小学五年级奥数精讲等积变形求面积(含答案)

合集下载

小学五年级奥数第13课面积计算试题附答案-精品

小学五年级奥数第13课面积计算试题附答案-精品

小学五年级上册数学奥数知识点讲解第13课《面积计算》试题附答案第十四讲面积计算在小学阶段学习的各种平面图形之间有着密切的联系.我们把平面图形之间的转化方法及它们的面积、周长公式归纳如下图:5= mh计算图形的面积要用面积公式,对于一些复杂的图形有意识地运用运动变化的观点,将平面图形简单地变动位置,可以化繁为简,化难为易,从而获得最佳解法。

例1已知三角形ABC的面积为1,BE=2AB,BC=CD,求三角形BDE的面积?(下页图)D例2求右图中阴影部分的面积.(大圆直径为2,单位:厘米)。

例3如下图在图中三角形ABE、ADF和四边形AECF的面积相等,求三角形AEF 的面积。

例4如下页图.等腰直角三角形ABC 的腰为10厘米;以A 为圆心,EF 为圆弧,组成扇形AEF ;阴影部分甲与乙的面积相等.求扇形所在的圆面积.例5如右图.从一个正方形的木板上锯下宽为1米的一块长方形木条 以后,剩下的面积是2平方米.问锯下木条的面积是多少平方米?lo例6一块长方形钢板,长截下4分米,宽截下1分米后,成了一块正方形钢板, 如右图,面积比原来减少了49平方米.原来长方形钢板的面积是多少平方米?6厘米&C2 2 2例7ABCD为任意四边形,其中AE=?AB,BF=yBC,CG=yCD, DH=yDA,连结E、F、C、H求四边形EFGH的面积与四边形ABCD的面积之比(如右图)。

例8如右图,己知三角形ABC的三条高必定交于一点,如记成P点,请你讲明M+导喋=1为什么成立?答案例1己知三角形ABC的面积为1,BE=2AB,BC=CD,求三角形BDE的面积?(下页图)分析利用己给的线段间的比例关系、己给的三角形的面积以及三角形的面积公式,设法把三角形BDE戈吩成一些与三角形ABC的面积成相应比例的三角形. 这样,三角形BDE的面积就能求得了。

解:见右图,连结CE对于三角形ABC与三角形BEC,分别把AB和BE看成底,那么它们的高相等.此外,BE=2AB.根据三角形面积公式S=!ah乙可知,S』K=2S」5c=2显然,三角形BEC和三角形CED是两个等底(BC=CD),等高的三角形,因此S,B=S M*=2这样,S二砒=S_纪二+S二宓=4。

小学五年级 等积变形

小学五年级 等积变形

第五讲等积变形答案方法与技巧:(1)等底等高的两个三角形面积相等。

(2)两个三角形如果有相等的底(或高),且其中一个三角形的高(或底)是另一个三角形高(或底)的若干倍,那么,这个三角形的面积是另一个三角形面积的若干倍。

【例1】如下图所示,四边形ABCD是直角梯形,两条对角线把梯形分为4个三角形,已知其中两个三角形的面积为4平方厘米和8平方厘米,求直角梯形ABCD的面积。

(18)【练习1】如图所示,三角形ABO的面积为9平方厘米,线段BO的长度是OD的3倍,梯形ABCD的面积是多少平方厘米?(48)【例2】如图所示,把三角形ABC的一条边AB延长1倍到D点,把它的另一条边AC延长2倍到点E,得到一个较大的三角形ADE,三角形ADE面积是三角形ABC面积的多少倍?(6)【练习2】如图所示,AE=3AB,BD=2BC,△DEC的面积是△ABC面积的倍。

(4)【例3】已知三角形ABC面积为56平方厘米,是平行四边形DEFC的2倍,则阴影部分的面积是多少平方厘米?(14)【例4】如图所示,矩形ABCD的面积为24平方厘米,三角形ADM与三角形BCN的面积和为7.8平方厘米,则四边形PMON的面积是多少平方厘米?(1.8)【例5】如图所示,点M、N、P、Q分别在平行四边形ABCD的边AB、BC、CD、DA上,且PE//GM//CB,HN//QF//AB。

