高分子材料加工工艺学加工工艺第七章
第七章 有机高分子化合物及高分子材料
(2) 热固性塑料 线型结构高聚物,在固化剂的作用成
型,后就转化为网状结构。冷却后就不 会再软化。例如:酚醛树脂、环氧塑料等。
2、按使用情况分为: (1) 通用塑料 指产量大,用途广,价格低,一般只能 作为非结构材料使用的一类塑料。
氨基
PE
PVC
通常指聚乙烯(PE)、聚丙烯(PP)、
聚氯乙烯(PVC)、聚苯乙烯(PS)、
网,飞行服,运输 带,降落伞,袜子。
尼龙66
2、聚酯纤维(涤纶 的确良)
结构: 特点:极性分子,分子间力
大,强度高,柔顺性 差“挺拔不皱”,耐 热性好耐水,耐磨。 用途:衣料,薄膜,渔网, 救生圈,绝缘材料。
3 、聚丙烯腈纤维(腈纶、人造羊毛)
结构式:
CH2 CH CN n
性能:
具有弹性,软化温度高。吸水率低, 不适宜作贴身内衣。缺点是强度不如尼龙和涤纶
酚醛塑料和氨基塑料等6个品种,产量占 全部塑料的大多数。
PP
酚醛
PS
(2) 工程塑料 指机械性能较好,可以代替金属,可以 作为结构材料使用的一类塑料。例如聚酰 胺(尼龙)、聚碳酸酯、聚甲醛、聚砜、 聚酯、聚苯醚、氟塑料、环氧树脂等。
尼龙
POM
氟塑料换热器
聚甲醛
一、聚甲醛学名聚氧亚甲基,英文名Polyformaldehyde, Polyoxymethylene,简称POM。
性能:
CH2
CH
y
n
CN
耐油性好,拉伸强度大,耐热性好;缺点是电绝缘性、耐寒 性差,塑性低、难加工
用途: 用作机械上的垫圈以及制备收音机和汽车等需要耐油的零件
4、硅橡胶
结构式:
CH3 Si O
性能:
第七章 成型物料的配制-高分子基础概论-北京化工大学-刘颖,信春玲课件
聚四氟乙烯( PTFE):
2) 性质: 出色的耐热、耐寒能力(-180~+260℃长期使 用);摩擦系数极低,有自润滑效果;化学稳定性 极佳,俗称“塑料王”;极好的电绝缘性和介电性; 但强度低,抗蠕变性较差,尺寸稳定性差,不易加 工成型。
39
3)应用: 主要用于轴承、垫圈等自润滑材料及密封 材料;高温电缆绝缘材料、电器元件;化工管 道及零件;不粘锅涂层,医用材料等。
50
聚氨酯( PU-polyurethane ):
3)应用:
聚氨酯弹性体用作滚筒、传送带、软管、汽车零件、鞋 底、合成皮革、纤维、电线电缆和医用人工脏器等; 交联热固性PU可制作软质泡沫体用于车辆、居室 、服 装的衬垫 ,硬质泡沫体用作隔热 、吸音、包装、绝缘 以及低发泡合成木材; 涂料用于高级车辆、家具、木和金属防护,水池水坝和 建筑防渗漏材料,以及织物涂层等。 胶粘剂对金属、玻璃、陶瓷、皮革、纤维等都有良好的 粘着力。此外聚氨酯还可制成乳液、磁性材料等。
零件,医用材料
16
聚丙烯( PP-polypropylene)):
——CH2—CH—— [ ] │ CH3
1) 结构单元:
无毒、无嗅、半透明蜡状固体,等规 立构结晶性材料,结晶度及结晶结构会影 响其力学性能及透明度。 分子极性比聚乙烯大。
17
2)性质:
密度小(0.90左右),吸水性低。 力学性能(强度、模量等)高于聚乙烯,但室温 及低温冲击性差,耐寒性差。 耐热性高,熔点为165~170℃,制品可在 100℃以上进行消毒灭菌。 粘度低,好加工。 化学稳定性好,耐浓度低的酸碱,但不耐芳香族 和氯化烃溶剂。 介电常数较高,可用作受热电气绝缘件,介电强 度较高,适用作电器零件。 耐紫外线和耐候性不好,需加入稳定剂。 18 易燃烧。
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC 聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
第七章-高分子材料、陶瓷材料和复合材料
§ 7.1 高分子材料
高聚物的聚集态结构决定了它的性能。由于晶态结构中,分子链规 则而紧密排列,分子间作用力大,链运动困难,所以高聚物的强度、 刚度、密度、熔点等都随着结晶度的增加而提高,而一些依赖链活动 的性能指标,如弹性、韧性、伸长率等则随着结晶度增加而降低。
四、高聚物的物理状态
上一页 下一页
§ 7.1 高分子材料
因此通过改变分子链的组成,可形成多种性能不同的高聚物材料。 2.大分子链的形状 大分子链的几何形状有线型、支化型和网型(体型或交联型)。
线型分子链各链节以共价键连接成线型长链,像一根长线,通常 卷曲成不规则的线圈状态或团状。如图7-1(a)所示。支化型分 子链在线型大分子主链的两侧有许多长短不一的小支链如图71(b)所示。网型分子链的大分子链之间通过支链或化学键连接 成一个三维空间的网状大分子。如图7-1(c)所示。
3.粘流态 当温度升高到粘流化温度Tf时,大分子链可以自由运动,高聚物成 为流动的钻液,这种状态叫粘流态。
上一页 下一页
§ 7.1 高分子材料
