 2
5、设、 y =
1 2π D 1 2π D
e
−
( x−a)2 2D
,其中 a, D 是常数,求出使导数 y ′( x ) = 0 的 x 值
( x −a ) 2 2D
解: y ′ =
e
−
( x − a )2 2D
3、证明: (1) 、可导的偶(奇)函数的导数是奇函数(偶) (2) 、可导的周期函数的导数是具有相同周期的函数 证明:设 f ( x ) 是偶函数,且可导 则
f ( x) = f ( − x ) f (− x + ∆x ) − f (− x ) f ( x − ∆x ) − f ( x ) = lim = − f ′( x ) ∆x → 0 ∆x ∆x
[1 − ( x + ∆x ) 2 ] − (1 − x 2 ) − 2 x∆x − (∆x) 2 = lim = −2 x ∆x → 0 ∆x → 0 ∆x ∆x −b ) 2a
:
3、 设函数 f ( x) = ax 2 + bx + c , 其中 a, b, c 是常数, 求 f ′( x) , f ′(0) , f ′( −1) , f ′( 解
f ′(− x ) = lim
∆x →0
表明 f ′( x) 是奇函数。 设 f ( x) = f ( x + T )
f ′( x + T ) = lim
∆x →0
f ( x + T + ∆x ) − f ( x + T ) f ( x + ∆x ) − f ( x ) = lim = f ′( x) ∆ x → 0 ∆x ∆x
(完整版)第二章导数与微分(答案)
x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。
x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。
高数(高等教育出版社)第一版,第二章习题详解参考
第二章习题解答参考习题2-11.设f (x )=8 x,试按定义求 f (1) .解2.设f1xf 1lim8 1x 8.f (1)= lim8x 0x x0x2bx c ,其中 a, b, c 为常数.按定义求 f (x ) .f (x )= ax解f xf x x f x= limxx022a x xb x xc ax cbx limxx02 ax x a x2 b x2 ax b .limxx03.证明(sin x ) = cos x .证设 f x sin x ,则 f x x f x sin x x sin x 2 cosx x x sin222 cos xsinxf x x f x x2f x lim 2limx x x0x0sin xx2lim cos x cos x,2x2x0所以(sin x ) = cos x .4.下列说法可否作为 f ( x )在 x 0可导的定义?f (x0 h ) f ( x 0h )( 1)limh 存在;h 0解不能.因为从极限式中不能判断 f x0存在,也不能判断lim f ( xh ) f (x)存在.h0h例如 f x x 在x0 点不可导,但lim f (0h ) f (0 h)h hlim0h 0h h0h却存在.( 2)lim f (x 0h)f (x)和lim f (x0h )f(x)存在且相等;h0h h 0h解可以.因为 lim f (x0h ) f ( x0 )f x0,hh0lim f ( x0h ) f ( x0 ) f ( x0h ) f ( x0)f x0,根据导数存在的充要h lim hh 0h0条件,可知 f x存在.5.求下列函数的导数:( 1)y x 5;(2)y1;(3)x232( 4)y log1x;(5)y x x;(6)3x 5解(1)y 5 x 5 1 5 x 4;y x37x ;y lg x .(2)(3)(4)1131y x 22;x2 2 x x221522 x2 7x;y x 722x 777y11;1x ln 3x ln3(5)(6)2511512y x 32x66x 66;56x 1y.x ln 106.已知物体的运动规律为s t 3(米),求这物体在 t2 (秒)时的速度.解因为 s t3, v ds3t 2,所以 t 2 时,v 2 3 2212 .dt7.如果 f ( x )为偶函数,且 f (0)存在,证明 f (0)=0.证因为 f(0)=lim f x f 0,而 f ( x ) 为偶函数,故 f (x ) f ( x) ,x0x所以 f (0)limf x f0f xf 0,0lim f (0)x x x 0x所以 f (0)=0.8.抛物线y x 2在哪一点的切线平行于直线y 4 x 5 ?在哪一点的切线垂直于直线 2 x 6 y50 ?解由 y x2,可得 y 2 x ,若切点为x0 , x 02,则依题设 2 x 0 4 ,即 x0 2时,切线平行于直线11 ,即 x03y 4 x 5 ; 2 x0时,切线垂直于直线322 x 6 y 50;所以抛物线切线垂直于直线y x2 在点 2 , 4 的切线平行于直线y 4 x 5 ?在点3,9的242 x 6 y 50 .9.在抛物线y x 2上取横坐标为x1 1 及 x2 3 的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线?解由题设可知 y 2 x,所取的两点为 1,1, 3, 9 ,连接两点的直线斜率为 k 4 ,依题设,应有 2 x 4 ,即 x 2 ,所以所求点为2, 4.10. 如果y f x在点4, 3处的切线过点0, 2 ,求 f4.解依题设,曲线在点4, 3处的切线为 y3f4x 4 ,满足 2 3 f404,从而f 41.411.讨论下列函数在x0 处的连续性与可导性:x21x0,(1)y3 x ;(2)ysin,x0 ,x0.解( 1)因为lim 3 x0y0 ,所以 y 3 x在 x0 点连续,x03x1,所以 y3 x 在 x0 点不可导;而 limx lim2x 0xx 321(2)因为 limx 2 s in 1y 0 ,所以 yx sin x,x0, 在 x0 点连续,xx0 ,x0.211x sin12,x 0,又 limx0 ,所以 yx sinx 在 x0 点可导.lim x sinx 0 xxx0 ,x 0.12.设 f (x )=sin x , x 0在 x0 处可导,求 a, b 的值.axb , x 0解因为 f (x )=sin x , x0 处可导, axb , x在 x所以 lim f ( x)f0 ,且 ff,x 0又 limf ( x )0 , limf ( x )b , fb ,故 b0 , f0 ,x 0x从而 f 0lim fxf 0 lim sin x1 ,xxxx 0flimf xf 0limaxa ,所以 a1 .xxx 0x 0213.已知 f ( x)x , x 0,求 f (0), f(0) 和 f (0).x, x2f ( x)f 0x 2解因为 f ( x) x , x ,所以 f (0)limlim0 ,x, xxxx 0x 0f (0)f ( x)f 0 limx 1 ,所以 f(0) 不存在.limxxxx14.设函数 f ( x)=x 3 ,x 0 ,求 f (x ) .3xx ,解 当 x 0 时, f ( x )3 x 2 ,当 x 0 时, f ( x)3 x 2 ,当 x0 时, f (0)limf xf 0limx 3 0 ,xxxx 0f (0)lim f xf 0limx 3 0 ,所以 f(0)0 ,xxxx 02 所以 f(x )=3 x , x 0 .3 x 2 , x 015.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数;(2)周期函数的导函数仍是周期函数.证 (1)设 f x 为奇函数,则 fxfx ,而 ff xh f x,xlimhh 0fxlim fx hfxf x hf xhlimhhhf xhf xf x hfxx,limhlimhfhh 0所以 fx为偶函数;相似地,若 f x 为偶函数,则 fx f x,于是f xlimfxh fxfxhf xhlimhhh0lim f xhf xfx,所以 fx为奇函数.hh0(2)设 fx为周期函数,则存在 T ,使 f x Tf x,则fx Tf x Thf x Tf x hf xfx ,limhlimhhh所以 fx也是以 T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间 [0, x ] 上细棒的质量 m 是 x 的函数 mm ( x ) .应怎样确定细棒在点 x 0 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)?解 设在 x 0 处的线密度为 x 0,给 x 0 以 x 的增量,则在区间 [ x 0 , x 0x ] 上细棒的平均线密度为m x 0x m x 0,x故x 0m x 0x m x 0mx 0 .limxx 017.证明: 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2 a 2 .222证由 xya 2可得 y a , x 0 ,于是 ya2 , x 0 ,若切点为x 0 ,a ,x 0xx则该点处的切线为ya 2a 2 xx 0 ,它与两坐标轴的交点分别为2 x 0 , 0,x 0x 02220, 2 a,所以所求三角形的面积为 S 12 x 02a2 a 2 .x 02x 018.设函数 f (x ) 在 x 0 处可导,试讨论函数 | f (x ) | 在 x 0 处的可导性.解因为函数 f(x ) 在 x0 处可导,所以 limf ( x)f 0f0 存在,xx而 fx 0 limf ( x)fxx,故x(1)若f ( 0 )f ( x)f 0f0 可知:f ( x ) f,其中xxxl i mx f,x,从而 f ( x )此时 fxlim x flimx f,x 0xxxx 0因此 | f ( x) | 在 x 0 点的左导数为f 0,右导数为 f,所以 |f ( x) | 在 x0 处可导的充要条件是 f 00 ;( 2)若 f (0)0 ,设 f (0)0 ,则 lim f ( x)f 00 ,由保号性定理,0 ,x当 x U 0,时, f x0 ,此时有 ff ( x)f 0f ( x )f 0x x 0limxlimxf,相似地,x 0x若 f (0)0 ,则 limf ( x)f 00 ,由保号性定理,0 ,当 xU 0,时,xf ( x)f 0f ( x )f 0f x0 ,此时有 fxx 0limxlimxf;xx 0总之,若 f ( x) 在 x 0处可导,则当 f (0)0 时, | f (x ) | 在 x 0 处可导;当f (0) 0时,| f (x ) | 在 x 0处可导的充要条件是 f 00 .习题2-21.求下列函数的导数:(1) (3) (5)(7)y 3cos2 x ;( 2) y 3 x4cos2 x ; (4) 2e y 3e4 x1 ;( 6) y1;( 8)xln xy4sin(3 t1) ;y( x 1) 5 ;yx;21x y(x 2x1)( x 1) 3 ;2ln x x 3(9) yx 3 e x sin x ;( 10) y 2 .3ln x x解( 1) y3 sin 2 x 2 x3 sin2 x 2 6 sin2 x;( 2) y 4 cos(3 t1) 3t 1 12 cos(3 t1) ;( 3)( 4)y 2e 3 x 3 x4 sin 2 x 2 x 6e 3 x 8 sin 2 x ;y5( x 1) 4 x1 5( x1)4 ;( 5) ( 6)( 7)y3e 4 x 4 x12e 4 x ;1 2x2 xxx 21y2 1;221 x1 21 xxln x1xln xxlnx 1yx;222xln xxln xxln x( 8) y32x 1) 3( x 2222 x 2;2 x 1 ( x 1)( x1)( x 1) 5 x( 9) y2x3 x3x 2xx sin xx cos x;3 x e sin x x e sin xx e cos x x e3sin x2 23ln x233 2 xx 3 xx2ln x xx x 9 x 4 ln x x42 ( 10)y3 x2 xx 2 223ln x3ln xx 22.证明:( 1) (cot x)csc 2 x;( ) (csc x )csc xcot x.2证(1)(cot x )cos x sin x sin x2cos x cos x csc2x ;sin x sin x(2)(csc x)1cos x1cos xcsc x cot x .2sin x sin xsin x sin x3.证明:( 1)(arccos x )1;(2)(arccot x)1.221x1 x证(1)设y arccos x ,则其反函数为 x cos y , y2,2,由于 x sin y ,由反函数求导法则,arccos x111;sin y12y12cos x(2)设y arc cot x ,则其反函数为 x cot y , y0,,由于 x csc 2y ,由反函数求导法则,arccos x111.csc212y12y cot x4.求下列函数在给定点处的导数:2(1)y 2 cos x 3 sin x ,求y xπ ;(2)y32x,求 f (2) .4x3解(1)因为y 2 sin x 3 cos x ,所以y xπ4ππ522 sin3 cos;442212 x22 x,所以 y2 2 210 .(2)因为y232x 223x3x33233 5.写出曲线y 2 x1与 x 轴交点处的切线方程.2 x解令 y0 ,得曲线 y 2 x1与 x 轴交点为1, 0和1, 0,2 x22而 y21,所以 y1 4 ,222 x所以所求切线有两条,方程分别为y 4 x 2 , y 4 x2.6.求下列函数的导数:( 1)y(2 x 23) 5;(2)y sin (5 2 x 2 ) ;( 3) ( 5) ( 7)( 9)y e 3 x 22 x 1 ;(4) y sin ( x 2 ) ;y cos 2 x ; (6) y a 2x 2 ;y arctane x ;(8) y ( arccos x ) 2 ; yln sin x ;(10) ylog a (x 31) .