若平行四边形ABCD的面积为600平方厘米、阴影部分的面积为80平方厘米。

请问四边形MNPQ的面积为多少平方厘米?(340)【例6】如图所示,在正方形ABCD的BC边上取一动点E,以DE为边作矩形DEFG,且FG边通过点A。

在点E从点B移动到点C过程中,矩形DEFG的面积()(E)(A)一直变大。

(B)一直变小。

(C)先变小后变大。

(D)先变大后变小。

(E)保持不变。

【练习1】如左下图,△ABC中,D、E分别为边BC、AB的中点。

若图中阴影部分面积为1,则△ABC的面积为多少?(4)【练习2】如右上图所示,图中阴影部分的面积为多少平方厘米?(24)【练习3】如图,六角形的6个顶点恰好是一个正六边形的6个顶点。

小学五年级数学思维专题训练—等积变形(含答案解析)

小学五年级数学思维专题训练—等积变形(含答案解析)

小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。

如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。

例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。

例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。

A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。

A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。

五年级奥数第5讲等积变形

五年级奥数第5讲等积变形

学生课程讲义
两个平面图形面积相等,称为这两个图形等积.解决平面图形面积问题的主要渠道是将欲求的图形的面积转化为已经学过的基本图形的面积问题.其中三角形的等积变形的技巧是各种
等积变形的核心,都要运用到“等(同)底、等(同)高的两个三角形面积相等”这个基本规则,并由此衍生出因题而宜的种种精巧的等积变形的技巧。

【例1】计算:
如图,5-1,ABCD 是直角梯形,两条对角线把梯形分为4个三角形,已知其中两个三角形的面积为3平方厘米和6平方厘米,求直角梯形ABCD 的面积。

【例2】
其中A、B、C都是大于0且互不相同的自然数,则(A+B)÷C=。

五年级奥数专题 等积变换、切割、平移、旋转(学生版)

五年级奥数专题 等积变换、切割、平移、旋转(学生版)

学科培优数学等积变换、切割、平移、旋转学生姓名授课日期教师姓名授课时长知识定位本讲是几何知识体系中的一个基石同时也是一个升华,等积变换试平面几何的基础,解决三角形问题几乎无处不在,切割、平移、旋转是解决个性问题的个性思想,在几何中举足轻重,能使复杂的问题巧妙化解。

所以本讲是非常重要的一讲,也是竞赛常考的知识板块。

重点难点:1. 等积变换中等地等高三角形的寻找。

2.化未知图形为已知图形。

3. 合理做辅助线4. 平移、旋转、切割等知识的适用范围主要考点:1. 面积和边的比例关系2. 利用平移、旋转解复杂问题知识梳理常见图形面积的解题方法我们已经知道三角形面积的计算公式:三角形面积=底×高÷2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。

这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: 1、等底等高的两个三角形面积相等.2、若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 3、夹在一组平行线之间的等积变形,如下图,和夹在一组平行线之间,且有公共底边那么;反之,如果,则可知直线平行于。

