数字电子技术基础课件教案3集成逻辑门电路
数字电子技术基础课件:逻辑门电路
逻辑门电路
逻辑门电路
3.非门电路 图2.1.5(a)是由三极管构成的反相器,也称为非门电路。 当输入电压uI为低电平(0V)时,此时发射结和集电结均处于反 向偏置,所以三极管 V 截止,输出uO为高电平。当输入电压uI 为高电平(+5V)时,此时发射结和集电结均处于正 向偏置,三 极管 V 饱和,输出uO为低电平。若分别用A 和F 表示该电路 的输入和输出逻辑 变量,把分析结果列入表2.1.5中,可知图 2.1.5(a)电路完成的是非逻辑运算关系,其逻辑表 达式为
逻辑门电路
图2.2.4 TTL与非门电压传输特性的测试电路
逻辑门电路
图2.2.5 TTL与非门的电压传输特性
逻辑门电路
2.TTL与非门的输入特性 图2.2.6(a)为 TTL与非门的输入电路,在图示参考方向下 的输入电流为
根据图2.2.6(a)电路,可以画出 TTL 与 非 门 的 输 入 电 流 与 输 入 电 压 之 间 的 关 系 曲 线———输入特性曲线, 如图2.2.6(b)所示。
逻辑门电路
图2.2.3 有源泄放 TTL与非门电路
逻辑门电路
2.2.2 TTL与非门的外特性 1.TTL与非门的电压传输特性 TTL与非门的电压传输特性是指与非门的输出电压与输
入电压的关系,它表示输入信 号由低电平逐渐上升到高电平 时输出电平的相应变化。图2.2.4为 TTL与非门电压传输特 性的测试电路,图中输入端A 与可调直流电源E 相连接,其余 输入端均接高电平。改变可调 直流电源E 的大小,用电压表 测出输入电压uI和输出电压uO 的大小,就可得到图2.2.5所 示 的电压传输特性。
逻辑门电路
4.TTL与非门的输入端负载特性 图2.2.8(b)为输入信号uI随输入负载电阻R 变化的规律, 也就是输入端负载特性曲线。 由图2.2.8(a)可知
《电子技术基础与技能》教案集成逻辑门电路
《电子技术基础与技能》教案-集成逻辑门电路一、教学目标1. 知识与技能:(1)了解集成逻辑门电路的基本概念和特点;(2)掌握集成逻辑门电路的符号表示和真值表;(3)学会分析集成逻辑门电路的工作原理和应用。
2. 过程与方法:(1)通过观察和实验,培养学生的观察能力和动手能力;(2)通过小组讨论,培养学生的合作能力和解决问题的能力。
3. 情感态度与价值观:(1)培养学生对电子技术的兴趣和好奇心;(2)培养学生勇于探索和坚持真理的精神。
二、教学内容1. 集成逻辑门电路的基本概念和特点2. 集成逻辑门电路的符号表示和真值表3. 集成逻辑门电路的工作原理4. 集成逻辑门电路的应用三、教学重点与难点1. 教学重点:(1)集成逻辑门电路的基本概念和特点;(2)集成逻辑门电路的符号表示和真值表;(3)集成逻辑门电路的工作原理和应用。
2. 教学难点:(1)集成逻辑门电路的工作原理;(2)集成逻辑门电路的应用。
四、教学准备1. 教具:(1)电子技术实验仪;(2)集成逻辑门电路模块;(3)多媒体教学设备。
2. 学具:(1)学生实验手册;(2)集成逻辑门电路实验电路图;(3)笔和笔记本。
五、教学过程1. 导入新课(1)教师通过简单的逻辑门电路实例,引导学生思考逻辑门电路的作用和应用;(2)学生分享对逻辑门电路的了解和认识。
2. 讲解集成逻辑门电路的基本概念和特点(1)教师讲解集成逻辑门电路的定义和特点;(2)学生认真听讲,做好笔记。
3. 学习集成逻辑门电路的符号表示和真值表(1)教师展示集成逻辑门电路的符号表示和真值表;(2)学生跟随教师一起学习和理解符号表示和真值表。
4. 实验操作(1)教师引导学生分组进行集成逻辑门电路实验;(2)学生动手操作,观察实验现象,记录实验结果。
5. 分析集成逻辑门电路的工作原理(1)教师引导学生根据实验结果,分析集成逻辑门电路的工作原理;(2)学生通过小组讨论,共同探讨集成逻辑门电路的工作原理。
数字电子技术基础 第三章(1)11-优质课件
图3.1.2 正逻辑与负逻辑
一些概念
1、片上系统(SoC) 2、双极型TTL电路 3、CMOS
1961年美国TI公司,第一片数字集成电路 (Integrated Circuits, IC)。
VLSI(Very Large Scale Integration)
3.2 半导体二极管门电路
3.2.1 半导体二极管 的开关特性
图3.2.1 二极管开关电路
可近似用PN结方程和下图所 示的伏安特性曲线来描述。
i Is ev/VT 1
其中:i为流过二极管的电流。 v为加到二极管两端的电压。
nkT VT q
图3.2.2 二极管的伏安特性
图3.2.3 二极管伏安特性的几种近似方法
三、电源的动态尖峰电流