粘流态是高聚物成型加工的工艺状态。由单体聚合生成的高聚物原料一般 为粉末状、颗粒状或块状,将高聚物原料加热至粘流态后,通过喷丝、吹塑、 挤压、模铸等方法,加工成各种形状的零件、型材或纤维等。粘流态也是有 机胶粘剂的工作状态。 五、常用的高聚物
③增塑剂增塑剂用来增加树脂的可塑性、柔软性、流动性,降低 脆性,改善加工工艺性能。
上一页 下一页
§ 7.1 高分子材料
增塑剂与树脂的混溶性要好,同时,要具有无毒无害、无臭无色、不 易燃烧、不易挥发、成本低等特点。常用的增塑剂有磷酸醋类化合物、 甲酸醋类化合物、氯化石蜡等。
④稳定剂稳定剂可增强塑料对光、热、氧等的抗老化能力,延长 塑料制品的使用寿命。常用的稳定剂有硬脂酸盐、炭黑、铅的化合物、 环氧化合物等。
高分子材料成型加工(考试重点及部分习题答案)
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
高分子材料制备技术作业指导书
高分子材料制备技术作业指导书第1章引言 (4)1.1 高分子材料概述 (4)1.2 制备技术简介 (4)第2章高分子合成基本原理 (5)2.1 高分子合成方法 (5)2.1.1 加聚反应 (5)2.1.2 缩聚反应 (5)2.1.3 模板聚合 (5)2.1.4 原子转移自由基聚合 (5)2.2 高分子聚合反应 (5)2.2.1 自由基聚合 (5)2.2.2 离子聚合 (6)2.2.3 配位聚合 (6)2.2.4 缩聚反应 (6)2.3 高分子结构及其功能 (6)2.3.1 高分子链结构 (6)2.3.2 高分子结晶性 (6)2.3.3 高分子取向 (6)2.3.4 高分子复合材料 (6)2.3.5 高分子功能材料 (6)第3章均相聚合反应 (7)3.1 溶液聚合 (7)3.1.1 原理 (7)3.1.2 操作步骤 (7)3.1.3 注意事项 (7)3.2 乳液聚合 (7)3.2.1 原理 (7)3.2.2 操作步骤 (7)3.2.3 注意事项 (7)3.3 悬浮聚合 (7)3.3.1 原理 (8)3.3.2 操作步骤 (8)3.3.3 注意事项 (8)第4章非均相聚合反应 (8)4.1 本体聚合 (8)4.1.1 概述 (8)4.1.2 基本原理 (8)4.1.3 实验操作 (8)4.2 熔融聚合 (8)4.2.1 概述 (8)4.2.2 基本原理 (9)4.3 水相聚合 (9)4.3.1 概述 (9)4.3.2 基本原理 (9)4.3.3 实验操作 (9)第5章高分子材料添加剂 (9)5.1 稳定剂 (9)5.1.1 光稳定剂 (9)5.1.2 热稳定剂 (10)5.1.3 抗氧化剂 (10)5.2 填充剂 (10)5.2.1 无机填充剂 (10)5.2.2 有机填充剂 (10)5.3 润滑剂 (10)5.3.1 外润滑剂 (10)5.3.2 内润滑剂 (10)5.4 阻燃剂 (10)5.4.1 无机阻燃剂 (10)5.4.2 有机阻燃剂 (11)第6章热塑性高分子材料制备 (11)6.1 热塑性塑料概述 (11)6.2 聚乙烯制备 (11)6.2.1 制备方法 (11)6.2.2 工艺流程 (11)6.2.3 影响因素 (11)6.3 聚丙烯制备 (11)6.3.1 制备方法 (12)6.3.2 工艺流程 (12)6.3.3 影响因素 (12)6.4 聚氯乙烯制备 (12)6.4.1 制备方法 (12)6.4.2 工艺流程 (12)6.4.3 影响因素 (12)第7章热固性高分子材料制备 (13)7.1 热固性塑料概述 (13)7.2 酚醛树脂制备 (13)7.2.1 原料选择与配比 (13)7.2.2 缩合反应 (13)7.2.3 凝胶化与固化 (13)7.2.4 后处理 (13)7.3 环氧树脂制备 (13)7.3.1 原料选择与配比 (13)7.3.2 开环聚合 (13)7.3.3 固化 (14)7.4 不饱和聚酯树脂制备 (14)7.4.1 原料选择与配比 (14)7.4.2 酯化反应 (14)7.4.3 固化 (14)7.4.4 后处理 (14)第8章橡胶材料制备 (14)8.1 天然橡胶 (14)8.1.1 橡胶树种植与采集 (14)8.1.2 天然橡胶的制备 (14)8.1.3 天然橡胶的性质与应用 (14)8.2 合成橡胶 (14)8.2.1 丁苯橡胶 (14)8.2.2 顺丁橡胶 (15)8.2.3 丁腈橡胶 (15)8.2.4 氯丁橡胶 (15)8.3 硫化橡胶 (15)8.3.1 硫化橡胶的制备原理 (15)8.3.2 硫化橡胶的配方设计 (15)8.3.3 硫化橡胶的功能评价 (15)8.3.4 硫化橡胶的应用 (15)8.4 特种橡胶 (15)8.4.1 硅橡胶 (15)8.4.2 氟橡胶 (15)8.4.3 聚氨酯橡胶 (15)8.4.4 氯磺化聚乙烯橡胶 (15)8.4.5 热塑性弹性体橡胶 (15)第9章复合材料制备 (15)9.1 复合材料概述 (16)9.2 纤维增强复合材料 (16)9.2.1 纤维的选择 (16)9.2.2 基体材料 (16)9.2.3 制备工艺 (16)9.3 层状复合材料 (16)9.3.1 