解 (1) y5 (2 x 23) 4 (2 x 2 3)20 x (2 x 2 3)4;( 2) ycos(5 2 x 2 ) (52 x 2 )4 x cos(5 2 x 2 ) ;( 3) y e 3 x 23 x 26 x 2 e 3 x22 x 12 x 12 x 1;( 4) y cos( x 2 ) ( x 2 ) 2 x cos( x2) ;( 5) y 2 cos x cos x2 cos x sin xsin 2 x;( 6) y1222 xx;2 a 2x 2a x2 a 2 x 2a 2x 21x( 7) y2exe2 x;e x11 e( 8)( 9)y2(arccos x)(arccos x)2(arccos x)12 arccos x ;122x1 xy1 cos x cot x ;sin xxsin xsin12( 10) y33 x.3 1) ln a ( x 1)( x 31) ln a ( x7.求下列函数的导数:(1)(3)(5)(7)(9)yarccos (1 2 x) ; ( 2) y y1ln x ; (4) y1ln xysin n x cos nx ; ( 6) yy e arctan x;(8) yy1 x 1 x ; (10)1 x1 xarcsin 1 ;x ln (xx 2a 2 ) ;1 sin2 x ; 1 sin 2 xln ln ( ln x) ;y arccot1 tan x .2 2解( 1) y121;(1 2 x )221 (12 x)x 1 x1 (12 x )( 2)( 3)y1 1 x 1x ;1x2x 222111xxx2x1 1ln x 1 lnx1x x2y22;1 ln xx 1 ln x12 x122122( 4) yx2 x a ;2 2xa2xx22 2xaxaxa( 5) yn sin n1xsin xcos nxsin n xsin nx nxn1cos x cos nxsin x sin nxn sin n 1 x cos n 1x;n sin x( 6) y11 sin2 x1sin 2 x1 sin2 x2sin 2 x112 cos 2 x 1sin 2 x1 sin2 x 2 cos 2 x1 sin2 x1sin 2 x 22sin 2 x112 cos 2 x2 cos 2 x; 1 sin 2 x 1sin 2 x 1 sin 2 xcos 2 x 1sin 2 x( 7) ( 8)( 9)arctan xarctan xarctanx1 y ee1 xx1 ln ( ln x)1 1y x ) ln ( ln x) ln xln ( lnln xarctanxe;2 1 xx1;x ln x ln ( ln x)111 x1x1x112 1 x 2 1 x1 x2 1 x 2 1 xy21 x1x1 x 1 x21 x1 x 121x2;221 x 1 x1 x 1 x1 x 1 x( 10)y11x41 2 x x1x2tan22sec2 122x2 tan24tan222xsec21.2x4tanx1223 cos28.设f ( x )1cos x ,x0,求 f x.ln (1 x )x cos x ,x0sin x,x0解当 x0 时, f (x )1cos x x sin x ,x0,1x2x x当 x 0 时,f(0)1cos x0lim 2 sin2lim sin x sin20 ,lim x x2xx0x0x02ln1x x cos x01f (0)lim ln1x cos x ln e 10 ,lim x xx0x0sin x ,x0所以 f00,从而 f(x )1cos x x sin x, x .1x0 9.求函数y( sin x ) cos x 的导函数.解法 1因为y( sin x ) cos x e cos x ln sin x ,所以 y e cos x lnsin x cos x ln sin x sin xcos xsin x ln sin x cos xcosxsin xsin x sin x ln sin x2x .cos xcossin x解法 2对数求导法,由 y( sin x) cos x,得 ln y cos x ln ( sin x ) ,两边同时对 x 求导,得ysin x ln sin x cos xcos x,y sin x所以 y sin x sin x ln sin x cos2x.cos xsin x10.设f(x )sin x , (x )x3,求 f [(x )] , f[(x )] , { f [(x )]}.解 因为 f (x )sin x , ( x) x 3 ,所以 f ( x)cos x ,(x ) 3 x2,所以 f [( x)] f 3 x 2 sin 3 x 2 ,f [( x )]cos( x )cos x 3,{ f [ ( x)]} sin x 3 cos x 3 x 3 3 x 2 cos x 3 .11.设 f ( x) 存在,求下列函数的导数:( 1) f n (cos x ) ; ( 2) cos n [ f ( x)] .解(1) nn 1(cos x)f (cos x )n 1f (cos x)nf nf(cos x ) f (cos x) cos xn sin xfn 1(cos x ) f (cos x ) ;(2) cos n [ f (x)]n cos n 1 [ f ( x)] cos [ f (x )]n cos n 1 [ f (x)] sin [ f ( x)] f xn 1[ f (x )] fx .n sin [ f ( x)] cos12. 求曲线 f x 2 sin x sin2所有具有水平切线的点.x解 因为 fx2 cos x 2 sin x cos x ,令 fx0 ,得 cos x 1sin x0 ,于是 cos x 0 ,或 sin x1 ,推得 x k, k Z ,或 x 2k3Z ,2, k2所以所求的点为2 k, 3 ,2k3 1 ,其中 k Z .,22习题2-31.求下列函数的二阶导数:(1)(3)ye3 x 5;(2) y 2x ln x ;(4) sinye t sin t;y tan x ;(5) yln( x4 x 2 ) ;( ) y (1 x 2 ) arctan x.6解 ( 1) y 3e 3 x 5 , y9e 3 x 5 ;(2) yetsin t e t cos t e t cos t sin t,yetsin te tsin t cos t2etcos tcos t ;2(3) y2 sin x cos x ln xsin 2 x 1ln xsin 2 xsin x ,xxsin 2 x2sin x cos xx sin2y ln x 2 cos 2 x xxx22 sin 2 x22 x ln xsin x ;x 2 cosx 2(4)(5)22 sec x sec x tan x2ysec x , y2 sec x tan x ;112 x1y,x4 22 4x 24 2xx13xy4x 222 x;2423x(6) y2 x arctan x1 , y2 arctan xx.21x2. y x 3 e x,求 y ( 5 )(0).解设 u x 3 , v e x,则 u3 x 2 , u 6 x , u6 , u n 0, n 4 ; v ne x , n N ,代入莱布尼兹公式,得y ( 5 )u 5 v5 u 4 v 10 u v10 u v5u v 4uv 510 6e x10 6 xe x5 3 x 2e xx 3 e x ,所以(5 )60.y (0)3. yx 2 e 2 x ,求 y ( 20 ) .解 设 ux 2 , v e 2 x , 则 u2 x , u2 , u n0,n 3 ; v n2 n e 2 x , n N,20181920代入莱布尼兹公式,得y ( 20 )C 20k u nkv kC 202C 201 C 200 u vu vuvk 0190 2 218 e 2 x C 201 2 x 219 e 2 x C 200 x 2 2 20 e 2 x2 20 e 2 x95 20 xx 2 .4.试从dx1导出:( 1)d 2 xy3;(2)d 3 x3( y ) 2y y.2( y ) d y 35dy yd y( y )解因为d x1,所以 d 2 x d 1 d 1 dx y 1y 3,d yy2dy ydx ydyy2yd yy3dydy dxd x3dyy 3dx3dydyy322yy y 3 yy13 yy y.6y5yy5.证明:函数 y C 1e xC 2 ex( ,C 1 , C 2 是常数)满足关系式 y2y 0 .解 因为 y C 1 e xC 2 ex,所以所以xxxx2x2xyC 1 eC 2eC 1eC 2 e, yC 1 e C 2 e,y2y2C 1e x 2C 2 ex2C 1 e x C 2 ex0 .6. 求常数 的值,使得函数 ye x 满足方程 y5 y6 y.解 因为 ye x ,所以 y ex, y2ex,代入方程 y5 y6 y 0 , 得256 e x0 ,因为 e x0,xR ,所以256,解得 1 6 , 21 .7. 设 fxsin xa , g xb sin xc cos x ,求常数 b, c 的值,使得f 0g 0,且 f 0g0 .解 因为 fxsin x a, g xb sin xc cos x ,所以 f x cos x a, g xb cos xc sin x ,所以由 f 0g 0, f 0g 0,可得 c sin a ,且 bcos a .8.求下列函数的 n 阶导数.(1) y x na 1 x n 1 a 2 x n 2a n 1 x a n ( a 1 , a 2 , a n 是常数);(2) y xe x ;(3) ysin 2 x ; (4) yx 2 16.5 x解(1) yn 1n 1 a 1 xn 2n 3a n 1 ,nxn 2 a 2 xn 2n 3n 4a ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故y n n ! .(2)y e x xe x e x x 1 , y e x x 1 e x e x x 2,yxx2x xx 3 ,由此可见,每求一次导数,增加一个e x,e e e所以n xx n, n N;y e(3)y sin 2 x1cos 2 x11cos 2 x,222y 2 sin x cos x sin 2 x cos 2 x2,y 2 cos 2 x 2 cos 2 x22,y 2 2sin 2 x 2 2cos 2 x32,42 3cos 2 x23 cos 2 x4,y2所以n2n1 cos 2 x n, n N .y2(4)因为y111,x 2 5 x6x3x2而1x32112x3,x3,x331123x34x3,1n可见,123n x n 11nx3n1x33n !,1n同理,123n x n11nx2n1x22n !,所以n n n1n1n 11.y 1 n ! x 3x 2 1 n !x3n 1xn 12习题2-41.求由下列方程所确定的隐函数的导数d y :d x(1) x y e xy0 ; (2) 2 x 2 y xy 2 y 30 ;(3) e xyy ln xsin 2 x ;( ) xya( a 0 的常数).4解( 1)将方程两边同时对 x 求导,得dydydy ye xyxy,变形得:1;1ey x0 dx1xydx dxxe(2)将方程两边同时对 x 求导,得2dyy2dy2dy 0,2 2 xy xx 2 y3 ydxdx dx变形整理得:dy224 xy y 2;dx2 x 2 xy3 y(3)将方程两边同时对 x 求导,得e xyy xdydyln xy 2 cos 2 x ,dxdxx变形整理得:dy2 x cos 2 xyxy exy;dxx ln x 2xyx e(4)将方程两边同时对 x 求导,得11dy ,2 x2y dx变形整理得:dyy, x.dxx2.求曲线 x 2 y 52 xy0 在点 (1,1) 处的切线方程.解将方程两边同时对 x 求导,得: 2 x5 y 4 dy2 yx dy0 ,dx dx将 x1 , y 1 代入,解得:dy1,10 ,dx所以曲线在点 (1,1) 处的切线方程为: y1 .3.已知 y sinx cos( xy )0 ,求隐函数 yy x 在点 0, π的导数值.2解将方程两边同时对 x 求导,得:dyy cos xsin( x y ) dy ,sin x1dxdx将 x0 , y2 代入,解得: dy1.dx0,222 4.求下列方程所确定的隐函数的二阶导数 d y .dx 2(1) y tan( x y ) ; (2) y 1x e y ;(3) y lny xy ;(4) arctany ln x 2 y 2 .x解(1)将方程两边同时对 x 求导,得:dysec 2 ( xy ) 1dy,dxdx解得dycsc 2 ( xy ) ,dxd 2dy再求导,得:y2 csc( xy)csc( xy ) cot xy,21dxdx将 dy2csc 2( xy) 代入,整理得:d y2 csc 2 ( x y) cot3 xy ;dxdx 2(2)将方程两边同时对 x 求导,得:dye yx e y dy,dxdxe y dy1 xe ye ye yx e y dy解得:dyy,再求导,得: d 2 y dxdxe y 2y2,dx1xedx1xedy y22 y2 xe y2 y3 y将 e代入,整理化简得:d yeey2y 33;dx1 xedx12 yxe(3)将方程两边同时对 x 求导,得:dyln ydy 1 dy , dxdxdx1 dy解得:dy1d 2 yy dx 2 ,,再求导,得: 2dxln y dxln y将 dyd 2 y13;1代入,整理化简得:2ydx ln ydx ln ydyxy2 x 2 ydy(4)将方程两边同时对 x 求导,得:1dx1 dx,y 2222y 21xxx1dy x yx y 1dy解得:dy x y,再求导,得:d 2 ydxdx,dxx ydx 22x y222将 dyx y代入,整理化简得:dy 2 xy.3dxxydx 2xy5.