图3.5.23 TTL反相器电源电流的计算 (a)vO=VOL 的情况 (b) vO=VOH的情况
图3.5.24 TTL反相器的电源动态尖峰电流
图3.5.25 TTL反相器电源尖峰电流的计算
图3.5.26 电源尖峰电流的近似波形
例3.5.4 计算f=5MHz下电源电流的平均值
图3.3.xx CMOS三态门电路结构之二 (a)用或非门控制 (b)用与非门控制
图3.3.xx CMOS三态门电路结构之三 可连接成总线结构。还能实现数据的双向传输。
3.3.6 CMOS电路的正确使用
一、输入电路的静电防护
1、在存储和运输CMOS器件时最好采用金属屏蔽层 作包装材料,避免产生静电。
tPHL:输出由高电平跳变为低电 平的传输延迟时间。
tPLH:输出由低电平跳变为高电 平的传输延迟时间。
tPD: 经常用平均传输延迟时间tPD
来表示tPHL和tPLH(通常相等)
《数字电子技术》电子教案
《数字电子技术》电子教案第一章:数字电路基础1.1 数字电路概述介绍数字电路的定义、特点和应用解释数字电路与模拟电路的区别1.2 数字逻辑基础介绍数字逻辑的基本概念和术语解释逻辑门、逻辑函数和逻辑代数1.3 布尔代数介绍布尔代数的定义和基本运算法则解释布尔代数在数字电路中的应用第二章:逻辑门和逻辑函数2.1 逻辑门介绍常见的逻辑门及其真值表和逻辑功能解释逻辑门的实现方式和电路图2.2 逻辑函数介绍逻辑函数的定义和表示方法解释逻辑函数的性质和简化方法2.3 逻辑函数的优化介绍逻辑函数优化的目的和方法解释卡诺图和最小化方法第三章:组合逻辑电路3.1 组合逻辑电路概述介绍组合逻辑电路的定义和特点解释组合逻辑电路的实现方式3.2 常见的组合逻辑电路介绍编码器、译码器、多路选择器和算术逻辑单元等常见组合逻辑电路解释它们的电路图和功能3.3 组合逻辑电路的设计方法介绍组合逻辑电路的设计方法和步骤解释组合逻辑电路的设计实例第四章:时序逻辑电路4.1 时序逻辑电路概述介绍时序逻辑电路的定义和特点解释时序逻辑电路的实现方式4.2 常见的时序逻辑电路介绍触发器、计数器和寄存器等常见时序逻辑电路解释它们的电路图和功能4.3 时序逻辑电路的设计方法介绍时序逻辑电路的设计方法和步骤解释时序逻辑电路的设计实例第五章:数字电路的设计与仿真5.1 数字电路设计流程介绍数字电路设计的基本流程和步骤解释设计过程中各个阶段的任务和目标5.2 数字电路仿真介绍数字电路仿真的概念和作用解释仿真工具的使用方法和仿真过程5.3 数字电路设计实例提供一个数字电路设计实例,包括设计要求和实现过程解释设计实例中使用的技术和方法第六章:数字电路仿真软件介绍6.1 常见数字电路仿真软件介绍Multisim、Proteus、Altium Designer等常见数字电路仿真软件的特点和应用领域解释这些软件的功能和操作界面6.2 仿真软件的基本操作介绍数字电路仿真软件的基本操作,包括电路图的绘制、元件的选取和连接、测试点设置等解释这些操作的具体步骤和注意事项6.3 仿真实验设计与实践提供一个数字电路仿真实验的设计实例,包括实验目的、电路图设计和仿真步骤解释实验过程中需要注意的问题和解决方法第七章:数字电路测试与维护7.1 数字电路测试概述介绍数字电路测试的目的和重要性解释数字电路测试的基本方法和分类7.2 数字电路测试方法介绍静态测试和动态测试两种数字电路测试方法解释这两种测试方法的具体步骤和应用场景7.3 数字电路维护与故障排除介绍数字电路维护的基本内容和注意事项解释故障排除的步骤和方法第八章:数字电路在实际应用中的案例分析8.1 数字电路在通信领域的应用分析数字电路在电话交换系统、无线通信系统等通信领域的应用实例解释这些应用实例中数字电路的作用和重要性8.2 数字电路在计算机领域的应用分析数字电路在计算机处理器、存储器等关键部件中的应用实例解释这些应用实例中数字电路的设计原理和性能要求8.3 数字电路在其他领域的应用分析数字电路在医疗设备、工业控制等领域的应用实例解释这些应用实例中数字电路的功能和优势第九章:数字电路技术的发展趋势9.1 集成电路技术的发展介绍集成电路技术的起源和发展历程解释集成电路技术对数字电路发展的影响9.2 数字电路设计方法的创新介绍数字电路设计方法的创新,包括硬件描述语言、可编程逻辑器件等解释这些创新方法在数字电路设计中的应用和优势9.3 未来数字电路技术的发展方向探讨未来数字电路技术的发展趋势和潜在应用领域分析未来数字电路技术可能面临的挑战和机遇第十章:数字电路实验与实践10.1 数字电路实验概述介绍数字电路实验的目的和重要性解释数字电路实验的基本步骤和注意事项10.2 实验项目设计与实践提供一系列数字电路实验项目,包括实验目的、电路图设计和实验步骤解释实验过程中需要注意的问题和解决方法解释实验报告的评价方法和改进建议第十一章:数字电路与系统的可靠性分析11.1 