层状复合材料的结构 (16)9.3.2 制备工艺 (16)9.4 颗粒增强复合材料 (17)9.4.1 颗粒的选择 (17)9.4.2 制备工艺 (17)第10章功能性高分子材料制备 (17)10.1 功能性高分子概述 (17)10.1.1 功能性高分子的定义与分类 (17)10.1.2 功能性高分子的基本性质与特点 (17)10.1.3 功能性高分子的应用领域 (17)10.2.1 导电高分子材料的类型与结构 (17)10.2.2 导电高分子材料的制备方法 (17)10.2.3 导电高分子材料的应用实例 (17)10.3 磁性高分子材料 (17)10.3.1 磁性高分子材料的结构与分类 (18)10.3.2 磁性高分子材料的制备技术 (18)10.3.3 磁性高分子材料的应用研究 (18)10.4 光学活性高分子材料 (18)10.4.1 光学活性高分子材料的特性与分类 (18)10.4.2 光学活性高分子材料的制备方法 (18)10.4.3 光学活性高分子材料的应用领域 (18)10.5 生物医用高分子材料 (18)10.5.1 生物医用高分子材料的特性与要求 (18)10.5.2 生物医用高分子材料的分类与选用 (18)10.5.3 生物医用高分子材料的制备与加工技术 (18)10.5.4 生物医用高分子材料的应用实例 (18)第1章引言1.1 高分子材料概述高分子材料是一类由相对分子质量较高的化合物构成的材料,具有独特的物理、化学及生物学功能。
《高分子材料成形工艺学》各章复习思考题汇总
绪论1.简述塑料、化学纤维和橡胶的分类和主要品种。
2.简述塑料、化学纤维和橡胶所涉及的主要特异性品质指标名称。
3.简要说明化学纤维的线密度和相对强度概念。
4.简述超细纤维的特点和复合纺丝制造方法。
5.简要说明高分子材料成形基本过程和成形过程中的变化。
6.成形制品时选择材料及其成形工艺应遵循哪些基本原则?并简要说明。
第一篇高分子成形基础理论第一章高分子材料的成形品质1. 高分子的可挤出性受哪些因素的影响?通常如何评价高分子的可挤出性?2. 挤出细流类型有哪些类型?什么类型是正常纺丝的细流类型?如何实现?3. 可纺性与哪些因素相关?如何相关?4. 可纺性理论包括哪两种断裂机理?请简要说明。
5. 什么是模塑性?试画图并说明高分子的最佳模塑区域。
6. 评价模塑性通常采用什么方法?请简要说明方法原理。
7. 聚合物的拉伸曲线有哪三种基本类型?哪两种拉伸曲线具有可延性?如何获得该两种拉伸曲线?8. 什么是可延性?高分子为什么具有可延性?如何评价可延性?9. 可延性的影响因素有哪些?如何影响?10. 试分析高分子成形过程中应如何对待高分子的粘弹性。
11. 试说明高分子成形过程中应如何利用高分子的松弛特性?12. 高分子应变硬化的物理基础是什么?高分子成形中哪些工艺利用了应变硬化?13. 合成纤维的成形中经常采用多级拉伸,试问有什么意义?多级拉伸应如何实施?14. 高分子的热膨胀系数随温度的变化表现出什么样的规律?15. 简要说明高分子比热容随温度的变化关系?16. 为什么非晶聚合物的导热系数随温度的变化规律在玻璃态和高弹态不同?第二章高分子成形流变学基础1. 区别三组概念:①剪切流动和拉伸流动;②稳态流动与非稳态流动;③等温流动与非等温流动。
2. 非牛顿流体有几种类型?分别表现出怎样的流动行为?3. 高分子流体在宽剪切速率范围内为什么往往会出现第一牛顿区、非牛顿区和第二牛顿区三个区域的流变特征?4. 什么是宾汉流体?有什么样的流动特征?为什么表现出那样的流动特征?5. 什么是幂律方程?幂律方程的K 和n 有什么特征?6. 时间依赖性流体有哪两种?它们为什么会出现时间依赖性?7. 测得一种热塑性聚合物熔体在注射成形条件下的流体稠度K=64,n=0.65,该熔体通过直径4mm 、长75mm 圆形等截面喷孔时的体积流率为5×10-5m 3·s -1,试计算管壁处的剪应力、剪切速率和整个圆管中的流速分布函数。
高分子材料加工工艺学
高分子材料加工工艺学
高分子材料加工工艺学是研究原材料加工和性能改善的一种材料加工技术。
它主要涉及的内容:第一是研究复合材料的成型工艺,如热压、挤压、拉伸、挤出等方法用于生产复合材料和复合部件;第二是制备高分子复合材料,如高分子溶液、聚合物增强等方法;第三是研究高分子添加剂,根据高分子材料的应用特点裁定相应的添加剂;第四是研究高分子材料塑料加工和制造技术,探讨不同的工艺、装备和工艺条件之间的关联;最后是研究热塑性高分子模压成型工艺中的因素变化,如模具的准备、模具的设计、模流特征和模具温度等。
上述是高分子材料加工工艺学的主要内容。
从加工工艺方面来看,研究包括热塑性高分子成型和复合材料的成型工艺,其中复合成型包括热压、挤压、拉伸、挤出等技术;从材料配比方面来看,研究包括添加剂的种类、量和混合比例;从设备配置方面来看,研究包括机械设备、电气设备、热力学设备及气体控制系统等设备的搭配。