4、把未知图形转化为三角形、长方形、正方形来求解。

五年级奥数——等积变形

五年级奥数——等积变形

年 级授课日期 授课主题 第5讲——等积变形教学内容i.检测定位两个平面图形面积相等,称为这两个图形等积.解决平面图形面积问题的主要渠道是将欲求的图形的面积转化为已经学过的基本图形的面积.其中三角形的等积变形的技巧是各种等积变形的核心,都要运用到“等(同)底、等(同)高的两个三角形面积相等”这个基本规则,并由此衍生出因题而宜的种种精巧的等积变形的技巧.【例1】如图5-1,ABCD 是直角梯形,两条对角线把梯形分为4个三角形.已知其中两个三角形的面积为3平方厘米和6平方厘米,求直角梯形ABCD 的面积.分析与解 因为三角形ADC 和三角形ADB 同底等高,所以ADB ADC S S ∆∆=,又三角形AOD 是公共部分,可知).(3平方厘米==∆∆COD AOB S S在三角形BOC 与三角形DOC 中,BO 、OD 边上的高相等,6是3的2倍,可知OD BO 2=,得AOD AOB S S ∆∆=2,这样).(5.123平方厘米=÷=∆AOD S 因此,).(5.13)36(3336平方厘米梯形=÷÷+++=ABCD S随堂练习1如图5-2,三角形ABO 的面积为9平方厘米,线段BO 的长度是线段OD 的3倍,梯形ABCD 的面积是多少平方厘米?【例2】如图5-3,把三角形ABC 的一条边AB 延长1倍到D ,把它的另一边AC 延长2倍到E ,得到一个较大的三角形ADE ,三角形ADE 的面积是三角形ABC 面积的多少倍?分析与解 如图5-4,连结BE ,因为AC CE 2=,所以ABC BCE S S ∆∆=2,即ABC ABE S S ∆∆=3.又因为BD AB =,则BDE ABE S S ∆∆=,ABC ADE S S ∆∆=6.随堂练习2如图5-5,DBE BC BD AB AE ∆==,2,3面积是ABC ∆面积的________倍.【例3】如图5-6,已知三角形ABC 的面积为56平方厘米,是平行四边形DEFC 的2倍,阴影部分的面积是多少平方厘米?分析与解 如图5-7,连结EC .EC 为平行四边形DEFC 的对角线.平行四边形DEFC 的面积是(平方厘米)28256=÷,由平行四边形的性质有.2S DEC ÷=∆DEFC S 平行四边形在ED CED AED 中,与∆∆为公共底,,AC DE 平行于则 ED 边上的高相等,因此.DEC AED S S ∆∆=).(1422562平方厘米=÷÷=÷==∆∆DEFC DEC AED S S S随堂练习3如图5-8,ABC ∆的面积等于24平方厘米,M 为AB 中点,E 为AM 上任意一点,MD 与EC 平行.求EBD ∆的面积.【例4】如图5-9所示,矩形ABCD 的面积为24平方厘米,三角形ADM 与三角形BCN 的面积之和为7.8平方厘米,则四边形PMON 的面积是__________平方厘米.分析与解 三角形AOD 与三角形BOC 的面积之和为矩形ABCD 面积的一半,先求出三角形AOM 和三角形NOB 的面积之和,由三角形ABP 的面积减去三角形AOB 的面积,再减去三角形AOM 和三角形NOB 的面积和,就可求出四边形PMON 的面积了.).(2.48.7224平方厘米=-÷=+∆∆NOB AOM S S).(8.14242.4224平方厘米四边形=÷--÷=PMON S说明 本题说求的阴影部分面积看似无从下手,实质上只要我们理清楚解题的思路分步考虑,脚踏实地地去做,求出本题的答案是不难的.随堂练习4如图5-10,平行四边形ABCD 中DF BF 2=,.的中点是BC E 平方厘米,8=∆BEF S 求平行四边形ABCD 的面积.【例5】如图5-11,梯形ABCD 的面积是45平方厘米,高是6厘米,BC AD //.三角形AED 的面积是5平方厘米,厘米10=BC ,求三角形BCE 的面积.分析与解 由已知量,可先求出上底AD ,进而求出三角形ABD (或ACD )面积及三角形ABE 面积,利用等积变换可知三角形ABE 与三角形CDE 等积.最后得到三角形BCE 的面积.由梯形的面积公式得 6102145⨯+⨯=)(AD , 解得厘米5=AD ,进而 )(155621平方厘米=⨯⨯=∆ABD S . 