用对数求导法求下列函数的导数:(1) y(sinx) cos x ;(2) y(tan 2 x ) x;x x(3) y;(4) y (2 x 1) x (3 x 1) x 1 .1 x解 ( 1)两边取自然对数,得: ln ycos x ln(sin x ) ,两边同时对 x 求导,得:1 dysin x ln sin xcos x cos x ,y dxsin x整理化简得:dy(sin x) cos xsin x ln sin xcos x cot x ;dx(2)两边取自然对数,得: ln y x ln(tan2 x ) ,两边同时对 x 求导,得:1dy ln(tan 2 x )xsec 2 2 x2tan 2 x ,y dx整理化简得:dy(tan 2 x) xln(tan 2 x)4 x ;dxsin 4 x(3)两边取自然对数,得: lny x lnx x ln xln1 x,1x两边同时对 x 求导,得:1dy ln x ln 1 xx 1 1 1 y dxxxx整理化简得:dyx ln x x1 1;dx1 x1 x(4)两边取自然对数, 得: ln yln(2 x1)1x1ln(3 x1)1 x1 ,ln 4 ln28两边同时对 x 求导,得:1 dy2 1 131)81, y dx 2 x 2 x 4(3 x x 1整理化简得:dy(2 x1) x(3 x1) x 12 1 1 31) 8 11dx2 x 2 x 4(3 x x 6.求下列参数方程所确定的函数的导数d y : d x2 atxa cos btb sin atxt21 ( a 为常数).(1)( a , b 为常数); (2)2ya sin btb cos ata (1 )ty1t2解(1)因为dxab sinbtab cosat ,dyab cosbtab sinat,dtdt所以d yab cos btab sin atcos btsin at;d xab sin btab cos atsinbtcos at2 a 1 t22 at 2t2(2)因为dx2 a 1 t,22dt1212ttdy2at 1 2a (1 2) 2 t4 atttdt221 t 21 2t所以dy1 2 t 2 t .dxt 2 t 2 17.求曲线x tet1 在 t0 处的切线方程与法线方程.t 2 )ey (2 t t解 因为 dxe tte t , dy2 2 t e t(2 t t 2 )e t ,dtdt所以dy2 t 2 , dyt 02 ,又 x t 0 1, y t 0dx1 tdx故所求切线为: y2 x 1,法线为:y1 x 1 . 28 . 已 知曲 线 x2n在 ttm t0 时过原点,且在该点处的切线与ype t2e2 x3 y5 0 平行,求常数 m , n, p .解 因为 dxm ,dyp e t ,故dyt2 tp e ,dtdtdx2t m由题设可知: x tn0 , yt 0p2e0 ,dyt 0p 2 ,dxm3所以所求常数为: n0 , p2e, m3e .注:此题的书后答案有误.29.求下列参数方程所确定的函数的二阶导数 dy :d x 2(1)x1 t 2;(2)xe t cos t ;y tt 3yte sin tx ln 12xf ( t )t;(4)( f(t ) 存在且不为零).(3)y tf ( t )f (t )yt arctan t( 1)因为dx2 t ,dy,所以dy13 t 21 3t , 解13t 2dt dtdx2 t2t221 322于是 d yd13t dt2t 21 3t;2dt2 t2dx2 t3dx4t(2)因为dxe tcos te tsin t ,dye t sin t e t cos t ,dtdt所以dye t sin te t cos tsin t cos t ,于是dxt cos t tsin tcos tsin te ed 2 yd sin tcos tdt cos tsin 2sin t2 1tcos t2dtcos tsin tdxcos tsin 2tcos ttsin tdxte e2;e tcos tsin t 311dx2tdy1dy12t1,1t(3)因为 dtt 2dt1t 2 ,所以dx2 t2 ,1 t 221221于是 d yt;22 t4 tdx1 t 2(4)因为dxf( t ) ,dyf ( t ) tf ( t )f (t ) tf (t ),所以dyt ,dtdtdx于是 d 2 y1.2f (t )dx10.将水注入深 8 米、上顶直径 8 米的正圆锥形容器中,注水速率为4 吨/分钟.当水深为 5 米时,其表面上升的速率为多少?解 如图所示,设在 t 时刻容器中水面的高度为h t(米),此时水面的半径为 rt(米),则依题意应有1 r 2t h t4 t ,而h tr t , 384所以 1h 3 t4t ,两边同时对时间 t 求导,12可得1h2t dh4 ,当 h t5 时,可求得dh16 , 4dt dt2516 所以当水深为 5 米时,其表面上升的速率为m m in .2511.汽车 A 以 50 公里 / 小时的速度向西行驶,汽车 B 以 6 0 公里 / 小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶. 当汽车 A 距离交叉路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以什么速率接近?解 如图所示,设在 t 时刻,汽车 A 距离交叉路口x t ,汽车 B 距离交叉路口 y t ,则两车之间的直线距离为 st x 2y 2t t ,两边同时对时间 t 求导,可得x tdxy dytdxdydsdtdt60 ,,依题意可知 50 ,dt2y 2dtdtx t t故当 x t0.3 , y t0.4 时,ds 0.350 0.4 6078 ,即当汽车 A 距离交叉dt0.32 20.4路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以78 km / h 的速率接近.12.一个路灯安装在 1 5 英尺高的柱子上, 一个身高为6 英尺的人从柱子下以5 英尺/秒的速度沿直线走离柱子,当他距离柱子4 0 英尺时,他身影的顶端以多快的速率移动?解 如图所示,设在 t 时刻,此人离灯柱的水平距离为x t,身影的顶端离灯柱的水平距离为y t,则依题意有:dx,6y tx t5,515,可见y tx tdt y t3两边同时对时间 t 求导,得dy5dx25 ,dt3dt3所以他身影的顶端以25 feet / s 的速率移动,与他离灯柱的水平3距离无关,只与他的前进速度、身高、灯柱高有关.习题2-51.函数y x2,求当 x 1 ,而 x0.1 , 0.01 时,y 与 d y 之差是多少?解当 x 1 , x0.1 时,y20.21, d y 2 x x0.2 ,1.11所以y dy0.01;当x 1 ,x0.01时, y 1.01 210.0201, d y 2 x x0.02 ,所以y dy0.0001;2.求函数y x2x 在 x 3 处, x等于 0.1 , 0.01时的增量与微分.解因为 y x 2x ,所以dy 2 x1x ,当 x 3 , x0.1 时,2 3.1230.71, dy0.7;y 3.13当 x 3 , x0.01 时,y 3.012 3.0120.0701, dy0.07 .333.函数y x 3x ,求自变量x由 2变到 1.99时在 x 2 处的微分.解因为y3x ,所以 dy21x ,x 3 x当 x2, x0.01 时, dy3210.010.11 .24.求下列函数的微分(1)(3)(5)y x 2 x 2 1 x3x 4;( 2)3yx;( 4)1 x2y3ln cos x;( 6)y xe x2;y tan 2 (1x 2 ) ;y e ax sin bx .23解(1)dy 1 4 x x 4 x dx ;x 2x 22x 2x 2x 2 2;( 2) dy e dx xe dxe dx xe2 x dx e1 2 x dx22221 x dx xd 1 x1 x dx x2 x dx( 3) dy1 xdx ;2221 2121 2xxx( 4) dy2 tan(12) d tan(1 x22 tan(1x 222) d (12x )) sec (1x x )4 x tan(12) sec 22;x (1 x ) dx( 5) dy 3 ln cos x ln 3dln cos x3 ln cos x ln 31 d cos xcos xln cos x3ln 3 tan xdx ;( 6) dyaxax sin bxaxcos bx d bxaxa sin bxb cos bxdx .e d e e5.将适当的函数填入下列括号内,使等式成立:(1) d( ) sintd t ;( 2) d()(3) d ( )x;( 4) d ( )d x1 x2(5) d ( ) x 2( 6) d ()xe d x ;23 xd x ;secd x;x 2a 2ln xd x .x解(1)1 cost;( )1tan 3 x ;( ) 1x 2;233(4) 1arctanx ;(5) 1e x ;(6) 1l n 2 x .2aa 226.某扩音器的插头为圆柱形,其截面半径r 为 0.15 厘米,长度 L 为 4 厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为 0.001 厘米的铜,问每个插头约需要多少克纯铜?(铜的密度为8.9 克/ 立方厘米,3.1416 )解因为圆柱形的扩音器插头的体积为Vr2L ,侧面镀层的体积约为VdV2 rLr ,当 r 0.15 , r 0.001L4时, V32 3.1416 0.15 4 0.0013.7699210 ,,故所需铜的重量约为 m3.769921030.03355克.8.97.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为 2h ,若 h 比 R 小h 2 得多,试证明透镜的厚度 D.2 R解如下图所示,镜面半径 R 、镜面口径 2h 、透镜厚度 D 之间有关系:h 222,化简得: h22RDD20 ,R DR2R4R 2 4 h 2h 得: DR R 12R2 2,若 h 比 R 小得多,则1 h 21h 2,22 R 2R222故DRR1hR R 1h h .R 22 R 22 R8.利用微分求下列函数值的近似值(1);(2);(3); ( 4) e 1.01 ;( )26 ;( ) 3 .996cos 59tan 46lg 1156解 (1) cos 59coscoscossin6013 18033180130.5151 ;2 2180( 2) tan 46 tan 0tantan245141804sec18041 21801.0349;( 3) lg 11 lg 10 1lg 10111.0434;10 ln 10( 4) e1.01e1 0.01ee 0.01 2.7455;( 5) 2625 1251 15.1 ;22512(6) 3 996310004310001000349.9867 .39.当 | x | 较小时,证明下列近似公式:( 1) sin x x ; (2) (1x )1x ; ( 3) ln(1 x ) x .解 (1)设 fx sin x ,则 fxcos x ,当 | x | 较小时, fxsin xsin 0 cos 0 xx ,所以 sin x x ;( 2)设 f x(1 x) ,则 fx1(1 x )当 | x | 较小时, f x(1 x ) f 1f 1 x1x ,所以 (1x )1x ;(3)设 f x ln(1 x) ,则 fx1,1x当 | x | 较小时, f xln(1 x ) f 1 f 1 x x ,所以 ln(1x )x .习题2-61. 一飞机在离地面 2000 米的高度,以 200 公里 / 小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设 t 时刻飞机离 B 点的水平距离为 x t ,摄影机镜头 C 与 A 点连线与飞机的水平飞行方向成夹角,则co tx t , xtx200000t ,两边同时对时间20003600t 求 导 , 可 得 csc 2d1 dx t1, 即dt 2000 dt36d 1,当飞机飞至该目标上方时,,dtsin2362代入解得:d1 360 5rad / s .dt36 22. 一架飞机着陆的路径如图 2-11 所示,并且满足下列条件:(ⅰ)降落点为原点, 飞机开始降落时水平距离为 l ,飞行高度为h .(ⅱ)在整个降落过程中, 飞行员必须使飞机保持恒定的水平速度 v .(ⅲ)垂直方向的加速度的绝对值不能超过常数 k (必须比重力加速度小很多) .3图 2-11( 1) 求一个三次多项式 P x2ax bxcx d ,通过在开始降落和着陆的点对P x 和 P x施加一定的条件限制,使它满足条件。
高等数学第2章课后习题及答案