可靠性基本概念介绍可靠性的定义和衡量指标,如失效率、平均失效间隔时间(MTBF)等解释可靠性在数字电路设计中的重要性11.2 数字电路可靠性分析分析影响数字电路可靠性的因素,如元件特性、电路结构、环境条件等解释如何通过设计提高数字电路的可靠性11.3 系统级可靠性分析介绍系统级可靠性分析的概念和方法解释冗余设计、容错技术等提高系统级可靠性的策略第十二章:数字电路的抗干扰设计12.1 干扰源和干扰类型介绍数字电路中常见的干扰源和干扰类型,如电磁干扰(EMI)、射频干扰(RFI)等解释干扰对数字电路性能的影响12.2 抗干扰设计原则介绍抗干扰设计的原则和措施,如屏蔽、接地、滤波等解释如何在数字电路设计中实施这些抗干扰措施12.3 数字电路的抗干扰实例提供数字电路抗干扰设计的实例,包括实际电路图和设计思路解释实例中采用的抗干扰技术和方法第十三章:数字电路的绿色设计与环保13.1 绿色设计的概念介绍绿色设计的定义和重要性解释绿色设计在数字电路领域的应用意义13.2 绿色设计原则与技术介绍绿色设计的原则和关键技术,如低功耗设计、可回收材料使用等解释如何在数字电路设计中实现绿色设计的目标13.3 数字电路的环保影响评估介绍评估数字电路环保影响的方法和指标解释如何通过环境影响评估来优化数字电路的绿色设计第十四章:数字电路技术的标准与规范14.1 数字电路技术标准概述介绍数字电路技术标准的重要性和作用解释常见数字电路技术标准的内容和应用领域14.2 标准化设计与兼容性讨论标准化设计对数字电路技术发展的影响解释标准化设计与兼容性在数字电路中的应用和实践14.3 遵守标准和规范的设计实践提供一个遵循标准和规范的数字电路设计实例解释设计过程中如何遵守相关标准和规范的重要性第十五章:数字电路技术的未来挑战与机遇15.1 技术发展带来的挑战分析数字电路技术发展中面临的挑战,如功耗、性能、安全性等解释这些挑战对数字电路技术的未来影响15.2 新兴技术带来的机遇介绍新兴技术如物联网、等对数字电路技术的推动作用解释这些新兴技术为数字电路技术发展带来的机遇15.3 面向未来的设计理念探讨面向未来的数字电路设计理念,如可持续性、智能化等分析这些设计理念如何指导数字电路技术的未来发展重点和难点解析本文档详细地介绍了《数字电子技术》电子教案,内容涵盖了数字电路的基础知识、逻辑门和逻辑函数、组合逻辑电路、时序逻辑电路、数字电路的设计与仿真、数字电路的测试与维护、数字电路在实际应用中的案例分析、数字电路技术的发展趋势、数字电路实验与实践等十五个章节。
数字电子技术教案第3章 逻辑代数基础
难点:任意项和非完全描述函数。
方法步骤:理论讲授、例题讲解、课堂练习、课堂提问。
器材保障:多媒体电脑、投影仪、扩音设备。
教学内容与时间安排:
首先,在黑板上简单举例说明逻辑函数常见的两种描述方式——真值表、表达式,或者叫做“表现形式”。
一、描述方式之一——真值表
本次课小结:
本次课,首先学习了逻辑函数的两种描述方式——真值表和表达式,在 “表达式描述方式”这一部分内容中,又包括表达式的类型、标准的表达式;然后了解了不同描述方式之间的相互转换的方法;最后学习了非完全描述的逻辑函数和任意项。
至此,本课程的第一部分内容已经结束。对这一部分的知识结构、主要内容及学习要求做一个简单的梳理和总结。
(三) 逻辑关系、逻辑函数与数字电路
通过幻灯片上的表格说明三者之间的一一对应关系。
二、常见的逻辑运算
注意强调逻辑关系、逻辑运算和逻辑门之间的联系;注意指出三种逻辑关系、逻辑运算和逻辑门的特点;再次强调逻辑运算与普通代数运算的区别;三种逻辑运算的优先级不同;要求学生认识逻辑门的三套符号,使用国标符号。
1和0的概念是真与假、高与低、导通与截止等对应。
注意三个域之间的对应:逻辑关系、逻辑运算、逻辑门。
注意总结每种逻辑门的特点。
基本定理是等式证明、公式变换的依据。
三条规则熟练掌握应用。
总结知识点,提示知识预习。
内容
备注
《数字电子技术》课程教案
讲课题目:第05讲 逻辑代数(2) —逻辑函数的描述方式
目的要求:1、掌握逻辑函数的两种描述方式——真值表、表达式;2、理解最小项、最大项和任意项的概念。
前面提到,在逻辑函数的真值表中,自变量的每一组取值组合都代表着一个最大项和最小项。如果自变量的某个取值组合令函数值为1,则这个取值组合所代表的最小项就会出现在函数的最小项表达式中;如果自变量的某个取值组合令函数值为0,则这个取值组合所代表的最大项就会出现在函数的最大项表达式中。
《电子技术基础与技能》教案集成逻辑门电路
《电子技术基础与技能》教案-集成逻辑门电路第一章:集成逻辑门电路概述教学目标:1. 理解集成逻辑门电路的概念和分类。