由等积变形知 ACD ABD S S ∆∆=,从而 )(10515平方厘米=-==∆∆CDE ABE S S .所以 )(20210545平方厘米=⨯--=∆BCE S .【例6】如图5-12,已知长方形宽是长的32,平方厘米14=∆ABC S ,AD AC 31=,EF DE =.求阴影部分的面积.分析与解 连结BD ,因为AD AC 31=,所以,)(421433平方厘米=⨯=⨯=∆∆ABC ABD S S , 从而)(84422平方厘米长方形=⨯=ABFD S .又因为EF DE =,所以 )(21844141平方厘米长方形=⨯==∆ABFD BFE S S , 从而 )(49211484平方厘米长方形阴影面积=--=--=∆∆BFE ABC ABFD S S S S .随堂练习5如图5-13,梯形ABCD 中,BC AD //,对角线交于O ,三角形AOD 面积为20,三角形ABO 面积为30.求梯形ABCD 的面积.(单位:平方厘米)读一读不要轻易放弃题目 平面上有7个点,任意三点不在同一直线上.以上这7个点作为定点作三角形,使任意两个三角形至多只有一个公共顶点.问最多可以作出多少个满足上述条件的三角形?我在纸上画了很多草图,费尽心思,想得到合乎要求的7个三角形,但没有结果.只好向单墫请教,他很快就给出了解答,非常精彩.在他的解答中有一句话使我心头一震:“在构造这7个三角形时,每一个点恰好用了3次”.事后,我又回顾了自己的思路,有两张草图印象很深.第一张是开始时的草图(图1),这是第一个念头,只能作出3个符合要求的三角形.于是想在此图基础上连线增加符合要求的三角形,虽然有所改进,但毫无章法,很快就放弃了.为了改进作图,我先将7个点放在圆上,可保证无3个点共线,两两连线,得到以给定7个点为顶点的所有三角形(图2),我知道要求的7个三角形必在其中.但要把他们找出来,并加以说明又很困难.然而当单老师的信息“每个点恰用3次”出现时,我的第1个年头立刻浮现在眼前,图中的“1”不正好直观地被用了3次吗?如果对1进行轮换,用2、3、4、5、6、7替换1,就可产生2173=⨯个符合要求的三角形,而因为每个点恰好用了3次,因此,合乎题目要求的三角形正好是7个,这7个三角形的3个顶点分别为(1,2,3),(3,4,5),(5,6,1),(1,7,4),(3,7,6),(5,7,2),(2,4,6).上面的想法几乎在一瞬间完成,再去复查2,7个三角形很容易找出来了.单老师在谈解题思路是常说,做不出来不要紧,很多想法虽然没有解决全部问题,但其中或解决了部分问题,或隐含着解决问题的合理成分.关键是要会总结,碰了钉子不要紧,不一定全部放弃你原来的想法.ii.针对培养1.如图,ABC ∆中,D 、E 分别为各边重点.若阴影部分面积为1,则ABC ∆的面积为_________.2.如图,同种阴影部分的面积为__________平方厘米.3.如图,梯形的下底长为10厘米,高为6厘米,阴影部分的面积是________平方厘米.4.如图,平行四边形中,A 、M 、N 分别为对应线段的中点,且阴影部分面积为15平方厘米,则大平行四边形的面积是__________平方厘米.5.如图,将ABC ∆的AB 边延长1倍,将BC 边延长2倍,得ADE ∆,则ADE ∆的面积是ABC ∆面积的________倍.6.如图,,4,3CD AC BE BC ==则ABC ∆的面积是DEA ∆面积的________倍.7.如图,求平行四边形中阴影部分面积.(单位:厘米)8.如图,ABC ∆中,.32==BD AD ,四边形DBEF 的面积等于ABE ∆的面积.若ABC ∆的面积等于10,则四边形DBEF 的面积是多少?9.如图,梯形ABCD 中,BC AD //,ABE ∆的面积为30平方厘米,.2AE EC =求梯形ABCD 的面积.10.如图,ABC ∆的面积是72平方厘米,D 是BC 的中点,.2,3EF FD AE BE ==求三角形AFD 面积.11.如图,ABC ∆的面积为14平方厘米,.,3ED AE DB DC ==求阴影部分面积.12.如图,长方形ABCD 中,,2,,GF EG FC DF ED AE ===且长方形的长和宽分别是10厘米、6厘米.则BFG ∆的面积是多少?。