另外,高分子材料加工工艺学还运用了计算机技术对材料成型过程中的原料,工艺参数和工件状态进行模拟和优化,进而提高材料制备过程中的控制手段及生产效率。
第七章 水射流加工
7.2
数控射流加工设备
数控射流加工设备俗称“水刀”,其主要组 成 部分有增压器、喷嘴、管路系统、执行机构、 控制系统等。 一、机床运动 二、射流加工设备的液压原理 三、增压器 四、喷嘴 五、管路系统 六、工作介质
三、增压器
增压器用来提高水压,是水刀的设备的核心。 其多采用往复式,主要由活塞、液压油缸和 高压水缸组成。活塞由大、小两部分组成,靠油压 作用在大活塞上使活塞运动,小活塞则完成对水的 的增压工作。 P出水=A大/A小XP油
7.3射流加工的主要工艺指标
一、切割速度、厚度及其影响因素 工作介质:有磨料的切割力高于纯水射 流。 射流压力:提高该项,有利于提高切割 厚度和速度,但增加设备的 成本。 合适的靶距可获得最大的切割速度。
二、加工精度及其影响因素
工件切割形状及尺寸精度主要受喷嘴运动轨 迹精度及喷嘴内径直径的影响。喷嘴运动轨迹由 CNC数控系统控制。喷嘴内径直径越小,加工精 度越高。 切边质量受材料性质的影响很大。软质材料 可获得光滑表面,塑形好的材料可以切出高质量 的切边,对于复合材料易引起材料离层或起鳞, 切割较大厚度工件时,断面质量随切割深度发生 变化。
电子枪系统
聚焦系统
抽真 空系 统
电子束
工件 电源 及控 制系 统
的材料达到几千摄氏度, 致使材料局部熔化或蒸 发,来去除材料。
电子束加工原理
作业:P112 2、3;电子束加工原理
二、射流加工的分类 根据射流介质的不同,分为纯水射流加工、磨 料水射流加工和聚合物水射流加工3类。 1、纯水射流加工 使用工业用水作为工作介 质。因切割力较小,用于切割软质材料,如纸、 橡胶、塑料、毛毯、玻璃钢、石棉板、木材和 纤维制品等。
水刀切割汽车地毯
电子教案与课件:《高分子材料概论》 第七章 聚合物共混物
第七章 7.2 聚合物共混物的相容性
7.2.1基本概念 相容性是聚合物共混体系的最重要特性。共混过程实施的难易、共混物的形态与性能,都与共混组分之间的相容性 密切相关。聚合物的共混物的相容性(compatibility)起源于乳液体系各组分相容的概念,是指共混物各组分彼此相互 容纳、形成宏观均匀材料的能力。不同聚合物对之间相互容纳的能力,有着很大差别。聚合物之间的互溶性 (miscibility)亦称混溶性,与低分子物中溶解度(solubility)相对应,是指聚合物之间热力学上的相互溶解性。热力 学混溶性是指在任意比例时都能形成均相体系的能力。早期的共混理论研究发现,可以满足热力学相容的聚合物配对, 实际上相当少。此后,研究者不再局限于热力学相容体系,研究内容包括相分离行为和部分相容两相体系的相界面特性
第七章 7.2 聚合物共混物的相容性
7.2.5 相容性研究方法 研究聚合物之间相容性的方法很多。前面已述及以热力学为基础的溶解度参数(δ)及Huggins—Flory相互作用参数 χ12来判断互溶性。除热力学方法外,还可用玻璃化转变温度(Tg)法、平衡熔点法、聚合物相图、红外光谱法、电镜 法、界面层厚度法、界面张力测定法、共混物薄膜透明度测定法、共同溶剂法、粘度法等来研究聚合物共混物的相容性。 7.2.5.1 玻璃化转变温度法测定聚合物-聚合物的互溶性 7.2.5.2 平衡熔点法 7.2.5.3 浊点法
第七章 7.4 聚合物共混物的性能
7.4.4 流变性能 聚合物共混物的熔体粘度一般都与混合法则有很大的偏离,常有以下几种情况。 (1)小比例共混就产生较大的粘度下降,例如聚丙烯与聚(苯乙烯-甲基丙烯酸四甲基哌啶醇酯)(PDS)共混物和 EPDM与聚氟弹性体Viton共混物的情况。 (2)由于两相的相互影响及相的转变,当共混比例改变时,共混物熔体粘度可能出现极大值或极小值。 (3)共混物熔体粘度与组成的关系受剪切应力大小的影响。 (4)单相连续的共混物熔体,例如橡胶增韧塑料熔体,在流动过程中会产生明显的径向迁移作用,即橡胶颗粒由器 壁向中心轴方向迁移,结果产生了橡胶颗粒从器壁向中心轴的浓度梯度。一般而言,颗粒越大、剪切速率越高,这种迁 移现象就越明显,这会造成制品内部的分层作用,从而影响制品的强度。
高分子材料加工工艺
汇报人:
日期:
CATALOGUE
目 录
• 高分子材料概述 • 高分子材料加工工艺概述 • 挤出成型工艺 • 注塑成型工艺 • 压延成型工艺 • 高分子材料加工工艺的发展趋势
和挑战
01
CATALOGUE
高分子材料概述
高分子材料的定义
高分子材料是指由大量重复单元组成的材料,通常由相对分子质量大于10000的 化合物组成。
高分子材料具有相对分子质量高、分子链长、分子结构多样性和材料性能可调等 特点。
高分子材料的分类
根据来源,高分子材料可分为天然高分子材料和合成高分子 材料。
天然高分子材料包括纤维素、淀粉、蛋白质等,而合成高分 子材料则包括塑料、橡胶、纤维等。
高分子材料的应用
高分子材料在日常生活中有着广泛的应用,如家具、建筑 材料、汽车、电子设备等。