2. 掌握集成逻辑门电路的基本原理和特性。
3. 能够分析集成逻辑门电路的应用和实际意义。
教学内容:1. 集成逻辑门电路的概念和分类。
2. 集成逻辑门电路的基本原理和特性。
3. 集成逻辑门电路的应用和实际意义。
教学方法:1. 采用讲授法,讲解集成逻辑门电路的概念、分类、原理和特性。
2. 通过举例和实际案例,分析集成逻辑门电路的应用和实际意义。
3. 引导学生进行思考和讨论,提高对集成逻辑门电路的理解和认识。
教学评估:1. 进行课堂问答,检查学生对集成逻辑门电路概念和分类的理解。
2. 布置课后习题,巩固学生对集成逻辑门电路原理和特性的掌握。
3. 组织小组讨论,评估学生对集成逻辑门电路应用和实际意义的理解。
第二章:与门(AND Gate)教学目标:1. 理解与门的概念和功能。
2. 掌握与门的真值表和逻辑表达式。
3. 能够分析与门的应用和实际意义。
教学内容:1. 与门的概念和功能。
2. 与门的真值表和逻辑表达式。
3. 与门的应用和实际意义。
教学方法:1. 采用讲授法,讲解与门的概念和功能。
2. 通过举例和实际案例,分析与门的应用和实际意义。
3. 引导学生进行思考和讨论,提高对与门的真值表和逻辑表达式的理解。
教学评估:1. 进行课堂问答,检查学生对与门概念和功能的理解。
2. 布置课后习题,巩固学生对与门的真值表和逻辑表达式的掌握。
3. 组织小组讨论,评估学生对与门应用和实际意义的理解。
第三章:或门(OR Gate)教学目标:1. 理解或门的概念和功能。
2. 掌握或门的真值表和逻辑表达式。
3. 能够分析或门的应用和实际意义。
教学内容:1. 或门的概念和功能。
2. 或门的真值表和逻辑表达式。
3. 或门的应用和实际意义。
教学方法:1. 采用讲授法,讲解或门的概念和功能。
2. 通过举例和实际案例,分析或门的应用和实际意义。
数字电子技术基础第三章逻辑门电路
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
3.MOS管的开关特性
A、MOS管静态开关特性
在数字电路中,MOS管也是作为 开关元件使用,一般采用增强型的 MOS管组成开关电路,并由栅源电压 uGS控制MOS管的导通和截止。
时间。
toff = ts +tf 关断时间toff:从输入信号负跃变的瞬间,到iC 下降到 0.1ICmax所经历的时间。
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
2.三极管的开关特性
B、晶体三极管动态开关特性
ton和toff一般约在几十纳秒(ns=10-9 s)范围。通常都
有toff > ton,而且ts > tf 。
0 .3V 3 .6V 3 .6V
1V 5V
3 .6V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
3 .6V 3 .6V 3 .6V
2.1V
0 .3V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
数字电子技术基础第三章逻辑门电路
❖ 2.教学重点:不同元器件的静态开关特性,分立元件门电路 和组合门电路,TTL和CMOS集成逻辑门电路基本功能和电气特 性。
❖ 3.教学难点:组合逻辑门电路、TTL和CMOS集成逻辑门4.课时 安排: 第一节 常见元器件的开关特性 第二节 基本逻辑门电路 第三节 TTL和CMOS集成逻辑门电路
电子教案数字电子技术第三章组合逻辑电路XX1
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/28
电子教案数字电子技术第三章组合逻 辑电路XX1
•解:(1)列出真值表:
(2)由真值表写出各输出的逻辑表达式为:
电子教案数字电子技术第三章组合逻 辑电路XX1
• 重新整理 得:
• (3)由表达式 画
• 出逻辑图:
电子教案数字电子技术第三章组合逻 辑电路XX1
• (4)增加控制使能标志GS :
• 当按下S0~ S9
• 任意一个键 时,
• GS=1,表示 有
例4.3.1 试用8选1数据选择器74151实现逻辑函数:
解:将逻辑函数转换成 最小项表达式:
=m3+m5+m6+m7 画出连线图。
电子教案数字子技术第三章组合逻 辑电路XX1
(2)当逻辑函数的变量个数大于数据选择器的地址输入变 量个数时。 例4.3.2 试用4选1数据选择器实现逻辑函数: 解:将A、B接到地址输入端,C加到适当的数据输入端。 作出逻辑函数L的真值表,根据真值表画出连线图。