小学五年级奥数 等积变形

小学五年级奥数 等积变形

奥数拓展:等积变形(一)故事导入:有一个富翁留了一块三角形的土地给两个儿子,两个儿子要求平分这块地,这可伤透了他们的脑筋,因为他们不知道怎样去测量、平分。

同学们,你们能想出多少种方法将这块土地平分成2个面积相等的三角形吗?根据这个问题,你能得出什么结论?结论一:。

(二)即学即练:1.你有什么方法将任意一个三角形分成3个面积相等的三角形?2.如图,把△ABC的底边BC四等分,那么甲、乙两个三角形的面积谁大,为什么?如图.三角形ABC中.D是AB的中点.点E、F.G、H把BC平均分成五份.阴影部分的面积占三角形ABC面积的几分之几?(三)思维探索:(平行线间的等积变形)如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边,那么△ACD和△BCD的面积关系是怎样的?为什么?(四)即学即练:1.如图,在梯形ABCD中共有8个三角形,其中面积相等的三角形有哪几对?(五)结论总结:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。

同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状。

为便于实际问题的研究,我们还会常常用到以下结论:(1)等底等高的两个三角形面积相等;(2)底在同一条直线上并且相等,该底所对的角的的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等;(3)若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。

(六)例题梳理【例1】等积变形的等分点应用1.如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果△AED的面积是30平方厘米.求△ABC 的面积?结论2:夹在间的一组同底三角形面积相等2.如图,A为三角形DE边上的中点,BF为CD边上的三等分点,如果三角形ABC的面积为5,求三角形ABD和三角形ACE的面积。

3.在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若三角形ADE的面积是1,求三角形BEF的面积。

等积变形题目五年级

等积变形题目五年级

等积变形题目五年级等积变形是指图形在形状发生改变的过程中,其面积大小保持不变的一种变形。

例如,一个四边形可以变成正方形、长方形、梯形或不规则的其他几边形,只要其面积大小保持不变,就是等积变形。

1.问题:有一个长方体,它的长、宽、高分别是a、b、c(a>b>c),现在进行等积变形,把长方体的长变成d,宽和高保持不变。

请问变形后的长方体与原长方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原长方体和变形后的长方体的体积是相等的。

2.问题:有一个正方体,边长为a,现在进行等积变形,把正方体的边长变成d,请问变形后的正方体与原正方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原正方体和变形后的正方体的体积是相等的。

3.问题:有一个三角形,它的底边为a,高为h,现在进行等积变形,把三角形的底边变成d,高保持不变。

请问变形后的三角形与原三角形的面积相比,是变大还是变小?解析:因为等积变形不改变三角形的面积,所以原三角形和变形后的三角形的面积是相等的。

4.问题:有一个正方形,边长为a,现在进行等积变形,把正方形的边长变成d,请问变形后的正方形与原正方形的面积相比,是变大还是变小?解析:因为等积变形不改变正方形的面积,所以原正方形和变形后的正方形的面积是相等的。

5.问题:有一个长方形,长为a,宽为b,现在进行等积变形,把长方形的长变成d,宽保持不变。

请问变形后的长方形与原长方形的面积相比,是变大还是变小?解析:因为等积变形不改变长方形的面积,所以原长方形和变形后的长方形的面积是相等的。

五年级奥数培优教程之等积变形求面积

五年级奥数培优教程之等积变形求面积

第2课等积变形求面积一、知识要点等底等高的三角形面积相等平行四边形如果两个三角形底相等,大三角形面积是小三角形面积的2倍,大三角形高是小三角形高的。

如果两个三角形底相等,大三角形面积是小三角形面积的3倍,大三角形高是小三角形高的。

如果两个三角形底相等,大三角形面积是小三角形面积的4倍,大三角形高是小三角形高的。

如果两个三角形底相等,大三角形面积是小三角形面积的n倍,大三角形高是小三角形高的。

如果两个平行四边形形底相等,大平行四边形面积是小平行四边形形面积的2倍,大平行四边形高是小平行四边形高的。

如果两个平行四边形形底相等,大平行四边形面积是小平行四边形形面积的3倍,大平行四边形高是小平行四边形高的。

如果两个平行四边形形底相等,大平行四边形面积是小平行四边形形面积的4倍,大平行四边形高是小平行四边形高的。

如果两个平行四边形形底相等,大平行四边形面积是小平行四边形形面积的n倍,大平行四边形高是小平行四边形高的。

二、典型例题分析【例1】四边形ABCD中,M为AB的中点,N为CD的中点,如果四边形ABCD的面积是80平方厘米,求阴影部分BNDM的面积是多少?【练一练】如图,六边形ABCDEF的面积是16平方厘米,M、N、P、Q分别是AB、CD、DE、AF的中点。

求图中阴影部分的面积。

【例2】如图,平行四边形ABCD中,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,平行四边形的面积是多少平方厘米?【练一练】如图,在一个等边三角形中任意取一点P,连接PA、PB、PC,过P点作三角形的垂线,E、F、G分别为垂足。

三角形ABC被分成6个三角形。

已知三角形ABC的面积为40平方厘米,求图中阴影部分的面积。

【例3】下图中正方形ABCD的边长是4厘米,长方形DEFG的长DG=5厘米,问长方形的宽DE为多少厘米?【练一练】两个相同的直角三角形叠放在一起,求阴影部分的面积。