-----高等数学第2章课后习题及答案习题211 设物体绕定轴旋转 在时间间隔 [0 t]内转过的角度为从而转角是 t 的函数(t) 如果旋转是匀速的 那么称为该物体旋转的角速度 如果旋转t是非匀速的 应怎样确定该物体在时刻t 0 的角速度?解 在时间间隔 [t 0 t 0t] 内的平均角速度为(t 0t ) (t 0 )tt故 t 0 时刻的角速度为l i ml i m l i m(tt) (t 0) (t )t 0t 0 tt 0t2 当物体的温度高于周围介质的温度时物体就不断冷却 若物体的温度 T与时间 t 的函数关系为 T T(t) 应怎样确定该物体在时刻t 的冷却速度?解 物体在时间间隔 [t 0 t 0t]内 温度的改变量为T T(tt) T(t)平均冷却速度为T T (t t) T(t) t t故物体在时刻 t 的冷却速度为limT lim T (t t ) T (t ) T (t) t 0t t 0 t 3 设某工厂生产 x 单位产品所花费的成本是 f(x)元 此函数 f(x)称为成本函数成本函数 f(x)的导数 f (x)在经济学中称为边际成本 试说明边际成本 f (x)的实际意义解 f(x x)f(x)表示当产量由 x 改变到 x x 时成本的改变量f (x x) f (x)表示当产量由 x 改变到 x x 时单位产量的成本xf (x)lim 0f (x x) f ( x)表示当产量为 x 时单位产量的成本x x4 设 f(x)10x 2 试按定义 求 f ( 1)解 f ( 1)limf ( 1 x) f ( 1)10( 1x)2 10( 1)2xlimxxx 010 lim0 2 xx 2 10 lim ( 2x) 20xxx 05 证明 (cos x) sin x解 (cosx) limcos(x x) cosxxx2s i nx(x) s i nxlim2 2x 0 xlim [ s i nx(x ) s i n x] s i nx 2 x 0 2x26 下列各题中均假定 f (x 0)存在 按照导数定义观察下列极限指出 A 表示什么(1) lim f ( x 0x) f ( x 0 ) A xx 解 Alim0f (x 0x) f (x 0)xxl i mf ( xx) f (x 0) f ( x 0 )x 0x(2) lim f (x)A 其中 f(0) 0 且 f (0)存在x 0 x解 Alim f ( x) lim f (0 x) f (0) f (0)x 0 x x 0x (3) lim f (x 0 h) f (x 0 h)Ah 0h解A lim f ( x 0 h 0 lim[ f (xh 0limf (xh 0h)f (x 0 h) hh) f ( x 0 )] [ f (x 0 h) f (x 0)]h h) f (x 0)limf (xh) f ( x 0 ) hh 0hf (x 0) [ f (x 0)] 2f (x 0)7 求下列函数的导数(1)y x 4(2) y 3 x 2(3) y x1 6-----(4) y1 x(5) y1x23 5 x(6) y x232(7) y x x解 (1)y (x 4) 4x 4 1 4x 322 1 2 x (2) y (3 x 2 ) ( x 3 )2x 3331 3(3)y (x 1 6) 1 6x 1 6 1 1 6x 0 61 1 x(4) y ( 1) (x 2)x21 121 x 23 2(5) y(1)( x 2 )2x 3x 23 516 16 16 116 11 (6) y (x x) (x 5)x 5 x 555(7) y ( x2 3 x21 111 x ) (x 6) 1 x 6x 5665 68 已知物体的运动规律为 s t 3(m) 求这物体在 t 2 秒 (s)时的速度解 v(s) 3t 2 v|t 2 12(米 /秒)9 如果 f(x)为偶函数且 f(0)存在 证明 f(0)证明 当 f(x)为偶函数时 f( x) f(x)所以f (0) l i mf (x)f (0) l i m f (x) f (0) l i m f ( x) f (0)x 0xx 0x 0x 0x 0从而有 2f (0) 0 即 f (0) 010 求曲线 ysin x 在具有下列横坐标的各点处切线的斜率x 解 因为 y cos x 所以斜率分别为2 1k 1 c o sk 2 cos 13 2f (0)2x311 求曲线 y cos x 上点 ( , 1) 处的切线方程和法线方程式3 2解 ysin x ysin3x3 23故在点 (, 1) 处 切线方程为 y 1 3(x)3 22 23法线方程为 y 1 2(x )23 312 求曲线 y e x在点 (0 1)处的切线方程 解 y e xy |x 0 1 故在 (0 1)处的切线方程为y 1 1 (x 0)即 y x 113 在抛物线 y x 2上取横坐标为 x 1 1 及 x 2 3 的两点 作过这两点的割线问该抛物线上哪一点的切线平行于这条割线?解 yy(3) y(1)9 1 42x 割线斜率为 k132令 2x 4 得 x 2因此抛物线 y x 2 上点 (2 4)处的切线平行于这条割线 14 讨论下列函数在 x 0 处的连续性与可导性(1)y |sin x| (2) yx 2sin 1x 0xx 0解 (1)因为y(0) 0 lim y lim |sin x | lim ( sin x) 0x 0x 0x 0 lim ylim |sin x|lim sin xx 0x 0x所以函数在 x 0 处连续又因为y (0)l i m y( x)y(0) l i m |si nx | |si n0 |l i m s i nx1x 0x 0x 0x 0x 0xy (0) lim y( x) y(0) lim |sin x | |sin0|lim s i nx 1x 0 x 0 x 0x 0 x 0 x而 y (0) y (0) 所以函数在 x 0 处不可导-----解 因为 lim y(x) lim x 2sin10 又 y(0)0 所以函数在 x 0 处连续x 0 x 0x 又因为21 0y(x) y(0)xs i n1 l i mx l i ml i mxs i n 0 x 0xx 0xx 0x所以函数在点 x 0 处可导 且 y (0) 015 设函数 f (x)x 2x 1为了使函数 f(x)在 x 1 处连续且可导a b 应取什ax b x 1么值?解 因为lim f ( x) lim x 21 limf (x) lim (ax b)a b f(1) a bx 1x 1x1x 1所以要使函数在 x1 处连续 必须 a b 1 又因为当 a b1 时f (1)x 2 12l i m1x 1 xf (1) lim ax b 1 lim a( x 1) a b 1 lim a(x 1) ax 1 x 1 x 1 x 1 x 1x 1 所以要使函数在 x 1 处可导 必须 a 2 此时 b 116已知 f (x)x 2x 0求 f (0)及 f(0) 又 f (0)是否存在?x x 0解 因为f(0) lim f (x) f (0)lim x 0x 0 x x 0x f(0) lim f (x) f (0)lim x 2 0xxx 0x 而 f (0) f (0) 所以 f (0)不存在17 已知 f(x)sin x x0 求 f (x)x x解 当 x<0 时 f(x) sin x f (x) cos x 当x>0 时 f(x) x f (x) 11因为 f (0) lim f (x) f (0) lim sin x 0 1x 0 x x 0xf (0) lim f (x)f (0) lim x 0 1所以 f (0) 1 从而x 0x x 0x f (x)cosx x1 x18 证明 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2a 2解 由 xy a 2得 ya 2k ya 2xx 2设 (x 0 y 0)为曲线上任一点则过该点的切线方程为y a2x 0 ) y 02 ( xx 02y x 2令 y 0并注意 x 0y 0a 解得 xx 0 2x 0为切线在 x 轴上的距 a 2令 x 0并注意 x 0y 0 a 2 解得 y a 2y 2 y0 为切线在 y 轴上的距x 0 0此切线与二坐标轴构成的三角形的面积为S1|2x 0 ||2y 0 | 2|x 0 y 0 | 2a 22习题221 推导余切函数及余割函数的导数公式(cot x)csc 2x(csc x)csc xcot x解 (cot x)(cosx )sin x sin x cosx cosxsin xsin 2 x2 21 2s i nx c o s x2 2 c s cxs i nxs i nx( c sxc) ( 1 ) c o xsc s cx c o xt s i nx 2s i n x 2 求下列函数的导数(1) y4 7 2 12x 5 x 4x-----(2) y 5x 3 2x 3e x (3) y 2tan x sec x 1 (4) y sin x cos x (5) y x 2ln x (6) y 3e x cos x(7) yln xxx(8) y e 2 ln 3x(9) y x 2ln x cos x(10) s 1 sint1 cost解 (1) y ( 4 7 2 12)(4x 5 7x 4 2x 112)x 5 x 4 x20x628x52x220282x6x5x2(2) y (5x 32x 3e x ) 15x22xln2 3ex(3) y (2tan x sec x 1)2sec x tan x sec x(2sec x tan x)2sec x (4) y (sin x cos x) (sin x) cos x sin x (cos x)cos x cos x sin x ( sin x) cos 2x(5) y (x 2ln x) 2x ln x x 21 x(2ln x 1)x(6) y (3e x cos x) 3e x cos x 3e x ( sin x) 3e x(cos x sin x)ln x1 x ln x1 ln x(7) y ( ) xx x 2 x 2(8) y ( e x ln 3) e x x 2 e x 2x e x ( x 2)x 2 x 43x(9) y221cos x x 2ln x ( sin x)(x ln x cos x) 2x ln x cos x x x2x ln x cos x x cos x x 2 ln x sin x(10) s (1sin t ) cost(1 cost) (1 sin t)( sin t)1 sin t cost1 cost(1 cost)2(1 cost)23 求下列函数在给定点处的导数(1) y sin x cos x 求 y和 yxx46(2)sin1cos 求d2d4(3) f (x)3 x 2求 f (0)和 f (2)5 x 5解 (1)ycos x sin xyc o s s i n3 1 3 1x22266 6yc o s s i n22 2x2 244 4(2)dsincos1sin1sincosd22d1s i nc o s 1 2 422(1)d4 244 4 2 22 42(3) f (x)32x f (0)3 f (2) 17(5 x)2525154 以初速 v 0 竖直上抛的物体其上升高度 s 与时间 t 的关系是 s v 0t 1gt 22求(1)该物体的速度 v(t)(2)该物体达到最高点的时刻解 (1)v(t) s (t) v 0 gt(2)令 v(t) 0 即 v 0 gt 0 得 t v 0这就是物体达到最高点的时刻g5 求曲线 y 2sin x x 2 上横坐标为 x 0 的点处的切线方程和法线方程 解 因为 y 2cos x 2x y |x 0 2又当 x 0 时 y 0 所以所求的切线方程为y 2x所求的法线方程为-----y 1x即x 2y 0 26求下列函数的导数(1)y (2x 5)4(2)y cos(4 3x)(3) y e 3x 2(4)y ln(1x2)(5)y sin2x(6) y a2x2(7)y tan(x2)(8)y arctan(e x)(9)y(arcsin x)2(10) y lncos x解 (1) y4(2x 5)4 1 (2x5) 4(2x 5)3 2 8(2x 5)3 (2)y sin(4 3x) (4 3x)sin(4 3x) ( 3) 3sin(4 3x)(3) y e 3 x2 ( 3x2 )(4)y1 (1 x2)1x2(5)y 2sin x (sin x) e 3x 2(6x)6xe 3x212x2x1 x2 1 x22sin x cos x sin 2x(6) y [( a21] 1 (a211(a2 x2 ) x2) 2x2) 221 (a2x2 )1x2 ( 2x)x2 2a2 (7) y sec2(x2) (x2)2xsec2(x2)(8) y1x2 (e x)e x2x1(e ) 1 e2 arcsin x (9) y2arcsin x (arcsin x)1x2(10) y1 (cosx)1( sin x) tan xcosx cosx 7 求下列函数的导数(1) y arcsin(1 2x)(2) y11 x 2x(3) y e 2 cos3x(4) y arccos 1x(5) y1 ln x1 ln x (6) y sin 2xx(7) y arcsin x(8) y ln(x a 2 x 2 ) (9) y ln(sec x tan x)(10) y ln(csc x cot x)解 (1) y1(1 2x)21 1 (1 2x)2x x 21 (1 2x) 2(2) y [(111 1 x 2)x 2) 2]1(1 x 2) 2(1213x(1 x 2 ) 2 ( 2x)x 22(1 x 2 ) 1xxxx) cos3xx(3) y (e 2) cos3x e 2(cos3x) e 2(e 2( sin 3x)(3x)21 e xxx2 c o 3sx 3e 2 s i n3x 1e 2( c o3sx6s i n3x)22-----(4) y1 1 (1)1 1 ( 1 )|x|1 (2 x 1 ( ) 2x2x 2x21)xx1(1 l n x) (1 ln x)12(5) yxx(1ln x) 2x(1 ln x)2(6) ycos2x 2 x sin 2x 1 2x cos2x sin2xx2x2(7) y1( x)1111 ( x)21 ( x )22 x 2 x x 2(8) y1x 2 (xa 2x 2 )1x 2 [1 1(a 2 x 2) ]xa 2x a 22 a 2 x 21[112 (2x)]1x a 2 22 a 2x a 2x 2x(9) y1(secx tan x) secxtan x(10) y1(csc x cot x)csc x cot xsecx tan x sec 2x secxsecx tan x cscx cot x csc 2 x cscxcscx cot x8 求下列函数的导数(1) y (arcsin x )22(2) y ln tan x2(3) y 1 ln 2 x(4) y e arctan x(5) y sin nxcos nx(6) y arctanx 1x 1(7) y arcsinxarccosx(8) y=ln[ln(ln x)](9) y1x 1 x 1 x1 x(10) y arcsin1 x1 x解 (1) y2(arcsin x ) (arcsin x)2 22( a r c s xi)n 1( x)2 1 ( x )2 222( a r c s xi) n1 x 12 1 ( ) 222x2a r c s i n24 x 2(2) y1x (tan x) 1 x sec 2 x( x)tan 2 tan2 22 2(3) y(4) y1 2 x 1x s e c2 c s cxt a n 22 1 ln 2 x 2 1 (1 ln 2 x)1 ln2 x1 2ln x ( l nx)12ln x12 1 ln 2x2 1 ln 2xxln xx1 ln2 xearctan x(arctan x)e arctan x1 x) 2( x)1 (-----e a r c t axn11x e a r c t axn1( x)2 2 2 x(1 x)(5) y n sin n 1x (sin x) cos nx sin n x ( sin nx) (nx)n sin n 1x cos x cos nx sin n x ( sin nx) nn sin n 1x (cos x cos nx sin x sin nx) n sin n 1xcos(n 1)x(6) y1( x 1) 1(x 1) ( x 1)11 ( x 1) 2x 11 (x 1)2(x 1)2 1 x 2x 1x 11arccosx 1 arcsin x1 x2 1 x 2(7) y(arccos x)21 a r c c oxs a r c s ixn1 x22( ar c c ox)s2 1 x 2 ( a r c cxo)2s(8) y1 ln(ln x)1ln(ln x)[ln(ln x)] 11(ln x)ln(ln x) ln x 1 1 1 ln x x xln x l n ( lxn)(1 1 )( 1 x1 x) ( 1 x1 x)(1 1)(9) y2 1 x 2 1 x2 1 x 2 1 x( 1 x1 x)211 x 21 x2(10) y1 (1 x) 1 (1 x) (1 x)1 1 x 1 x 1 1 x(1 x)21 x1 x1(1 x) 2x(1 x)9. 