按内部连接方式不同,七段数字显示器分为共阴极和共阳极两 种。
2.七段显示译码器7448 七段显示译码器7448是一种 与共阴极数字显示器配合 使用的集成译码器。
电子教案数字电子技术第三章组合逻 辑电路XX1
电子教案数字电子技术第三章组合逻 辑电路XX1
•7448的逻辑功能: (1)正常译码显示。LT=1,BI/RBO=1时,对输入为十
如果想用与非门组成半加器,则将上式用代数法变换 成与非形式:
由此画出用与非门组成的半加器。
电子教案数字电子技术第三章组合逻 辑电路XX1
《电子技术基础与技能》教案集成逻辑门电路
《电子技术基础与技能》教案-集成逻辑门电路一、教学目标1. 知识与技能:(1)了解集成逻辑门电路的分类及功能;(2)掌握逻辑门电路的基本原理及应用;(3)学会使用集成逻辑门电路进行简单的逻辑运算。
2. 过程与方法:(1)通过实物观察、实验操作,培养学生的动手能力;(2)运用逻辑门电路解决问题,提高学生的实际应用能力。
3. 情感态度与价值观:(1)培养学生对电子技术的兴趣和好奇心;(2)培养学生团结协作、勇于探索的精神。
二、教学内容1. 集成逻辑门电路的分类及功能(1)与门(AND gate)(2)或门(OR gate)(3)非门(NOT gate)(4)异或门(XOR gate)(5)缓冲器(Buffer)(6)三态门(Three-state gate)2. 逻辑门电路的基本原理(1)逻辑门电路的符号及真值表;(2)逻辑门电路的输入输出关系;(3)逻辑门电路的传输特性。
3. 逻辑门电路的应用(1)逻辑门电路在数字电路中的应用;(2)逻辑门电路在计算机中的应用;(3)逻辑门电路在其他领域的应用。
三、教学重点与难点1. 教学重点:(1)集成逻辑门电路的分类及功能;(2)逻辑门电路的基本原理及应用。
2. 教学难点:(1)逻辑门电路的传输特性;(2)逻辑门电路在计算机中的应用。
四、教学方法1. 实物观察:观察集成逻辑门电路的实物,加深对逻辑门电路的认识;2. 实验操作:动手搭建逻辑门电路,掌握逻辑门电路的工作原理;3. 案例分析:分析逻辑门电路在实际应用中的例子,提高学生的应用能力;4. 小组讨论:分组讨论问题,培养学生的团队合作精神。
五、教学安排1. 课时:2课时(90分钟)2. 教学过程:(1)第1课时:介绍集成逻辑门电路的分类及功能,讲解逻辑门电路的基本原理;(2)第2课时:讲解逻辑门电路的应用,进行实验操作,总结本节课的内容。
六、教学内容4. 逻辑门电路的实验操作(1)搭建与门、或门、非门、异或门等基本逻辑门电路;(2)使用逻辑门电路进行简单的逻辑运算;(3)观察逻辑门电路的传输特性。
数字电子技术基础组合逻辑电路ppt课件
通常数据分配器有一根输入线,n根地址控制线,2n根数据输出线,因此根据输出线的个数也称为2n路数据分配器
用74LS138译码器实现的数据分配器
译码器的三个输入端A2 、A1 、A0作为选择通道用的地址信号输入,八个输出端作为数据输出通道,三个控制端接法如下:
74HC4511引脚图
74HC4511是常用的CMOS七段显示译码器, A3、A2、 A1、A0为输入端,输入8421BCD码,a~g为七段输出,输出高电平有效,可用来驱动共阴极LED数码管。
为测试输入端,低电平有效,当
时a~g输出全为1,用于检查译码器和LED
数码管是否能正常工作。
数据时,可强制将不需要显示的位消去。如四位数码管,某时刻只需显示最低的两位数据,则可以让最高两位数据的
例2
用74LS138实现逻辑函数
。
解:
将函数表达式写成最小项之和
将输入变量A、B、C分别接入输入端,注意高位和低位的接法,使能端接有效电平,由于74LS138输出为反码输出,需要再将F变换一下:
逻辑电路图
注意:使用中规模集成译码器实现逻辑函数时,译码器的输入端个数要和逻辑函数变量的个数相同,并且需要将逻辑函数化成最小项表达式。
3.2.2 组合逻辑电路的设计方法
根据给定的逻辑功能要求,设计出能实现这 个功能要求的逻辑电路。
实现的电路要最简,即所用器件品种最少、数量最少、连线最少。
要求:
(1)根据设计要求确定输入输出变量并逻辑赋 写出真值表。
(2)由真值表写出逻辑函数表达式并化简或转换。
(3)选用合适的器件画出逻辑图。
2.二-十进制译码器
常用的有8421BCD码集成译码器74HC42,
数字电子技术基础:第三章 逻辑门电路
逻辑符号
C
vI /vO
TG
vO /vI
C
C
υo/ υI
2. CMOS传输门电路的工作原理
vI /vO
5V到+5V
C
+5V
TP +5V vO /vI
5V TN
5V
C
设TP:|VTP|=2V, TN:VTN=2V
I的变化范围为-5V到+5V。