(单位:分米)【例4】两个正方形拼成一个图形,其中小正方形的边长是4厘米,求阴影部分的面积。

五年级下册数学奥数试题-等积变形(人教版)

五年级下册数学奥数试题-等积变形(人教版)

第3讲等积变形一、知识点等积变形一般指三角形的等积变形,就是三角形面积相等的变化,经常用到的结论有:1.等底等高的两个三角形面积相等;2.两个三角形的底在同一条直线上而且相等,底所对的角顶点是同一个,则面积相等;3.如果两个三角形的底(高)相等,一个三角形的高(底)是另一个三角形的几倍,则这个三角形的面积也是另一个三角形面积的几倍;4.几个三角形的底相等,都在两条平行线的同一条直线上,且同样长度底边所对的顶点在两条平行线的另一条上,则这几个三角形的面积相等.二、例题精讲例1 两条对角线将梯形分成四个小三角形,已知图中两个三角形的面积,则另外两个三角形的面积分别为多少?例2 如图,三角形ABC中D、E分别为各边中点.若阴影部分面积为1,则三角形ABC的面积为__________.例3 如图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的________倍.例4 如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点,三角形EBF的面积是____________平方厘米.例5 如图,已知三角形ABC的面积为56平方厘米,是平行四边形DEFC面积的2倍,则阴影部分的面积是______________平方厘米.例6 如图,长方形ABCD中,AB=24厘米,BC=36厘米,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分的面积.例7 在梯形ABCD中,若AB=8,DC=10,三角形AMD的面积是10,三角形BCM的面积是15,则梯形ABCD的面积是_____________.例8 如图,三角形ABC的面积为10平方厘米,AE=ED,BD=2CD,则图中阴影部分的面积是________平方厘米.三、水平测试1、如图,梯形的下底长10厘米,高6厘米,则阴影部分的面积是________平方厘米.2、如图,AE=3AB,BD=2BC,三角形DBE的面积是三角形ABC面积的_______倍.3、如图,讲三角形ABC的AB边延长1倍,将BC边延长2倍,得三角形ADE,则三角形ADE 的面积是三角形ABC的_________倍.4、如图,平行四边形ABCD中,DO=2BO,AE和BO垂直,直角三角形AOB的面积为16平方厘米,则四边形OECD的面积是_____________.5、如图,BE=EC,CA=FA,三角形BDE的面积为5平方厘米,则三角形ADF的面积是_____平方厘米.6、矩形ABCD中三条线段长度如图所示,M 线段DE的中点,求阴影部分的面积.。

五年级奥数第5讲等积变形

五年级奥数第5讲等积变形

学生课程讲义课程名称五年级奥数上课时间任课老师沈老师第05 讲,本讲课题:等积变形内容概要熟知各种规则图形的面积求法,结合等积变形来求出不规则图形面积。

两个平面图形面积相等,称为这两个图形等积.解决平面图形面积问题的主要渠道是将欲求的图形的面积转化为已经学过的基本图形的面积问题.其中三角形的等积变形的技巧是各种等积变形的核心,都要运用到“等(同)底、等(同)高的两个三角形面积相等”这个基本规则,并由此衍生出因题而宜的种种精巧的等积变形的技巧。

【例1】计算:如图,5-1,ABCD是直角梯形,两条对角线把梯形分为4个三角形,已知其中两个三角形的面积为3平方厘米和6平方厘米,求直角梯形ABCD的面积。

随堂练习1如图5-2,三角形ABO的面积为9平方厘米,线段BO的长度是OD的3倍,梯形ABCD的面积是多少平方厘米?【例2】如图5-3,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的多少倍?随堂练习2如图5-5,AE=3AB,BD=2BC,△DBE面积是△ABC面积的多少倍?【例3】如图5-6,已知三角形ABC的面积为56平方厘米,是平行四边形DEFC的2倍,阴影部分的面积是多少平方厘米?随堂练习3如图5-8,△ABC面积=24平方厘米,M为AB中点,E 为AM上任意一点,MD与EC平行,求EBD的面积。