设函数 f(x)和 g(x)可导且 f 2(x) g 2(x) 0 试求函数 y f 2 (x) g 2 (x) 的导数解 yf 1[ f 2(x) g2 (x)]22 (x)g 2(x)1[2 f (x) f ( x) 2g(x) g ( x)] 2f 2(x)g2(x)f (x) f (x)g(x)g (x)f 2 (x)g 2 (x)10设 f(x)可导求下列函数 y 的导数dy dx(1) y f(x2)(2)y f(sin2x) f(cos2x)解 (1) y f (x2) (x2)f(x2) 2x 2x f (x2)(2)y f(sin2x) (sin2x) f (cos2x) (cos2x)f(sin2x) 2sin x cos x f (cos2x) 2cosx ( sin x)sin 2x[f (sin2x)f(cos2x)]11求下列函数的导数(1)y ch(sh x )(2)y sh x e ch x(3)y th(ln x)(4)y sh3x ch2x(5)y th(1 x2)(6)y arch(x2 1)(7)y arch(e2x)(8)y arctan(th x)(9)y ln chx12 x 2ch(10)y ch2( x 1) x 1解 (1) y sh(sh x) (sh x) sh(sh x) ch x(2) y ch x e ch x sh x e ch x sh x e ch x(ch x sh2x)(3) y1(ln x)12 (ln x)2 (ln x)ch x ch-----(4) y3sh 2x ch x 2ch x sh x sh x ch x (3sh x 2) (5) ych 21 2 (1 x 2)2 2xx 2 )(1 x )ch (1 (6) y1 1(x 2 1)2x( x 2 1)x 4 2x 2 2(7) y1(e 2x)2e2x(e 2x )21 e 4 x 1 (8) y 1(th x) 1 1 1 1 1 (thx) 2 1 th 2 x ch 2 x 1 2 2sh x ch xch 2x 1 1ch 2 x sh 2x 1 2sh 2 x(9) y1 (ch x) 1 (ch 2x)ch x2ch 4 xsh x 1 2ch x shxch x2ch 4 xsh x shx sh x ch 2x shxch xch 3x ch 3xsh x (ch 2 x 1) sh 3x th 3xch 3xch 3x(10) y2ch(x1) [ch(x1)] 2ch(x1) sh(x1) ( x 1)x 1x 1x 1 x 1 x 1sh(2x 1(x 1) (x 1)2sh(2 x 1)(x 1)2( x 1)2 )x 1x 112 求下列函数的导数(1) y e x (x 2 2x 3)(2) y sin 2x sin(x 2) (3) y (arctan x )22(4) yln xx ne t e (5) ye t ett(6) y ln cos 1x(7) y e sin 2 1x(8) y x x(9) yxarcsinx4 x 22(10) y arcsin2t1 t 2解 (1) y e x (x 2 2x 3) e x (2x 2) ex( x 2 4x 5)(2) y2 222sin x cos x sin(x ) sin x cos(x ) 2xsin2x sin(x 2) 2x sin 2x cos(x 2)(3) y 2arctanx1 1 4 arctan x2 1 x 2 2 x 2 4 241 xnln x nxn 11 n ln x(4) yxx 2nx n 1(5) y(e te t )(e t e t ) (e t e t )(e te t )4e 2t(e t e t )2(e 2t 1) 211111 1 1(6) y sec x (cos x ) sec x ( sin x ) ( x 2 ) x 2tanx(7) y esin 21 ( sin 21) e sin 21xxx( 2sin 1) cos1( 1 ) xxx2122 1s i nx 2 s i nexx(8) y1x (x x )2 1 (1 1 ) 2 xxx2 x2 x 1 4 xxx(9) y arcsinxx1 12 1 ( 2x) arcsin x21 x2 2 4 x 2 24-----(10) y1 ( 2t ) 12 (1 t 2) 2t (2t) 1 (2t)2 1 t 21 ( 2t )2 (1 t 2) 21 t21 t21 t22(1 t 2)2(1 t 2)(1 t 2)2 (1 t 2 )2 |1 t 2 |(1 t 2 )习题231 求函数的二阶导数(1) y 2x 2ln x (2) y e2x 1(3) y xcos x (4) y e t sin t (5) y a 2 x 2 (6) y ln(1 x 2)(7) y tan x1(8) yx 3 12(9) y (1 x )arctan x(10) ye xx(11) y x 2xe(12) y ln( x 1 x 2 )解 (1) y 4x1 y4 1xx2(2) y e 2x 12 2e 2x 1y 2e2x 1 2 4e 2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) ye tsin t e tcos t e t(cos t sin t)ye t (cos t sin t) e t ( sin t cos t) 2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xa2ya2x2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1 x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x6x(2x3 1) (x3 1)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n2x1 x2(10)y e x x e x 1e x( x 1)x2x2y [e x( x 1) e x] x2 e x( x 1) 2x e x(x2 2x 2)x4x3(11)y e x 2x e x2(2x)e x2(12x2 )yx22x24xx22 e2x (12x )e2xe(32x )(12)y12( x1x2 )12(12x 2 )12x 1 x x 1 x 2 1 x 1 x y1(1 x2 )12x x1 x2 1 x22 1 x2)(1 x) 2 1 x-----2 设 f(x)(x6(2)?10)f解 f(x) 6(x5f(x)43 10)30(x 10) f (x) 120(x 10)f(2)120(210)32073603若 f (x)存在求下列函数 y 的二阶导数d2ydx2(1)y f(x2)(2)y ln[ f(x)]解 (1)y f(x2) (x2) 2xf(x2)y2f(x2)2x 2xf(x2)2f(x2) 4x2f(x2)(2) y1 f (x)f (x)f(x) f (x) f ( x) f(x)f( x) f (x)[ f ( x)] 2 y[ f ( x)]2[ f ( x)]24试从dx 1导出dy y(1) d 2 x ydy 2( y ) 3(2)d 3x3( y )2y y dy3( y )5解(1) d 2x d dx d1d1dx y1ydy2dy dy dy y dx y dy( y )2y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2 s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy2y (C12e x C22e x)2(C1e x C2e x)(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2)y sin2x(3)y xln x(4)y xe x解 (1) y nx n 1(n1)a1x n 2 (n2)a2x n 3a n 1y n(n1)x n 21 n 32n 4n 2 (n 1)(n2)a x(n 2)(n 3)a x ay(n) n(n 1)(n 2) 2 1x0 n!(2) y 2sin x cos x sin2xy 2c o 2sx 2s i n2(x)2-----y22 c o s2x()22 s i n2x( 2)22y(4)23 c o s2x(2) 23 s i n2(x 3 )22y(n)2n 1s i n2x[ (n 1)]2(3)y ln x 1y 1 x1xy ( 1)x 2y(4) ( 1)( 2)x 3y(n)(1)( 2)( 3) ( n 2)x n 1( 1)n 2(n 2)!( 1)n (n 2)!x n 1x n 1(4) y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3) y x2sin 2x求y(50) .xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4) cos x所以y(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x v(99)ch x v(100) sh x所以y(100)u(100)v C1 u(99) v C2u(98) v C 98 u v(98) C99 u v(99)u v(100)100100100100100ch x xsh x(3)令 u x2 v sin 2x则有u2x u 2 u0v(48)248 sin(2x48)248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50)C5048u v(48)C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x2sin 2x50xc o 2sx12252 (s i n2x)2习题231求函数的二阶导数(1)y 2x2 ln x(2)y e2x 1(3)y xcos x(4)y e t sin t(5)y a2 x2(6)y ln(1 x2)(7)y tan x1(8) yx3 1(9) y (1 x2)arctan x(10) y e xx-----(11) y xe x2(12) y ln( x1x2 )解 (1) y4x1y41x x2(2) y e2x 1 2 2e2x 1y2e2x 1 2 4e2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) y e t sin t e t cos t e t (cos t sin t)y e t(cos t sin t) e t (sin t cos t)2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xx2a2ya2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x 6x(2x3 1) (x31)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n 2x21 x(10)y e x x e x1 e x( x 1)x2x2y[e x ( x 1) e x ] x 2 e x ( x 1) 2x e x (x 2 2x 2)x4x3(11) ye x 2 x e x 2 (2x) e x 2 (1 2x 2 )yx 22x (1 2x 2x22e 2x ) e4x 2xe (3 2x )(12) y1( x1x 2 ) 1 (1 2x ) 1x 1 x 2x 1 x 22 1 x 21 x 2y1(1 x 2) 12xx1 x21 x 22 1 x 2)(1 x) 21 x2 设 f(x) (x 10)6f (2) ?解 f (x) 6(x 10)5 f (x) 30(x 10)4f (x) 120(x 10)3f(2) 120(2 10)3 2073603 若 f (x)存在 求下列函数(1) y f(x 2)(2) y ln[ f(x)]解 (1)yf(x 2) (x 2) 2xf (x 2) y 2f(x 2) 2x 2xf (x 2) (2) y1 f (x)f (x)f (x) f (x) f( x) f (x) y2[ f ( x)]4 试从dx 1导出dy y(1) d 2xydy 2( y ) 3(2)d 3x 3( y )2 y ydy3( y )5解 (1) d 2xd dxd 1dy2dy dydyyd 2 yy的二阶导数d x 22f (x 2) 4x 2f (x 2)f ( x) f (x) [ f ( x)] 2[ f ( x)]2d1dx y 1y dx y dy( y )2 y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy212e x C22x21x2e x)y (C e ) (C e C(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2) y sin2x-----(3)y xln x(4)y xe x解 (1) y n 11n 2(n2 n 3n 1nx(n 1)a x2)a x ay n(n1)x n 2 (n1)(n2)a1x n 3(n 2)(n 3)a2x n 4a n 2y(n) n(n 1)(n 2) 2 1x0 n!