c=0=-5V, c =1=+5V
1)当c=0, c =1时 GSN= -5V (-5V到+5V)=(0到-10)V
在由于电路具有互补对称的性质,它的开通时间与关 闭时间是相等的。平均延迟时间:<10 ns。
动态功耗
CMOS反相器的PD与f和 2 VDD
CMOS反相器从一个稳定状态转变到另一个稳定状态时所产生的功耗
PD=PC+PT
分布电容CL充放电引起的功耗: PC CL fVD2D
CMOS管瞬时交替导通引起的功耗:PT CPD fVD2D
74标准系列 74LS系列
74AS系列
74LVC 74VAUC 低(超低)电压 速度更加快 与TTL兼容 负载能力强 抗干扰 功耗低
74ALS
3.1 概述
门电路:实现基本逻辑/复合逻辑运算的单元电路
逻辑状态的描述—— 正逻辑:高电平→1,低电平→0 负逻辑:高电平→0,低电平→1
缺点:功耗较大/速度较慢
VDD VIH(min) I OH(total) I IH(total)
… …
I0H(total) &1
+V DD RP
&
&1
IIH(total) &
《数字电子技术基础》集成逻辑门电路
输出电阻
逻辑门输出端的等效电阻, 影响电路带负载能力和传 输特性。
容抗特性
逻辑门输入输出端对电容 的阻抗特性,影响信号传 输速度和稳定性。
功耗、延迟时间及扇出系数
功耗
逻辑门在工作时的功率消耗,包括静态功耗和动 态功耗。
延迟时间
信号通过逻辑门所需的时间,影响电路的工作速 度。
扇出系数
逻辑门输出端所能驱动的同类型逻辑门输入端的 最大数量,反映逻辑门的带负载能力。
状态转换图设计
根据功能需求,设计状态转换图,明确各状态之间的转换条件和 输出。
时序逻辑电路实现
基于状态转换图,采用集成逻辑门电路实现时序逻辑功能。
可编程逻辑器件应用介绍
PLD器件类型
介绍可编程逻辑器件(PLD)的类型,如PAL、GAL、 CPLD、FPGA等。
PLD编程原理
阐述PLD的编程原理,包括逻辑阵列编程、宏单元编程等。
包括与门、或门、非门等基本 逻辑门电路的功能和实现原理 。
TTL和CMOS集成逻辑门 电路
了解TTL和CMOS电路的特点 、工作原理以及它们在数字电 路中的应用。
逻辑门电路的性能参数
掌握逻辑门电路的主要性能参 数,如传输延迟时间、功耗、 扇出系数等,以便在实际应用 中进行合理选择。
逻辑门电路的扩展与组合
学习如何通过基本逻辑门电路 的组合和扩展来实现更复杂的 逻辑功能。
新型集成逻辑门技术发展趋势
低功耗设计
随着便携式设备和物联网技术的快速发 展,低功耗逻辑门电路设计成为重要趋
势。
纳米级集成技术
随着纳米技术的不断进步,纳米级集 成逻辑门电路在减小体积、提高性能
等方面展现出巨大潜力。
高性能与可靠性
《数字电子技术基础》第3章 门电路
导通
TP vI vO
TN
vo=―1” 截止
vI=1
VDD
截止
T1 vI
vO T2
vo=―0” 导通
静态下,无论vI是高电平还是低电平,T1、T2总有 一个截止,因此CMOS反相器的静态功耗极小。
二、电压传输特性和电流传输特性
T1导通T2截止
电 压 传 输 特 性
T1T2同时导通
T2导通T1截止
噪声电压作用时间越短、电源电压越高,交流噪声容 限越大。
三、动态功耗
反相器从一种稳定状态突然变到另一种稳定状态的过
程中,将产生附加的功耗,即为动态功耗。
动态功耗包括:负载电容充放电所消耗的功率PC和 PMOS、NMOS同时导通所消耗的瞬时导通功耗PT。 在工作频率较高的情况下,CMOS反相器的动态功耗 要比静态功耗大得多,静态功耗可忽略不计。
VNL VIL (max) VOL (max)
测试表明:CMOS电路噪声容限 VNH=VNL=30%VDD,且随VDD的增加而加大。
噪声容限--衡量门电路的抗干扰能力。 噪声容限越大,表明电路抗干扰能力越强。
§3.3.3 CMOS反相器的静态输入输出特性
一、输入特性 因为MOS管的栅极和衬底之间存在着以SiO2 为介质的输入电容,而绝缘介质非常薄,极易被
S1
输 入v I 信 号 输 vo 出 信 号
S2
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的, 流过的电流为零,故电路的功耗非常低,因此在数字 电路中得到广泛的应用
3.1 概述
4. 数字电路的概述 (1)优点: 在数字电路中由于采 用高低电平,并且高低电 平都有一个允许的范围, 如图3.1.1所示,故对元器 件的精度和电源的稳定性 的要求都比模拟电路要低, 抗干扰能力也强。
3 集成逻辑门电路 共151页PPT资料
i
IF O IR
0.1I R
t
tS
t
上页 下页 返回
数字电子技术基础