【例4】如图5-9所示,矩形ABCD的面积为24平方厘米,三角形ADM 与三角形BCN的面积之和为7.8平方厘米,则四边形PMON的面积是多少平方厘米。

随堂练习4如图5-10,平行四边形ABCD中BF=2DF.E是BC中点。

三角形BEF的面积等于8平方厘米,求平行四边形ABCD的面积。

【例5】如图5-11,梯形ABCD的面积是45平方厘米,高6厘米,AD∥BC,三角形AED的面积是5平方厘米,BC=10厘米。

求三角形BCE的面积。

小学数学 等积变换求面积 PPT+课后作业 带答案

小学数学 等积变换求面积   PPT+课后作业  带答案

例题对角1线
对角线
对角线
如图所示,两个相等的等腰直角三角形与一个正方形摆放成梯形ABCD。已知等腰直角三 角形的斜边AB长度是8厘米,求梯形ABCD的面积。
斜边
斜边
斜边
大等腰三角形面积=斜边×斜边÷2 小等腰三角形面积=斜边×斜边÷2÷2 等腰直角三角形面积=斜边长度的平方÷4
练习1
如图所示,等腰直角三角形ABD和BCD拼成了一个直角梯形ABCD。已知BD长6厘米,求 梯形ABCD的面积。
G
B
A
连接DF,AC//DF
F
S ACF = S ACD = S 正方形ABCD ÷2
=10×10÷2
=50(平方厘米)
C
D
E
例题5
如图所示,四边形ABCD是一个直角梯形,以上底AD为边向外作长方形ADEF,面积为10 平方厘米,连接BE交AD于O,连接OC。求图中阴影部分的面积。
FE // AC // BC 和 FB // ED
6
等高三角形模型可得, S ABD = S ACD
所以三角形ABC的面积是三角形BDO面积的4倍
三角形ABC的面积=6×4=24(平方厘米)
例题3
如图所示,图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是 多少平方厘米?
A
D 4
G
F
4
B
C
E
三角形面积=底×高÷2 阴影部分三角形的底是小正方形的一条边 而高也是小正方形的一条边 阴影部分的面积=4×4÷2=8(平方厘米)
在梯形中寻找面积 相等的三角形
AD // BC △ ABC和△DBC △ BAD和△CAD △ ABO和△CDO 连接BE

小学五年级奥数精讲等积变形求面积(含答案)

小学五年级奥数精讲等积变形求面积(含答案)

小学五年级奥数精讲等积变形求面积(含答案)小学奥数精讲:等积变形求面积基本概念“三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道:等底等高的两个三角形面积相等.这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”.另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平行的直线上,如右图中的三角形A1BC与A2BC、A3BC的面积都相等。

图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转换成易求面积的图形.利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键.进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。

例题分析例1、已知三角形ABC的面积为1,BE=2AB,BC=CD,求三角形BDE 的面积1例2、如下图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米,3求△ABD及△ACE的面积.例3、2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角三角形拼成(直角边长为2和3),问:大正方形面积是多少例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积.练习提高1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少平方厘米?23、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?4、正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,三角形DEF的面积是多少平方厘米?CF长多少厘米?5、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?(4)6、一个长方形被两条直线分成四个长方形,其中三个面积分别是20平方米,25平方米和30平方米,阴影部分的面积是多少平方米?7、如右图,平行四边形ABCD的面积是240平方厘米,如果平行四边形内任取一点0,连接1AO、BO、CO、DO,三角形AOD与三角形BOC的面积和的,加上三角形AOB与三角形DOC21的面积和的,结果是多少33。

小学奥数平面几何五种面积模型(等积-鸟头-蝶形-相似-共边)

小学奥数平面几何五种面积模型(等积-鸟头-蝶形-相似-共边)

小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨 一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵三、蝶形定理 任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. S 4S 3S 2S 1O D CB A A BC DOba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.补充:塞瓦定理是指在△ABC 内任取一点O ,延长AO 、BO 、CO 分别交对边于D 、E 、F ,则 (BD/DC)×(CE/EA)×(AF/FB)=1。

苏教版五年级上册同步奥数培优 第三讲多边形的面积(等积变形)

苏教版五年级上册同步奥数培优 第三讲多边形的面积(等积变形)

苏教版五上同步奥数培优第三讲多边形的面积(等积变形)【知识概述】三角形面积的公式是底×高÷2,两个三角形只要是底和高分别相等,它们的面积就相等,而这两个三角形的形状不一定完全相同,例如,下面的两个三角形面积就是相等的。