(2) y2sin x cos x sin2xy2c o 2sx 2s i n2(x)2y22 c o s2x() 22 s i n2x( 2)22y(4) 23 cos(2x2) 23 sin(2x 3 )22(n)n 1y 2 s i n2x[ (n 1)](3)y ln x 1y 1x 1 xy ( 1)x 2y(4) ( 1)( 2)x 3(n)( 1)( 2)( 3)( n 2)x n 1( 1)n 2 (n 2)!( 1)n (n 2)!y x n 1x n 1 (4)y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3)y x2sin 2x 求 y(50) .所以所以xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4)cos xy(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x(99)ch x(100)sh xv vy(100) u(100) v C1 u(99)v C2u(98)v C 98 u v(98)C99 u v(99)u v(100) 100100100100(3)令 u x2u 2xv(48)100ch x xsh xv sin 2x 则有u 2 u0248 sin(2x 48 )248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50) C5048u v(48) C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x 2sin 2x50xc o 2sx1 2 2 52 (2s i n2x)习题241求由下列方程所确定的隐函数 y 的导数dydx(1)y2 2x y 9 0(2)x3 y3 3axy 0(3)xy e x y(4)y 1 xe y解 (1)方程两边求导数得-----2y y 2y 2x y 0于是(y x)y yyyy x(2)方程两边求导数得3x 2 3y 2y 2ay 3axy 0于是(y 2 ax)y ayx 2yay x 2y2ax(3)方程两边求导数得y xy e x y (1 y )于是(x e x y )y e x y ye x yyyx e x y(4)方程两边求导数得y e y xe yy于是(1 xe y )y e yyey1 xey222在点 ( 2a, 2a) 处的切线方程和法线方程2 求曲线 x3y 3a34 4解 方程两边求导数得 2 x31 13 2y 3 y 031于是yx31y3在点 (2a,2a) 处 y 144所求切线方程为y2a ( x2a) 即 x y 2 a442所求法线方程为y2a (x2a) 即 x y 04423 求由下列方程所确定的隐函数 y 的二阶导数d ydx22 2(1) x y 1(2) b 2x 2 a 2y 2 a 2b 2 (3) y tan(x y)(4) y 1 xe y解 (1)方程两边求导数得2x 2yy 0yx yy ( x)y xxy xy y y 2x 21yy 2y 2y 3 y 3(2)方程两边求导数得2b 2 x 2a 2 yy 0yb 2 xa2yy x( b 2 x)b 2 y xy b 2 a 2 y ya2y2a2y 2b 2 a 2 y 2 b 2 x 2b 4a2a 2 y3a 2 y3(3)方程两边求导数得y sec 2(x y) (1 y )2y)1y s e c( x2y) 2y) 11 s e c(xc o s( x2y)21s i n(xc o s(x y)12y)y 2s i n( xy23 y23( 112 )2(1 y 2 )y 5yyy(4)方程两边求导数得yyy e xe y-----yeyeyey1 xe y1 (y 1)2 yye y y (2 y) e y ( y ) e y (3 y) y e 2 y (3 y)(2 y)2(2 y)2(2 y)34 用对数求导法求下列函数的导数(1) y ( x )x1 x (2) y5x 525 x2(3) yx 2(3 x)4( x 1)5(4) y xsin x 1e x解 (1)两边取对数得ln y xln|x| xln|1 x|,两边求导得1 y ln x x 1 l n1( x) x 1y x 1 x 于是y ( x)x[ l nx1 ]1 x 1 x 1x(2)两边取对数得ln y1ln |x 5|1l nx(22)两边求导得5251 y1 1 12x2y5 x 525 x 2于是y 1 5x 5[11 2x ]5 5 x 2 2x 5 5 x 2 2(3)两边取对数得ln y1l nx( 2) 4 l n3( x) 5l n x( 1)2两边求导得1 y 1 3 45y 2(x 2)x x 1于是yx 2(3x)4 [ 12)4 5 ](x 1)52(x x 3 x 1(4)两边取对数得ln y1ln x1ln s i nx1l n1( e x )两边求导得22 41 y1 1 c o xte xy 2x24(1 e x )于是yxs i nx 1 e x[11c o xte x]2x 2 4(1 e x )1 x 22c o tx e x ]4 xs i nx 1 e [ x e x1 dy5求下列参数方程所确定的函数的导数dxx at 2(1)y bt2x (1 sin ) (2)ycos解 (1)dyy t 3bt 2 3b tdxx t 2at 2ady ycos sin(2) dx x 1 sincos6 已知xe tsin t, 求当 t 3 时 dy的值y e tcost. dx解dy y te t cost e t sin t costsin t dxx t e tsin t e tcost sintcostdy 1 3 1 3 当 t 时 2 2 3 2dx 1 3 1 3 32 27 写出下列曲线在所给参数值相应的点处的切线方程和法线方程(1)x sin t在 t处y cos2t4x3at (2)1 t 2在 t=2 处y 3at 21 t 2解 (1) dyy t2sin 2tdxx tcost-----dy 2sin(2)当 t时42 2 2 x02y0 0 dx4cos2242所求切线方程为y 2 2(x2) 即2 2x y 2 0 2所求法线方程为y1(x 2 )即 2x 4y1222(2) y t 6at (1t2 )3at 2 2t6at(1t 2 )2(1t 2 )2x t 3a(1t 2)3at2t3a3at 2 (1t 2 )2(1t 2)2dy y t6at2tdx x t3a3at 21t 2当 t 2 时dy 2 24x 6a ydx1223050所求切线方程为012a 5y12 a 4(x6a)即 4x 3y 12a 0535所求法线方程为y12 a3(x 6a)即 3x 4y 6a 0545d 2 y8求下列参数方程所确定的函数的二阶导数dx2 x t 2(1)2y 1 t. xacost(2)y bsin t(3)x3e t y2e t(4)x f t (t )设 f(t)存在且不为零y tf t (t) f (t)dy y t1 d 2 y(y x)t1解 (1)t 21 dx x t t dx2x t t t3(2) dy y tbcostbcot tdx x t asin t ab 2 d 2 y (y x )t a csc t b dx 2 x t asin ta 2 sin 3 tdy y t 2e t22t(3) dx x t3e t3ed 2y( y x )t2 2t3 2e4 3tdx 2x t3e te9 (4) dy y t f (t) tf (t) f (t)dx x tf (t)td 2 y ( y x )t 1dx 2x tf (t)9 求下列参数方程所确定的函数的三阶导数(1) x 1 t 2y t t3(2)x ln(1 t 2) y t arctan t解 (1)dy (t t 3)1 3t2dx (1 t 2 )2t1 3t 2d 2y ( 2t )1 ( 1 3) dx 22t4 t 3 t1 1 3d 3y 4 ( t 3t )3(1 t 2)dx 32t8t 5dy (t arctan t)11(2)1 t 21 tdx [ln(1 t 2)]2t 21 t21d 2 y ( 2t) 1 t 2 dx 22t 4t1 t 23d y-----1 t 2d 3 y ( 4t ) t 4 1dx 3 2t 8t 31t 210 落在平静水面上的石头 产生同心波纹 若最外一圈波半径的增大率总是6m/s 问在 2 秒末扰动水面面积的增大率为多少?解 设波的半径为 r 对应圆面积为 S 则 S r 2 两边同时对 t 求导得S t 2 rr当 t 2 时 r 6 2 12 r t 6故 S t t 22 126 144( 米 2 秒)| 其速率为 4m 2/min11 注水入深 8m 上顶直径 8m 的正圆锥形容器中 当水深为 5m 时 其表面上升的速度为多少?解水深为 h 时 水面半径为 r1 h 水面面积为 S 1 h 21hS 1 h 1 h 224水的体积为 Vh 33 34 12dV 12 3h 2dh dh 4 dVdt dt dt h 2 dt已知 h 5(m), dV 4 (m 3/min) 因此 dh 4 dV 4 4 16(m/min)dtdt h 2 dt252512 溶液自深 18cm 直径 12cm 的正圆锥形漏斗中漏入一直径为 10cm 的圆柱形筒中 开始时漏斗中盛满了溶液 已知当溶液在漏斗中深为 12cm 时 其表面下 降的速率为 1cm/min 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在 t 时刻漏斗在的水深为 y 圆柱形筒中水深为 h 于是有1 62 18 1r 2 y 52hy 3y3由 r得 r 代入上式得 6 18 31 62 18 1 ( y ) 2 y 23 3 3 5 h即162 18 1y 3 52 h 两边对 t 3 33求导得1 y2 y 52 h32t当 y 12 时 y t1 代入上式得1 122( 1) 16h t32 52 0.64 (cm/min).25。
高等数学习题第二章答案
习题2-4 1.解:(1)两边关于x 求导,得1()0xy y e y xy ''+-+=, 整理可得11xy xye y y xe-'=-; (2)两边关于x 求导,得22242230xy x y y xyy y y '''+--+=,整理可得2224223y xyy x xy y -'=-+; (3)两边关于x 求导,得()ln cos 22xy ye y xy y x x x''+++=⋅, 整理可得22cos 2ln xyxyx x y xye y x e x x--'=+; (4)两边关于x 求导,得y '=,整理可得y '=2.解:2520x y xy +-=两边关于x 求导,得425220x y y y xy ''+⋅--=整理可得 42252y xy y x-'=-,110x y y =='=,所以曲线在点(1,1)处的切线方程为 10(1)y x -=-,即1y =.3.解:对sin cos()0y y x y -+=两边关于x 求导,得sin cos sin()(1)0y x y x x y y ''++++=整理可得,cos sin()sin sin()y x x y y x x y --+'=++,则0212112x y y πππ==--'==--。
4.解:(1)应用隐函数的求导方法,得2d d 1sec ()d d y y x y x x ⎛⎫=+⋅+ ⎪⎝⎭解得:2d csc ()d yx y x=-+,对此式再对x 求导 22232d d 2csc ()cot()12csc ()cot ()d d y y x y x y x y x y x x ⎛⎫=+⋅++=-+⋅+ ⎪⎝⎭。
(2)应用隐函数的求导方法,得d (2)d ()xy xyy e x yx e x x+=-+,对此式两边再对x 求导,得 2()[()2](24)()xy xye y xy y y xy y x e x '''++++''=-+. 5.解:两边取对数,ln y cos xln sin x =,再分别求导数, (sin )(ln )(cos )ln sin cos sin x y x x xx'''=+ cos sin ln sin cos sin y x x x x y x'=-+ 于是求得2cos cos (sin )sin ln sin sin xx y x x x x ⎛⎫'=- ⎪⎝⎭。
高等数学第二章测验题答案
易知 , f ( x ) 在 | x | 1 处连续 . 在 x 1 处 , x 1 f ( x ) f ( 1) 1 , (1) lim f lim x 1 x 1 x 1 x ( 1)
f (1) lim f ( x ) f ( 1) x 1 x ( 1)
2. f ( x )在x a可导,则F ( x ) | f ( x ) | 在x a
2.
应选 (B ) .
不可导的充要条件是 ( ), 并说明理由 . ( A) f (a ) 0, f (a ) 0; ( B ) f (a ) 0, f (a ) 0;
(C ) f (a ) 0, f (a ) 0; ( D) f (a ) 0, f (a ) 0.
由于 f ( 1) f ( 1) , 故 f ( x ) 在 x 1 处不可导 . 在 x 1 处 ,
x 1 ( x 1)2 lim 4 0. x 1 x 1
x 1 , x 1 x 1 ( x 1)2 , f ( x) 4 1 x 1 x 1, x 1
同样可求导y2 x
tan x
tan x [sec x ln x ] x
2
2 y log 2 log 3 log 5 x;
解:令 y 1 1 (log3 log5 x) ln 2 log3 log5 x
1 1 1 1 (log5 x) ln 2 log3 log5 x ln 3 log5 x 1 1 1 1 1 1 ln 2 ln 3 ln 5 log3 log5 x log5 x x
一、 1.
应选 ( A) .