2. 二极管逻辑电路 (1) 二极管与门
二极管与门电平表
+Vcc R
uIA DA
uIB DB
uO
输入
uIA
uIB
低
低
低
高
高
低
高
高
输出
uO 低 低 低 高
上页 下页 返回
数字电子技术基础
(2) 二极管或门
uIA
DA
DB uIB
+VCC (+5V)
R1 4k
R2 1k
R4 100
T4
A
T1
T2
D
B
T3
F
R3 1k
输入级 中间级 输出级
上页 下页 返回
数字电子技术基础
2. TTL与非门的功能分析 (1) 输入端至少有一 个为低电平(UIL=0.3V) 接低电平的发射结 正向导通。
则T1的基极电位:
UB1=UBE1+UIL =0.7+0.3 =1V
T4
A
T1
T2
D
B
T3
F
R3 1k
输入级 中间级 输出级
上页 下页 返回
数字电子技术基础
(1) 输入级
输入级由多发射极 晶体管T1和基极电组R1 组成,它实现了输入变 量A、B的与运算。
+VCC (+5V)
R1 4k
R2 1k
R4 100
T4
A
T1
T2
D
B
T3
F
R3 1k
数字电子技术-逻辑门电路PPT课件
或非门(NOR Gate)
逻辑符号与真值表
描述或非门的逻辑符号,列出其对应的真值表, 解释不同输入下的输出结果。
逻辑表达式
给出或非门的逻辑表达式,解释其含义和运算规 则。
逻辑功能
阐述或非门实现逻辑或操作后再进行逻辑非的功 能,举例说明其在电路中的应用。
异或门(XOR Gate)
逻辑符号与真值表
01
02
03
Байду номын сангаас
04
1. 根据实验要求搭建逻辑门 电路实验板,并连接好电源和
地。
2. 使用示波器或逻辑分析仪 对输入信号进行测试,记录输
入信号的波形和参数。
3. 将输入信号接入逻辑门电 路的输入端,观察并记录输出
信号的波形和参数。
4. 改变输入信号的参数(如频 率、幅度等),重复步骤3, 观察并记录输出信号的变化情
THANKS
感谢观看
低功耗设计有助于提高电路效率和延长设 备使用寿命,而良好的噪声容限则可以提 高电路的抗干扰能力和稳定性。
扇入扇出系数
扇入系数
指门电路允许同时输入的最多 信号数。
扇出系数
指一个门电路的输出端最多可 以驱动的同类型门电路的输入 端数目。
影响因素
门电路的输入/输出电阻、驱动 能力等。
重要性
扇入扇出系数反映了门电路的驱动 能力和带负载能力,对于复杂数字 系统的设计和分析具有重要意义。
实际应用
举例说明非门在数字电路中的应用, 如反相器、振荡器等。
03
复合逻辑门电路
与非门(NAND Gate)
逻辑符号与真值表
描述与非门的逻辑符号,列出其 对应的真值表,解释不同输入下
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
数字电子技术基础
3.1.3 场效应管的开关特性 1. MOS场效应管(MOSFET)的开关特性 数字电路中普遍采用增强型的MOSFET。 当漏源电压uDS较高时: 栅源电压uGS小于开启电压UT时,MOSFET 处于截止状态,相当于开关断开;
当uGS大于UT,MOSFET工作在变阻状态, 相当于开关接通。
工作原理:
a. 当uI高电平时, 晶体管饱和导通, 输出uO0
b. 当uI低电平时 晶体管截止, 输出uOVCC
反相器电路图
(A) RB1
+ 6.8k
uI
VBB
-
5V
+VCC (+5V)
RC 330
(L)
+
RB2
uo
22k
-
上页 下页 返回
数字电子技术基础
非门电平表 uI BJT工作状态 uO 低 截止 高 高 饱和 低
上页 下页 返回
数字电子技术基础
(2) 动态开关特性 a. 三极管开关电路图
V2
S
RB
2V
+
V1 uI 10k
1V
-
Rc 1k
+
Vcc
uO
5V
-
上页 下页 返回
数字电子技术基础
b. 三极管开关电路波形图
uI V2
a) 开关时间
o V1 ICS iC
0.9ICS
0.1ICS
o VCC uo
延迟时间td ——从uI上跳开始
a. 当u1<UT,T截止
uO=VDD(为高电平)
+
uI
-
b. 当u1为高电平时,T导通。
输出为低电平
+VCC (+5V) RD 3.3k
T+ uo
-
上页 下页 返回
数字电子技术基础
3.2 TTL集成逻辑门
上页 下页 返回
数字电子技术基础
MOSFET的开关模型
d
uGS < UT
截止状态
g
d
u+_GS
s
s
g
b
变阻状态
s
uGS > UT
g s u+_GS
d s
MOS场效应管的开关速度往往比双极型管低,
但随着工艺的改进,集成CMOS电路的速度已和
TTL电路不差上下。
上页 下页 返回