将高分子材料加热至熔点以上, 使其成为熔融状态,然后通过压 延设备中的口型或模具进行成型 。
冷却阶段
将已经成型的材料进行冷却,使 其从熔融状态逐渐冷却固化,最 后得到具有特定形状和性能的高 分子材料制品。
压延成型工艺的应用
塑料薄膜
压延成型工艺是制造塑料薄膜最 常用的方法之一,如聚乙烯、聚 丙烯、聚氯乙烯等塑料薄膜均可
01
02
03
材料性能的限制
高分子材料的性能与金属 和无机材料相比仍有较大 差距,需要进一步提高。
加工温度的限制
高分子材料的加工需要高 温环境,这增加了能源消 耗和环境污染。
复合材料的加工
实现不同性质材料的均匀 混合和稳定加工,提高复 合材料的性能。
未来发展的展望
新材料的研发
开发出具有优异性能的高 分子材料,满足各种领域 的需求。
《高分子材料加工工艺》复习资料习题答案
高分子材料加工工艺第一章绪论1.材料的四要素是什么?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。
2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。
答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。
工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。
但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。
热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。
热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。
3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。
(1)质轻。
(2)拉伸强度和拉伸模量较低,韧性较优良。
(3)传热系数小,可用作优良的绝热材料。
(4)电气绝缘性优良。
(5)成型加工性优良。
(6)减震、消音性能良好。
(7)某些塑料具有优良的减磨、耐磨和自润滑性能。
(8)耐腐蚀性能优良。
(9)透光性良好可作透明或半透明材料。
(10)着色性良好。
(11)可赋予各种特殊的功能如透气性、难燃性、粘结性、离子交换性、生物降解性以及光、热、电、磁等各种特殊性能。
(12)使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。
(13)热膨胀系数大。
(14)耐热性(熔点、玻璃化转变温度)较低,使用温度不高。
(15)易燃烧。
4.获取高分子的手段有那些?答:高分子化合物的制造:获取高分子化合物的方法大致可分为三种;聚合反应、利用高分子反向和复合化。
高分子材料加工工艺
高分子材料加工工艺第九章压延成型教学目的:掌握压延成型的定义,主要成型对象及在各领域中的应用;压延成型的工序及各设备;压延机的组成及结构;压延成型的原理;压延成型的工艺及操作工艺;影响压延制品性能的因素;橡胶制品的压延工艺。
重点内容:压延成型的原理、压延成型的工艺及影响压延制品性能的因素。
难点内容:压延成型的原理。
熟悉内容:压延成型工艺的适用范围及应用领域;压延成型工艺的设备。
主要英文词汇:calendering----压延Calendered film---压延薄膜calender----压延机roll—辊筒plasticizing ---塑化film---薄膜sheet---片状embossed film---压化薄膜embossed sheet---压花片材参考教材或资料:1、《高分子材料成型加工》,周达飞,唐颂超主编,中国轻工业出版社,2005年第2版。
2、《橡胶及塑料加工工艺》,张海,赵素合主编,化学工业出版社,1997年第1版。
3、《高分子材料加工工艺》讲义,青岛科技大学印刷厂,2000年。
压延成型是生产高分子材料薄膜和片材的主要方法,它是将接近粘流温度的物料通过一系列相向旋转着的平行辊筒的间隙,使其受到挤压和延展作用,成为具有一定厚度和宽度的薄片状制品。
压延成型与前面的模压成型、挤出成型、注射成型并列为四大高分子材料加工方法。
压延成型广泛应用于橡胶和热塑性塑料的成型加工中。
橡胶的压延是橡胶制品生产的基本工艺过程之一,是制成胶片或与骨架材料制成胶布半成品的工艺过程,它包括压片、压型、贴胶和擦胶等作业。
塑料的压延成型主要适用于热塑性塑料,其中以非晶型的聚氯乙烯及其共聚物最多,其次是ABS,乙烯-醋酸乙烯共聚物以及改性聚苯乙烯等塑料,近年来也有压延聚丙烯、聚乙烯等结晶型塑料。
压延成型产品除了薄膜和片材外,还有人造革和其他涂层制品。
塑料压延成型一般适用于生产厚度为0.05~0.5mm的软质PVC薄膜和厚度为0.3~1.00mm的硬质PVC片材。
《高分子材料成型加工》课后习题参考答案