1. 设f ( x )可导,F ( x ) f ( x )(1 | sin x |),
高等数学 线性代数 习题答案第二章
第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
高等数学第二章课后习题答案
⾼等数学第⼆章课后习题答案第⼆章导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim (1020)20x x x x f x f x f x xx x x x→?→?→?→-+?--?---==-?==?-=-?2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表⽰什么, 并将答案填在括号内。
⑴ ()()=?-?-→?xx f x x f x 000lim(0'()f x -);⑵ ()=→?xx f x 0lim ('(0)f ),其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4.求曲线. 21,3 cos 程处的切线⽅程和法线⽅上点??=πx y'sin ,'()3y x y π=-==-2(1)0y +-=法线⽅程为1)23y x π-=-化简得3)0x π+-+= 5. 讨论函数=≠=0001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以⽆穷⼩所以函数在0x =处连续因为 20001sin(0)(0)1lim limlim sin 0x x x x f x f x x xx x→?→?→?+?-==?=所以函数在0x =处可导.6. 已知()()()()是否存在?⼜及求 0 ,0 0 ,0 2f f f x x x x x f '''<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f h h+→+→++-==='0lim 1h h f h f hf h h-→-→++--===- ''(0)(0)f f +-≠Q '(0)f ∴不存在7. ()(). , 0sin x f x x x x x f '??≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x xx y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+g g 2'364652'20282y x x x ---=--+(3);3253xxe x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2sec sec tan y x x x =+(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+= 123'ln10ln 2y x x x =-+'422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22ln cos cos ln sin x x x x x x x x =+- (9);1csc 22 xxy +=2222csc cot (1)2csc 2'(1)x x x x x y x -+-=+g g 2222(1)csc cot 4csc (1)x x x x x x -+-=+ (10).ln 3ln 223xx x x y ++= 2232223(3)(3ln )(2ln )(2)x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x x x x -+-+=+9. 已知. ,cos 21sin 4πρρ=+=d d 求因为1sin cos sin 2d d ρ=+-所以412422284d d πρπ?==+-=+10. .1轴交点处的切线⽅程与写出曲线x xx y -= 令0y =,得11x x ==-或因为2'1y x -=+,所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线⽅程为2(1)y x =-,即220x y --=;曲线在(1,0)-处的切线⽅程为2(1)y x =+,即220x y -+=。
同济大学版高等数学课后习题答案第2章
同济大学版高等数学课后习题答案第2章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解在时间间隔[t 0, t 0+?t]内的平均角速度ω为 tt t t t-?+=??=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t tt t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度?解物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为tt T t t T t T ?-?+=??)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义.解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量.xx f x x f ?-?+)()(表示当产量由x 改变到x +?x 时单位产量的成本. xx f x x f x f x ?-?+='→?)()(lim)(0表示当产量为x 时单位产量的成本.4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 xx x f x f f x x ?--?+-=?--?+-=-'→?→?2200)1(10)1(10lim )1()1(lim)1(20)2(lim 102lim 10020-=?+-=??+?-=→?→?x xx x x x . 5. 证明(cos x)'=-sin x .解 xxx x x x ?-?+='→?cos )cos(lim )(cos 0xxx x x +-=→?2sin )2sin(2limx x xx x x sin ]22sin )2sin([lim 0-=+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =?-?-→?)()(lim 000;解xx f x x f A x ?-?-=→?)()(lim000)()()(lim 0000x f xx f x x f x '-=?--?--=→?-. (2)A xx f x =→)(lim 0, 其中f(0)=0, 且f '(0)存在; 解)0()0()0(lim )(lim00f x f x f x x f A x x '=-+==→→. (3)A h h x f h x f h =--+→)()(lim 000. 解hh x f h x f A h )()(lim000--+=→hx f h x f x f h x f h )]()([)]()([lim00000----+=→ hx f h x f hx f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;(5)21xy =;(6)53x x y =;(7)5322x x x y =;解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x xy .(6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s)时的速度.解v =(s)'=3t 2, v|t =2=12(米/秒).9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明当f(x)为偶函数时, f(-x)=f(x), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率:π32=x , x =π.解因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x ,233sin3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y ,法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1?(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k .令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x|;(2)=≠=0001sin 2x x xx y . 解 (1)因为 y(0)=0,0)sin (lim |sin |lim lim 00=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-x x x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解因为01sin lim )(lim 200==→→xx x y x x , 又y(0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数>+≤=1 1)(2x b ax x x x f 为了使函数f(x)在x =1处连续且可导, a , b 应取什么值?解因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f(1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1. 16. 已知?<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解因为 f -'(0)=10lim )0()(lim00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在.17. 已知f(x)=?≥<0 0sin x x x x , 求f '(x) .解当x<0时, f(x)=sin x , f '(x)=cos x ; 当x>0时, f(x)=x , f '(x)=1; 因为 f -'(0)=10sin lim )0()(lim00=-=---→→x x x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x)=?≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解由xy =a 2得xa y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x)'=-csc 2x ; (csc x)'=-csc xcot x .解 xx x x x xx x 2sin cos cos sin sin )sin cos ()(cot ?-?-='=' x xx x x 22222csc sin 1sin cos sin-=-=+-=. x x xx x x cot csc sin cos )sin 1()(csc 2?-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xxxy ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1; (4) y =sin x ?cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x;(9) y =x 2ln x cos x ; (10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xxxy2562562282022820xxxx x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3ex .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ?tan x =sec x(2sec x +tan x).(4) y '=(sin x ?cos x)'=(sin x)'?cos x +sin x ?(cos x)' =cos x ?cos x +sin x ?(-sin x)=cos 2x . (5) y '=(x 2ln x)'=2x ?ln x +x 2?x 1=x(2ln x +1) . (6) y '=(3e x cos x)'=3e x ?cos x +3e x ?(-sin x)=3e x (cos x -sin x).(7)22ln1ln 1)ln (x x x xx x x x y -=-?='='.(8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=?-?='+='. (9) y '=(x 2ln x cos x)'=2x ?ln x cos x +x 2?x1?cos x +x 2 lnx ?(-sin x)2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=dd .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=?+?=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解(1)v(t)=s '(t)=v 0-gt .(2)令v(t)=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻.5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程.解因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x); (3)23x e y -=;(4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=;(7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x)2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1?(2x +5)'=4(2x +5)3?2=8(2x +5)3. (2) y '=-sin(4-3x)?(4-3x)'=-sin(4-3x)?(-3)=3sin(4-3x). (3)22233236)6()3(xx x xe x e x e y ----=-?='-?='.(4)222212211)1(11x x x x x x y +=?+='+?+='. (5) y '=2sin x ?(sin x)'=2sin x ?cos x =sin 2x . (6))()(21])[(22121222122'-?-='-='-x a x a x a y2122)2()(21x a x x x a --=-?-=-.(7) y '=sec 2(x 2)?(x 2)'=2xsec 2(x 2).(8)xx xx e e e e y 221)()(11+='?+='. (9) y '21arcsin2)(arcsin arcsin 2xx x x -='?=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='?='. 7. 求下列函数的导数: (1) y =arcsin(1-2x);(2)211x y -=;(3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)x x y ln 1ln 1+-=;(6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x); (10) y =ln(csc x -cot x). 解 (1)2 221)21(12)21()21(11x x x x x y --=---='-?--='.(2))1()1(21])1[(21212212'-?--='-='---x x x y 2321)1()2()1(21x x x x x --=-?--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xx x x)3sin 63(cos 213sin 33cos 21222x x e x e x e xxx+-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(6)222sin 2cos 212sin 22cos xx x x xx x x y -=?-??='.(7)2222121)(11)()(11x x x x x x y -=?-='?-='.(8)])(211[1)(12222222222'+++?++='++?++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++?++=.(9)x x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12 =++='+?+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12 =-+-='-?-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=;(4)x e y arctan =; (5)y =sin n xcos nx ; (6)11arctan -+=x x y ;(7)xx y arccos arcsin =;(8) y=ln[ln(ln x)] ; (9)xx x x y-++--+1111; (10)xx y +-=11arcsin.解 (1)'?=')2(arcsin )2(arcsin 2x x y )2()2(11)2(arcsin 22'?-?=x x x21)2(11(arcsin 22-?=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'??='?='x x x x x yx x x csc 212sec 2tan 12=??=.(3))ln 1(ln 121ln 1222'+?+=+='x xx y )(ln ln 2ln 1212'??+=x x x x x x 1ln 2ln 1212??+=xx x2ln 1ln +=.(4))(arctan arctan '?='x e y x)()(112arctan'?+?=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=?+?=.(5) y '=n sin n -1x ?(sin x)'?cos nx +sin n x ?(-sin nx)?(nx)' =n sin n -1x ?cos x ?cos nx +sin n x ?(-sin nx)?n =n sin n -1x ?(cosx ?cos nx -sin x ?sin nx)= n sin n -1xcos(n +1)x . (6)222 211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--?-++='-+?-++= '.(7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +?-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'??='?='x x x x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ?=??=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-?+--='+-?+--=')1(2)1(1x x x -+-=.9. 设函数f(x)和g(x)可导, 且f 2(x)+g 2(x)≠0, 试求函数)()(22x g x f y +=的导数.解])()([)()(212222'+?+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'?+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f(x)可导, 求下列函数y 的导数dxdy :(1) y =f(x 2);(2) y =f(sin 2x)+f(cos 2x).解 (1) y '=f '(x 2)?(x 2)'= f '(x 2)?2x =2x ?f '(x 2). (2) y '=f '(sin 2x)?(sin 2x)'+f '(cos 2x)?(cos 2x)'= f '(sin 2x)?2sin x ?cos x +f '(cos 2x)?2cosx ?(-sin x) =sin 2x[f '(sin 2x)- f '(cos 2x)]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ?e ch x ; (3) y =th(ln x); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x);(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x)?(sh x)'=sh(sh x)?ch x . (2) y '=ch x ?e ch x +sh x ?e ch x ?sh x =e ch x (ch x +sh 2x) . (3))(ln ch 1)(ln )(ln ch 122x x x x y ?='?='.(4) y '=3sh 2x ?ch x +2ch x ?sh x =sh x ?ch x ?(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-?-='. (6)222)1()1(112422++='+?++='x x x x x y .(7)12)(1)(142222-='?-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11?+=?+='?+=' x x x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'?-'?='x x x x y x x xx x sh ch 2ch 21ch sh 4??-= xx x x x x x x 323ch sh ch sh ch sh ch sh -?=-=x xx x x x 33332th ch sh ch )1ch (sh ==-?=. (10)'+-?+-?+-='+-?+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-?+=+--+?+-?=x x x x x x x x .12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ?sin(x 2); (3)2)2(arctan x y =;(4)n xx y ln =;(5)t t t t ee e e y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=; (8)xx y +=;(9)242arcsin x x x y -+=;(10)212arcsint t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ?cos x ?sin(x 2)+sin 2x ?cos(x 2)?2x =sin2x ?sin(x 2)+2x ?sin 2x ?cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=?+?='. (4)121ln 1ln 1+--=?-?='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .。