数字电子技术基础
2. MOS管开关电路 电阻负载反相器电路
数字电子技术基础
3 集成逻辑门电路
3.1 二、三极管开关特性 3.2 TTL集成逻辑门 3.3 CMOS集成门电路 3.4 逻辑门电路使用中的几个实际问题
上页 下页 返回
数字电子技术基础
3.1 二、三极管开关特性
3.1.1 二极管的开关特性
1. 二极管的开关特性 二极管最重要的特性是单向导电性,即正向导
uD
O
-
k
上页 下页 返回
数字电子技术基础
iD u
u UF
R
O
t1
t
UR
i
ts—存储时间
IF
tt—渡越时间,反向恢复时间。 O
IR
tre=ts+tt — 反向恢复时间
0.1I R
t
tS
t
上页 下页 返回
数字电子技术基础
二极管的实际开关特性:
u UF
O
t1
t
开关时间: 一般为几十到 UR
几百纳秒。
开关时间越短,开关速度也就越高。 b) 影响开关时间的因素
管子的结构工艺,外加输入电压的极性及大小 。
c) 提高开关速度的途径 制造开关时间较小的管子;设计合理的外电路。
上页 下页 返回
数字电子技术基础
通常toff > ton、ts > tf。因此控制三极管的饱和深度,减小ts 是缩短开关时间、提高开关速度的一个主要途径。
给三极管的集电结并联 一个肖特基二极管(高速、 低压降),可以限制三极管 的饱和深度,从而使开断 时间大大缩短。
将三极管和肖特基二极管制 作在一起,构成肖特基晶体管, 可以提高电路的开关速度。
(a) 电路图; (b) 电路符号 上页 下页 返回
数字电子技术基础
2. 晶体管逻辑电路 (1) 反相器(非门)
到iC上升到0.1ICS所需要的时间。 o
ton
t
t
toff
t
上页 下页 返回
数字电子技术基础
uI V2
上升时间tr ——iC从0.1ICS上升 到0.9ICS的时间。
o V1 ICS iC
0.9ICS
0.1ICS
o VCC uo
接通时间ton ——td与tr之和。
o
ton
t
t
toff
t
上页 下页 返回
二极管或门电平表
输入
uIA
uIB
低
低
低
高
高
低
高
高
输出
uO 低 高 高 高
上页 下页 返回
数字电子技术基础
3.1.2 三极管的开关特性 1. 动态开关特性 (1) 静态开关特性
如果三极管只工作在截止状态,管子截止相当 于开关断开。
如果三极管只工作在饱和状态,管子饱和相 当于开关接通。
三极管这种在外加电压作用下,截止和饱和后 的稳态模型,它反映了三极管的静态开关特性。
反相器的输出与 输入关系可表示为
反相器电路图
(A) RB1
+ 6.8k
uI
VBB
-
5V
+VCC (+5V)
RC 330
(L)
+
RB2
uo
22k
-
上页 下页 返回
数字电子技术基础
(2) 与非门
将二极管与门和晶体管非门复合在一 起可构成与非门。
与非门逻辑图
A B
&
1
L
A B
L AB
&
上页 下页 返回
通,反向截止。
二极管相当于一个受电压控制的开关。
上页 下页 返回
数字电子技术基础
二极管的模型
恒压模型
理想模型
iD a
iD
+
a
iD
iD
+
uD
_
UO
O UO uD
uD
-
O
k
忽略导通电压
k
上页 下页 返回
数字电子技术基础
理想二极管的开关特性:
理想模型
a
开关接通时,电阻为零;
iD
iD
断开时,电阻为无穷大。 +
数字电子技术基础
+Vcc
uIA DA
uIB DB
反相器电路图
R
(A) RB1
+ 6.8k
uI
VBB
-
5V
+VCC (+5V)
RC 330
(L)
+
RB2
uo
22k
-
上页 下页 返回
数字电子技术基础
(3) 或非门
同理,可将二极管或门和非门复合在一起 可构成或非门。
或非门逻辑图
A B
1
1
L
B
L AB
i
IF O
0.1I R
t
IR
tS
t
上页 下页 返回
数字电子技术基础
2. 二极管逻辑电路 (1) 二极管与门
+Vcc R
uIA DA
uIB DB
uO
二极管与门电平表
输入
uIA
uIB
低
低
低
高
高
低
高
高
输出
uO 低 低 低 高
上页 下页 返回
数字电子技术基础
(2) 二极管或门
uIA
DA
DB uIB
uO R
数字电子技术基础
uI V2
o
V1 ICS iC
0.9ICS
存储时间tS——iC从ICS下降到
0.1ICS
o
0.9ICS的时间。
VCC uo
下降时间tf——iC从0.9ICS下降到
0.1ICS的时间。
o
关断时间toff ——ts与tf之和。
上页
ton
下页
t
t
toff
t
返回
数字电子技术基础
开关时间——三极管的接通时间ton、关断时间toff, 统称为开关时间。