绪论习题与思考题 (1)第一章习题与思考题 (3)第四章习题与思考题 (5)第五章习题与思考题 (6)第六章习题与思考题 (9)第七章习题与思考题 (15)第八章习题与思考题 (17)第九章习题与思考题 (20)第十章习题与思考题 (22)绪论习题与思考题2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有:PE,PP,PVC,PS等;工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。
工程塑料有:PA,PET,PBT,POM等;工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。
日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。
热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。
(热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程是物理变化;)热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
(热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。
)酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料,都是热固性塑料。
高分子材料加工工艺(山东联盟)智慧树知到答案章节测试2023年青岛科技大学
绪论单元测试1.人类文明发展的三个阶段:黄色文明(农业文明)、黑色文明(工业文明)和绿色文明(生态生产文明)。
A:错B:对答案:B2.高分子材料的成型加工中,要注意:加工方法不同,产品性能不同;材料不同,加工方法不同;加工方法不同,所用设备不同。
A:对B:错答案:A3.高分子材料是一类古老而年轻的材料,说起古老,是指使用方面,从远古时期,人类就已经学会使用天然高分子材料,如存在于自然界的树脂、橡胶、皮毛、蚕丝、棉花、纤维素、木材等。
A:错B:对答案:B4.材料是一个国家科学技术水平、经济发展水平和人民生活水平的重要标志,是一个时代的重要标志。
A:对B:错答案:A5.高分子材料科学与工程是关于高分子材料组成、结构、制备工艺与其性能及使用过程间相互关系的知识开发及应用的科学。
A:错B:对答案:B第一章测试1.通常氧化、臭氧化、水解等反应并存也不会引起高分子材料的降解断裂。
A:错B:对答案:A2.范德华力和氢键是高分子分子间的作用力是不大的,因此对高分子制品的强度和耐热性影响也不大。
A:对B:错答案:B3.由碳-氧、碳-氮、碳-硫等以共价键相联结而成,主要由缩聚反应或开环聚合制得;虽然分子中含有极性基团,但是加工时候,不需要彻底干燥。
B:对答案:A4.通常来说,未硫化的橡胶也是有着很大的实用价值的。
A:对B:错答案:B5.氯丁橡胶含有氯,极性大,耐老化、耐油,同时与顺丁橡胶相比,耐寒性也没有下降。
A:对B:错答案:B第二章测试1.添加配合剂的目的主要是满足性能上的要求;满足成型上的要求;满足经济上的要求。
A:错B:对答案:B2.热稳定剂并不是主要用于PVC塑料中。
A:对B:错答案:B3.抗氧剂是指可抑制或延缓高分子自动氧化速度,延长其使用寿命物质。
在橡胶工业中抗氧剂也被称为防老剂。
A:错B:对答案:B4.所有波段的紫外光线都是导致高分子材料降解的罪魁祸首。
A:错B:对答案:A5.对于特定的一种润滑剂,其作用只可能是内润滑或者外润滑。
高分子材料加工工艺学
高分子材料加工工艺学高分子材料加工工艺学是研究各种高分子材料的加工工艺及其加工和性能关系的一门课程。
它是现代高分子材料科学与工程、机械工程的一门重要学科,与塑料机械、纤维机械和橡胶机械的研究有着密切联系。
它不仅包括了高分子材料的加工工艺原理和技术,而且关注高分子材料加工对高分子材料性能和制品质量的影响。
高分子材料加工工艺学的研究内容主要有三个方面:首先是高分子材料的加工工艺的研究,包括熔融挤出成型、压缩成型、注塑成型、薄膜成型、模压成型、吹塑成型等;其次是加工工艺及其参数设定,如温度控制、时间控制、压力控制等,以及加工工艺对高分子材料性能及工件质量的影响;最后是新型高分子材料加工工艺的研究,如新型挤出成型工艺、射出成型工艺、复合成型工艺等。
高分子材料加工工艺学研究的主要目标是探索有效的加工工艺,提高加工效率,使高分子材料及其制品更好地发挥其功能,并实现经济有效性,降低加工成本。
高分子材料加工工艺学的研究重点在于开发适合不同性能和用途的高分子材料的加工工艺,使高分子材料具备更优良的性能,以满足实际需要,并提高材料加工的性价比。
高分子材料加工工艺学的研究需要充分结合本学科的多个知识领域,主要包括高分子材料的力学性能以及加工工艺的物理原理,还需要结合机械工程、电子工程等相关学科,深入了解加工过程中产生的力学和热量变化,以及它们对高分子材料性能的影响。