在解答一些平面图形的面积4时,我们可以巧用等底等高两个三角形面积相等的方法来解答。

例题1:四边形ABCD中,M为AB的中点,N为CD的中点,如果四边形ABCD的面积是80平方厘米,求阴影部分BNDM的面积是多少平方厘米。

练习一:1.如图,六边形ABCDEF的面积是16平方厘米,M,N,P,Q分别是AB,CD,DE,AF的中点。

求图中阴影部分的面积。

2.如图,平行四边形的面积为50平方厘米,P是其中任意一点,求阴影部分面积。

3.如图,正方形的边长是6厘米,E,H是所在边的二等分点,F, G,L,M是所在边的三等分点,求阴影部分的面积和。

例2:如下图,三角形ABC为等边三角形,D为AB边上的中点。

已知三角形BDE的面积为5平方厘米。

求等边三角形ABC的面积。

练习二: 1.如图,平行四边形ABCD中,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,平行四边形的面积是多少平方厘米?2.如图,已知长方形ABCD,三角形ABG的面积为20平方厘米,三角形CDQ的面积为35平方厘米,求阴影部分的面积是多少平方厘米。

3.如图,在一个等边三角形中任意取一点P,连接PA,PB,PC,过P点作三角形三边的垂线,E,F,G分别为垂足。

三角形ABC被分成6个三角形。

已知三角形ABC的面积为40平方厘米,求图中阴影部分的面积。

例3:下图中正方形ABCD的边长是4厘米,长方形DEFG的长DG=5厘米,问长方形的宽DE为多少厘米?练习三:1.如图,两个相同的直角三角形叠放在一起,求阴影部分的面积。

(单位:分米)2.如图,ABCD为长方形,AB=10厘米,BC=6厘米,E,F分别为AB,AD的中点,且FG=2CGE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数精讲:等积变形求面积
“三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道: 等底等高的两个三角形面积相等. 这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”.
另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平
行的直线上,如右图中的三角形A 1BC 与A 2BC 、A 3BC 的面积都相等。

图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则
的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转
换成易求面积的图形.
利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利
用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键.
进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目
地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。

例1、已知三角形ABC 的面积为1,BE = 2AB ,BC =CD ,求三角形BDE 的面积?
例2、如下图,A 为△CDE 的DE 边上中点,BC=3
1 CD ,若△ABC(阴影部分)面积为5平方厘米,求△ABD 及△ACE 的面积.
例3、 2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角
基本概念
例题分析
三角形拼成(直角边长为2和3),问:大正方形面积是多少?
例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积.
练习提高
1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?
2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少
平方厘米?
3、如图,四边形ABCD 是平行四边形,DC =CE ,如果△BCE 的面积是15平方厘米,那么梯形ABED 的面积是多少平方厘米?
4、正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,三角形DEF 的面积是多少平方厘米?CF 长多少厘米?
5、如图,在平行四边形ABCD 中,AE =ED ,BF =FC ,CG =GD ,平行四边形ABCD 的面积是阴影
三角形EFG 的多少倍?(4)
6、一个长方形被两条直线分成四个长方形,其中三个面积分别是20平方米,25平方米和30平方米,阴影部分的面积是多少平方米?
7、如右图,平行四边形ABCD 的面积是240平方厘米,如果平行四边形内任取一点0,连接
AO 、BO 、CO 、DO ,三角形AOD 与三角形BOC 的面积和的2
1,加上三角形AOB 与三角形DOC 的面积和的3
1,结果是多少?
8、图8-17中,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的2倍,求三角形CDE的面积.
9、如图,正方形的边长为10厘米,用一根铁丝弯成直角,把这根铁丝放到正方形上,使直角顶点与正方形的中心O重合,问正方形在直角内部的部分有多大面积?
答案:
【例题分析】
例1. 4
例2.三角形ABD=10平方厘米三角形ACE=15平方厘米例3. 13
例4. 27
【练习提高】
1. 2
2.5
2. 120
3. 45
4. 三角形DEF=24平方厘米 CF=6厘米
5. 4倍
6. 3
7.5
7. 100
8. 5
9. 25。

相关文档
最新文档