高等数学第二章习题.doc
第二章极限与连续第一节数列的极限一、观察下列数列{%…}的变化趋势,判断是否有极限?若有极限,写出其极限1、2、3^ x z/=lnn4、心=1 + (_1)“ 丄n二、利用数列极限的定义证明:、v 3n + l 3K lim --------- =—;n* 2/7 + 1 22.lim0.999_9=l三、设数列{x I满足lim兀=01〃T8 n 证明:lim £H—>oo2/1-12〃(-1)〃第二节函数的极限一、填空题1、当x->2吋,y“T4,问当5取_时,只要Ov|兀-2|v5,必有卜-4|<0.001.丫2_12^当兀T8时,y = —------------- 1,问当z取__________ 时,只要\x\ > z,必有|y-l| <0.01.”+3二、用函数极限的沱义证明:三、试证:函数/(兀)当JVTX。
时极限存在的充分必要条件是左极限、右极限各自存在并且相等.四、讨论:函数0(兀)二包在兀T0时的极限是否存在?第三节极限的性质填空题1、 limx —» 2— 3 x-32. v x~l lim——XT 】- 1 3、 4、 5、 limHT8(〃 + l )G +2)(〃 + 3)limx 2 sin —= “TO x / 】• COS X 6、 lim -----------XTZ x+ 厂 r .. 4x 4 - 2x 2 + x 7^ lim -------- ; ------z ) 32 + 2x8、 lim•Y T8(2兀一 3严(3兀+ 2严 二、求下列各极限2、 lim U + /?)2-x2 D h3、lim (— ------- 二)z \-x \-x 34、lim"Tv 2 + ijxlim (l + 丄 +第四节无穷大、无穷小一、填空题1、凡无穷小量皆以 _________ 为极限2、lim /(兀)=A是/(x) = A + Q _ 条件,(其中limo = 0)XT々)尤-»心3、在同一过程中,若/(兀)是无穷大,则 ____ 是无穷小.4^当XT O时,无穷小l-cosx与mx n等价,贝ij m = ____________ ,n ____ .i _L?r二、根据定义证明:当XT O时,函数丁 =匸2是无穷大,问兀应满足什么条件,x能使卜|〉104・三、证明函数y = -sin丄在区间(0,1]上无界,但当XT()+时,这个函数不是无穷大. XX四、证明:当兀->0时,兀'一1与3兀2 -兀一2是同阶无穷小第五节极限的存在准则一、填空题-…sin 2x“ sin cox 1、 lim --------- =2、.hm ----------- =go sin 3x 3、cotx lim ------------ = 4、 lim x ・ cot 3x=XT O %XT O 5、 sinx lim =6> 1 lim(l +兀)* =XT8 2X大TO 1 + x 八]r7、 lim( )2r- 8、 lim(l — —Y =XToo %28X二、 求下列各极限1 — cos2x1、 lim -------------2、 lim(tanx),an2xgo xsmx4三、利用极限存在准则证明数列V2J2+V2J2+V2+V2,……的极限存在,并求出该 极限.3、 血(斗XT® x-a 4、 lim("d"T8 n * 1 )"第六节:连续函数及其性质填空题21、 ____________________________________ 指出尸 x j 在x = l 是第 ______ 类间断点;在x = 2是第 _____________________________ 类间断点.兀2 — 3x + 2 2、 _________________________________ 指出• J 在x = 0是第 ________ 类间断点;在x = l 是第 _____________________________ 类间断点;在x|(x 2 -1) x = -1是第 类间断点 3、limln(2cos2x) = _________ .61-®二、讨论函数 /(x)=lim —— 的连续性,若有间断点,判断其类型.三、指出下列函数在指定范围内的间断点,并说明这些间断点的类型,如果是可去间断点 则补充或改变函数的定义使它连续.X2、/(%)=——在XG R 上tanx4.1、 /(兀)=四.五、六、使x<0设f(x) = < 1 , X =()已知/(%)在x = 0处连续,试确定G和b ln(b + x + x ), x>0设Q>0,b>0,证明方程x = asinx + b,至少有一个不超过a^b正根若/(%)在[d,b]上连续,a<x l<x2<-'<x n<b则在[兀],暫]上必有丁© = /(西)+ /(兀2)+ ……+ /(£)的值.复习题二一、选择题:X1、 函数/(X )= —在定义域为()1 + JT(A)有上界无下界; (B)有下界无上界; (C)有界,且 ^</(x)<^ ;(D)有界,且—25—^52 •L1 +厂2、 当XTO 时,下列函数哪一•个是其它三个的高阶无穷小() (A) x 2 ;(B) 1-cosx ;(C) x-tanx ; (D) ln(l + x)3、设认冲则当()时有卿甞:當:二篇遗(A) m > /7 ;(B) m - n ; (C) m < n ;(D) m. n 任意取4、 设 f(x)= :U 则 limgO< X< 1XTO(A)-l ; (B)l ; (C)0 ;(D)不存在5、 (A)l ;(B)-l ; (C)0; (D)不存在.二、求极限:1、v 2/ + 〃 + l lim -------------- — “T8 (i-/?y 2、1曲"-2XT 3x-33、lim(l + ;r)AXT O 4、lim x(e x -1)XT81x arctan ------四、讨论函数/(x)= --------------- 的连续性,并判断其间断点的类型.• 71sin —x2x< x>\试确定a 的值使/(x)在x = l 连续•x X5、当 xHO 吋,limcos —cos — .............. cos — ........................................................................ ;2 • 丄 x sin — 6、lim / *f 如 2 — i三、设冇函数/(x) =sin ax.五、证明奇次多项式:P(兀)=兔兀2“+1+坷兀2”+..・+夠出(勺北0)至少存在一个实根.六、若/(x)在|0,2°]上连续,/(0)=/(2G),证明在|0卫]上至少存在一点g ,使。
高等数学第二章答案2-3
习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214xy -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21x a x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 12a r c t a n 2xxx y ++=''. (10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx )=(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x .y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y , )222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232s i n (2)222c o s (233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= =100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.。
高等数学教材习题答案
高等数学教材习题答案第一章:函数与极限1. 习题一答案:1)a) f(-3) = -2b) f(2) = 4c) f(0) = 12)a) g(-1) = -1b) g(0) = 0c) g(2) = 93) f(g(1)) = f(1) = 32. 习题二答案:a) 导数不存在的点:x = -1, 1, 2b) 间断点:x = 0, 1c) f(x)在(-∞, -1) ∪ (-1, 0) ∪ (0,1) ∪ (1, 2) ∪ (2, +∞)上连续3. 习题三答案:a) 极限存在,为1b) 极限存在,为2c) 极限不存在第二章:导数与微分1. 习题一答案:a) f'(x) = 3x^2 + 4x + 5b) f'(x) = 4x^3 + 2x^2 - 8xc) f'(x) = -cos(x)2. 习题二答案:a) f'(x) = -2sin(2x)b) f'(x) = -4x^-5 + 3x^-4c) f'(x) = -5e^(-5x)3. 习题三答案:a) f'(x) = 2x + 1b) f'(x) = 4x^3 + 3x^2 - 2xc) f'(x) = 2cos(x)第三章:微分中值定理与导数应用1. 习题一答案:a) -∞ < x < -1 或者 -1 < x < 1 或者 x > 1b) -∞ < x < 0 或者 x > 0c) -∞ < x < 1 或者 x > 12. 习题二答案:a) 在c = 2的时候,函数在区间[-1, 1]上满足罗尔定理的条件b) 在c = -1的时候,函数在区间[-2, 2]上满足罗尔定理的条件c) 在c = 1的时候,函数在区间[-5, 5]上满足罗尔定理的条件3. 习题三答案:a) 在x = 2附近存在驻点b) 在x = -1附近存在极小值点c) 在x = 0附近存在极大值点第四章:不定积分1. 习题一答案:a) F(x) = x^3 + 4x^2 + 3x + 1 + Cb) F(x) = 4x^3 + 3x^2 + 2x + 1 + Cc) F(x) = -3x + cos(x) + C2. 习题二答案:a) F(x) = -cos(2x) + Cb) F(x) = -6x^-4 + x^-3 + 2x + Cc) F(x) = e^(-5x) + C3. 习题三答案:a) F(x) = x^2 + x + 1 + Cb) F(x) = x^4 + x^3 - x^2 + Cc) F(x) = 2sin(x) + C注意:以上只是题目习题的答案示例,实际上数学题目答案有多种可能性,需要根据具体问题进行求解验证。
高等数学第二章练习及答案
第二章一、选择题.1. 函数1y x =+在0x =处( )A 、无定义B 、不连续C 、可导D 、连续但不可导 2. 设函数221,0(),0x x f x x x +<⎧=⎨≥⎩,则()f x 在点0x =处 ( )A 、没有极限B 、有极限但不连续C 、连续但不可导D 、可导3.设函数)(x f y =可微,则当0→∆x 时,dy y -∆与x ∆相比,是( )A .x ∆的等价无穷小B .x ∆的同阶无穷小C .x ∆的高阶无穷小D .x ∆的低阶无穷小 4.函数3y x x =-的单调增区间是( )A、(,-∞ B、( C、+)∞ D 、(0,+)∞ 5.函数1()()2x x f x e e -=+的极小值点是 ( )A 、1B 、1-C 、0D 、不存在二、填空题.1. 已知(sin )cos x x '=,利用导数定义求极限0πsin()12lim =x x x→+-__________.2、如果0()4f x '=,则xx f x x f x ∆-∆-→∆)()3(lim000=______________.3. 函数x x f ln )(=在1=x 处的切线方程是 .4.设1()f x x=,则()f x '=____ .5. 函数3()sin(cos )f x x =,则()f x '= .6. 设函数()ln cos f x x =,则二阶导数()f x ''=______________.7. (arctan 2)d x =________,[]ln(sin 2)d x =__________.8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________.三、判断题.1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( )2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ∆的改变量.( )3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( )4. 极值点一定是驻点.( )5. 函数y x=在点0x =处连续且可导.( )四、计算题.1.求函数y =.2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '.3. 设e xy x =,求y '.4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y ''五、求下列极限.(1)sin lim sin x x x x x →∞-+, (2)xx xx x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →⎛⎫- ⎪-⎝⎭, (4)1lim(1)(0)x x a x a →∞->, (5)()1lim 1xx x →+, (6)1lim ()x xx x e →+∞+.六、应用题.1. 求函数32()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点.2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?3. 设某产品的总成本函数和总收入函数分别为()3C x =+ 5()1xR x x =+. 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.4. 某产品的需求量Q 对价格p 的函数关系为11600(),4p Q =求当3p =时的需求价格弹性.5. 求立方抛物线()30y ax a =>上各点处的曲率,并求x a =处的曲率半径.总习题2答案一、1. D 2. A 3. C 4. B 5. C 二、1. 0 2. 12- 3.1=-y x 4.21x-5.2333sin cos(cos )x x x -⋅⋅ 6.2sec x - 7.2214dx x +, 2cot 2xdx 8. 5 , 9.2p-三、1. √ 2. √ 3.√ 4.× 5.× 四、1.y '=2. 22e 1.1ex yy -'=+ 3.e e (e ln ).xxxy x x x'=+4.sin(),1sin()x y y x y -+'=++ []3cos().1sin()x y y x y +''=-++ 五、(1) 1. (2) 1.- (3)1.2(4)ln .a (5).e (6).e 六、1. 函数32()395f x x x x =--+的单增区间是()()13-∞-+∞,,,单减区间是()13-,;极大值是(1)6f -=,极小值是(3)26f =-; 极值点为121,3x x ==.凸区间是()1-∞,,凹区间是()1+∞,;拐点是()110-,.2.(1) 成本函数为 ()200060C q q =+. 收入函数为211()(100)100.1010R q p q q q q q =⋅=-⋅=- (2) 利润函数为21()()()402000.10L q R q C q q q =-=--令()0,L q '= 得 200.q =因为200q =是定义域内唯一的驻点, 所以当产量为200吨时利润最大. 3.边际成本为'()C x=边际收入为25()(1)R x x '=+.利润函数为5()()() 3.1xL x R x C x x =-=-+ 边际利润为25()(1)L x x '=+ 4. '()2ln 2.d p E Q p p Q=⋅=- (3)23ln 26ln 2.d E =-⨯⨯=- 5. 36221(19).6a K aρ+==。
高等数学第二章习题详细解答答案
1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
一、选择题.
1. 函数1y x =+在0x =处 ( )
A 、无定义
B 、不连续
C 、可导
D 、连续但不可导
2. 设函数221,0(),
0x x f x x x +<⎧=⎨≥⎩,则()f x 在点0x =处 ( ) A 、没有极限 B 、有极限但不连续
C 、连续但不可导
D 、可导
3.设函数)(x f y =可微,则当0→∆x 时,dy y -∆与x ∆相比,是( )
A .x ∆的等价无穷小
B .x ∆的同阶无穷小
C .x ∆的高阶无穷小
D .x ∆的低阶无穷小
4.函数3
y x x =-的单调增区间是 ( ) A
、(,3-∞-
B
、()33- C
、(+)3∞ D 、(0,+)∞ 5.函数1()()2
x x f x e e -=+的极小值点是 ( ) A 、1 B 、1- C 、0 D 、不存在
二、填空题.
1. 已知(sin )cos x x '=,利用导数定义求极限0πsin()12lim =x x x
→+-__________. 2、如果0()4f x '=,则x
x f x x f x ∆-∆-→∆)()3(lim 000=______________. 3. 函数x x f ln )(=在1=x 处的切线方程是 .
4.设1()f x x
=,则()f x '=____ .
5. 函数3()sin(cos )f x x =,则()f x '= .
6. 设函数()ln cos f x x =,则二阶导数()f x ''=______________.
7. (arctan 2)d x =________,[]ln(sin 2)d x =__________.
8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______.
9.设需求量q 对价格p 的函数为2e 100)(p
p q -=,则需求弹性E p =__________.
三、判断题.
1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( )
2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ∆的改变量.
( )
3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( )
4. 极值点一定是驻点. ( )
5. 函数y x =在点0x =处连续且可导. ( )
四、计算题.
1.求函数y =.
2. 求由方程0e e
2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '.
4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y ''
五、求下列极限.
(1)sin lim sin x x x x x
→∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →⎛⎫- ⎪-⎝
⎭, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x
x x e →+∞+.
六、应用题.
1. 求函数32
()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点.
2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?
3. 设某产品的总成本函数和总收入函数分别为
()3C x =+ 5()1
x R x x =+. 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.
4. 某产品的需求量Q 对价格p 的函数关系为
11600(),4
p Q = 求当3p =时的需求价格弹性.
5. 求立方抛物线()30y ax a =>上各点处的曲率,并求x a =处的曲率半径.
总习题2答案
一、1. D 2. A 3. C 4. B 5. C
二、1. 0 2. 12- 3.1=-y x 4.21x
- 5.2333sin cos(cos )x x x -⋅⋅ 6.2sec x - 7.2214dx x
+, 2cot 2xdx 8. 5 , 9.2p - 三、1. √ 2. √ 3.√ 4.× 5.×
四、1.
y '= 2. 22e 1.1e
x y y -'=+ 3.e e (e ln ).x x
x
y x x x '=+ 4.sin(),1sin()x y y x y -+'=++ []
3cos().1sin()x y y x y +''=-++ 五、(1) 1. (2) 1.- (3)
1.2 (4)ln .a (5).e (6).e 六、1. 函数32()395f x x x x =--+的单增区间是()()13-∞-+∞U ,,,单减区间是
()13-,;极大值是(1)6f -=,极小值是(3)26f =-; 极值点为121,3x x ==.凸区间是()1-∞,
,凹区间是()1+∞,;拐点是()110-,. 2.(1) 成本函数为 ()200060C q q =+.
收入函数为211()(100)100.1010
R q p q q q q q =⋅=-⋅=- (2) 利润函数为21()()()402000.10
L q R q C q q q =-=-- 令()0,L q '= 得 200.q =
因为200q =是定义域内唯一的驻点, 所以当产量为200吨时利润最大.
3.边际成本为'()C x
= 边际收入为25()(1)R x x '=+.
利润函数为5()()() 3.1x L x R x C x x =-=
-+ 边际利润为
25()(1)L x x '=+. 4. '()2ln 2.d p E Q p p Q
=⋅=- (3)23ln 26ln 2.d E =-⨯⨯=- 5. 3
62
2
1(19).6a K a ρ+=
=。