另外,高分子材料加工工艺学还要考虑计算机技术的应用,如有限元分析等,以评估高分子材料加工的制品质量和性能以及工艺性能指标。
总之,高分子材料加工工艺学是个涉及多学科领域的复杂学科,它与高分子材料力学性能及工艺参数有着密切联系,研究多种加工工艺及其对高分子性能及制品质量的影响,以及计算机技术在高分子材料加工工艺学中的应用,将有助于提高高分子材料的加工效率和材料性能,并且为实现机械加工应用的质量和可操作性提供重要的技术保障。
高分子化学-第七章 聚合物的化学反应
(6)可回收单体和综合利用聚合物废料
(7)有助于了解聚合物的分子结构以及结 构与性能的关系。
(8)在高分子化学反应的基础上发展了功 能高分子 (9)聚合物的化学反应和缩聚、加聚反应 密切相关。
5
二、 聚合物化学反应的分类
根据聚合度和基团(侧基和端基)的变化,聚合物的 化学反应可分成:
• (1)聚合度相似的化学反应
OCOCH3
OCOCH3
控制合适条件,制备聚合度适当的产物
26
• 2.醇解 ]n [ CH2-CH- -
OCOCH3
CH3OH,OH–CH3COOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
27
• 3.缩醛化
~~CH2– CH–CH2–CH–CH2 –CH~~ OH OH OH
15
二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。 ~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~ O -CH2- O OH O -CH2- O 按反应的几率,羟基的最高转化率86.5%,实验 测得为85~87%。 若反应是可逆的,只要时间足够长,可以打破几 率的限制。 16
• 2. 邻近基团效应
由于大分子链上反应基团多,邻近基团相距很 近,因此,静电和位阻效应可使聚合物链上官能 团反应能力上升或下降。
~~CH2-CH-CH2-CH-CH2-CH~~ C=O C=O C=O O-• • • • • • H-N-H • • • • • • O-
OH-
17
18
一、聚二烯烃的加成与取代
高分子环境材料相关知识简介
酯
(1)光降解高分子材料
光降解塑料就是一种能在日光条件下快 速光老化的塑料,其主要反应是塑料吸 收太阳光中的紫外线,引发光化学反应, 使高分子链键断裂的过程。
在塑料中加入光敏性物质
国外已应用于农用地膜、垃圾袋、快餐 容器、饮料罐拉环,以及包装塑料制品 等一次性用品
原油 开采
丙烯 生产
环氧丙 烷生产
PPC 生产
使用
废弃
HT POCP AP GWP ADP
图 各生产阶段的归一化结果
PPC的环境负荷主要来自生产阶段,即丙烯、环氧丙烷和聚合物生产;主要环境负荷工序 是环氧丙烷生产;环氧丙烷和丙烯生产的主要环境负荷类型均为温室效应,聚合物生产则 以酸化效应为主。结合清单分析可知这三个工序的能耗大小与其环境负荷大小相对应。
四种树脂的环境排放与能耗
1.20E+05
1.00E+05
8.00E+04
PE
6.00E+04
PPC
NPC
4.00E+04
PLA
2.00E+04
0.00E+00
废气
废水
废渣
能耗
图 四种树脂的污染物排放与能耗
各种环境影响类型的分析
1.20E-10
1.00E-10
8.00E-11
6.00E-11
4.00E-11
糠醛 生产
糠醇 缩水甘油 聚合物 生产 醚生产 生产
使用
图 非石油基聚碳酸酯生命周期过程各阶段的归一化结果
NPC的主要环境负荷工序是生产阶段的糠醛和缩水甘油醚的生产。
废弃
HT POCP AP GWP ADP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生胶是个黏弹体,在受到外力作用的时候会发生弹性 形变、黏性形变和塑性形变直到断裂。
2021/3/12
三、橡胶的配合体系 (一) 橡胶的硫化体系 ※硫化
硫化是指线性橡胶大分子在化学或物理作用下,通过化学键 的交联,形成空间网状结构,实质是把塑化的胶料变成高弹性的 橡胶的过程。
硫化体系:硫化剂、硫化促进剂、硫化活性剂、防焦剂、抗 硫化返原剂等。
P h0 h2 h0 h1
2021/3/12
P=0,绝对弹性体 P=1,绝对流体 P值越大,塑炼胶的可塑性越好
2、门尼黏度
根据试样在一定温度、时间和压力下,在转子和模腔之间 变形时所受的扭力来确定胶料的可塑性。
表示符号: MS11040或ML11004
M 门尼;S,L-小转子,大转子;
100 1 4
2021/3/12
多硫交联键不稳定,易分解重排,所以硫化胶的耐热性较差
2021/3/12
2、含有促进剂的硫磺硫化
S· 促进剂自由基
促进剂多硫自由基
2021/3/12
促进剂多硫自由基
ห้องสมุดไป่ตู้
活性 多硫 侧基 的橡 胶分 子
2021/3/12
3、含有促进剂、活性剂的硫化体系
二、橡胶的品质
• 与加工性能有关的品质指标 1、可塑度(P)
反映生胶、塑炼胶和混炼胶可塑性的品质,是指试样在外力作 用下产生压缩变形的能力和除去外力后保持变形的能力。
威廉氏可塑性计测量法—根据试样在一定温度(70℃)和一定负 荷(5kg)作用下,经3min压缩后其高度的变化,以及除去负荷后,在 室温下恢复3min的高度变化来表示。
4、焦烧时间和正硫化时间
用硫化仪(流变仪)测定。 焦烧时间用T10或TS2表示,硫化仪扭矩上升到最大扭矩的10% 所对应的时间。(胶料在模型中流动充模的时间) 正硫化时间用T90表示,硫化仪扭矩上升到最大扭矩的90%所对 应的时间。提高生产效率、确保产品的质量至关重要。
2021/3/12
第二节 生胶和配合体系
一、生胶
• 生胶:指原料橡胶,即没有经过配合和加工的橡胶。
通用橡胶 特种橡胶
天然橡胶 合成橡胶
2021/3/12
性能和用途
橡胶
分类
饱和橡胶 不饱和橡胶 非极性橡胶 极性橡胶
二、生胶的特性
生胶是一种高弹性的材料,要经过塑炼、混炼、成型、硫 化等一系列过程,才能获得橡胶制品
橡胶的加工过程和其它聚合物一样,都要涉及到胶料的流 动性质。影响胶料的流动性质主要有黏度、弹性记忆效应、断 裂特性。橡胶在加工过程中,可以看做是黏度很高的液体,但 是它又具有固体的性质,兼顾黏性和弹性的性质,即黏弹性。 所以橡胶在加工过程中的流动行为不遵守牛顿黏度定律,其流 变性是黏性效应和弹性效应同时作用的结果
三羟甲基丙烷三丙烷酸酯(TMPTA) 季戊四醇三丙烯酸酯
2021/3/12
※硫化体系作用机理
1、无促进剂的硫磺硫化
S8环在加热的条件下,硫环裂解成双基活性硫
S8 S8 Sx S8x
双自由基可以夺取不饱和橡胶分子α-亚甲基上的氢 原子。硫化生成RSx·多硫自由基,与橡胶生成橡胶硫醇, 最后转化成多硫交联键
表示在100
C下预热1min,转子转动4 min时的扭矩力
门尼黏度值越大,胶料的可塑性越差(流动性能越差)
2021/3/12
3、门尼焦烧时间
在一定温度下(120℃) ,对膜腔内的胶料预热1min后开动 转子,从试验开始到胶料黏度下降到最小值后再上升5个或3个 门尼值所对应的时间.
混炼胶在硫化前的胶料停放、压延、压出、成型等各工序 生产安全的控制指标
“高分子材料加工工艺学”之
第七章 橡胶的成型
2021/3/12
主讲教师:张丽惠教授
2021/3/12
★ 概述 ★ 生胶和配合体系 ★ 生胶的塑炼 ★ 生胶的混炼 ★ 橡胶压延工艺 ★ 橡胶压出工艺 ★ 硫化工艺
第一节 概述
一、橡胶的基本概念
橡胶是高弹性的高分子材料,也称弹性体。 橡胶在较小的外力作用下能显示出高度变形的能力, 而在外力除去后,又能恢复原来的形状。高弹性质是橡 胶所独有的。 橡胶在变形较大时,又表现出黏性液体的性质,橡胶 的黏弹特性,使它在缓冲、防震、减震、动态密封方面 的作用是其它材料不可代替的。
2021/3/12
橡胶的缺点:
• 橡胶除在小变形区域外(小于50%),没有固定的 杨氏模量,小变形范围内的杨氏模量约为1.0N/mm2。 • 橡胶的拉断强度不高。 • 橡胶分子链中存在双键,所以橡胶容易老化。
橡胶的加工过程:
生胶的塑炼
塑炼胶与各种配合剂的混炼 成型 胶料的硫化
2021/3/12
形成三维网状结构
硫磺类硫化剂,一般用结晶型硫磺,酸具有延迟硫磺硫化 的作用。
1、硫化剂 有机过氧化物类硫化剂(-O-O-,过氧基),过氧化二异丙苯,
二叔丁基氧化物
2021/3/12
金属氧化类硫化剂,ZnO, MgO
2、硫化促进剂
在橡胶硫化过程中,与硫化剂并用,可以缩短硫化时间,降 低硫化温度、减少硫化剂用量,并能提高橡胶的物理机械性能的 一类橡胶配合剂,称为硫化促进剂。
2021/3/12
弹性记忆:
所谓的弹性回复,是指生胶在加工过程中橡胶流动时 表现出可以恢复的弹性形变。
弹性记忆效应中很重要的参数为应力松弛时间。
应力松弛时间很短,观察时留存的形变已经不存在, 弹性记忆很短;松弛时间很长,可回复形变很大,弹性记 忆效应大。
弹性记忆效应用压出膨胀率表示。膨胀率越大,弹性 效应越大。相对分子质量大的胶料,压出膨胀率大。
二硫代氨基甲酸盐类、秋兰姆类、噻唑类、次磺酰胺类、胍 类、硫脲类、黄原酸类、醛胺类。
3、硫化活性剂
也称作活化剂、促进助剂。活性剂一般不直接参与橡胶与硫 磺的反应,但是对化学交联键的生成速度和数量有着重要影响。 硬脂酸锌,氧化锌
2021/3/12
4、防焦剂
胶料的早期硫化现象,称为焦烧 最常用的防焦剂有苯甲酸、邻苯二甲酸、水杨酸、
邻苯二甲酸酐、N-亚硝基二苯胺等。
加防焦剂的作用: ➢延缓硫黄与橡胶的结合速度,从而延长焦烧时间。
2021/3/12
• 5.抗返原剂
二烯类橡胶硫化时会发生交联键的断裂和橡胶分子主 链的化学改性,使硫化橡胶的物理性能变差,硫化返原
➢加入抗返原剂的作用:通过在硫化后期形成新的交联键, 补偿多硫键断裂的损失。 ➢常用抗返原剂: