小学数学总复习资料汇总
小学数学毕业总复习知识点整理
人教版小学数学总复习知识整理第一部分数的认识整数和小数一、自然数和整数自然数和负整数通称为整数,整数的个数是无限的.1、自然数:用来表示物体个数的0、1、2、3、4、5……叫做自然数.任何一个非零自然数都是由若干个1组成的,所以“1”是非零自然数的单位.最小的自然数是0,没有最大的自然数,所以自然数的个数是无限的.2、负整数:小于0的整数叫负整数,如-2,-68等都是负整数.二、数位和位数1、数位:“数位”是指各个计数单位所占的位置.整数中,从右往左,有个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位……;小数中,从左往右,有十分位、百分位、千分位…….2、位数:位数与数位的意思不同.位数是指一个自然数中含有数位的个数.例如:168是三位数.因为一个数的最高位不能是0,所以最小的一位数是1,而不是0,3、每个数位上的数都有相应的计数单位.如个位的计数单位就是一,十位的计数单位就是十,百分位的计数单位就是百分之一(或者)…….三、十进制所谓十进制就是指每相邻的两个计数单位之间的进率都是十.满十进一.除了十进制,不同的领域还有不同的进制,如计算机的二进制,时间的六十进制等等.四、多位数的读法和写法1、多位数的分级:四位一级;个、十、百、千四位,称为个级;万、十万、百万、千万四位,称为万级;亿、十亿、百亿、千亿四位,称为亿级.2、多位数的读法和写法3、整数大小的比较4、改写和省略尾数的区别.(1)改写后是写准确数,用等号连接,如:268000改写成以万为单位的数就是万.(2)省略尾数四舍五入后是近似值,用约等号连接.比如:268000省略万后面的尾数就是≈27万.五、小数1、小数的意义小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……每相邻两个计数单位之间的进率是10.2、小数的数位和计数单位:十分位、百分位、千分位、万分位……3、小数的读法和写法4、有限小数和无限小数:无限小数又可分为无限循环小数和无限不循环小数.5、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变.要注意的是在“小数的末尾”而不是“小数点的后面”.6、小数数位的变化小数数位的变化是由小数点位置移动所引起的,小数点位置的移动必将引起小数大小的变化.小数点向左移动一位、两位、三位……小数就缩小到原数的十分之一、百分之一、千分之一……小数点向右移动一位、两位、三位……小数就扩大到原数的10倍、100倍、1000倍…….7、小数大小的比较8、求一个小数的近似数求一个小数的近似数时,保留整数,表示精确到各位;保留一位小数,表示精确到十分位(或);保留两位小数,表示精确到百分位(或)……注:在表示近似数时,小数末尾的0不能去掉.分数和百分数一、分数的意义二、分数的分类:真分数和假分数.真分数小于1;假分数大于等于1.假分数可以化成带分数或整数.三、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外,这很关键)分数的大小不变.四、约分和通分五、倒数:乘积是1的两个数互为倒数.1的倒数是1,0没有倒数.自然数中,1的倒数最大.六、百分数:也叫百分率或百分比.百分数表示一个数是另一个数的百分之几,一般不表示具体的数量,所以后面绝不能带单位.七、分数大小的比较八、分数与小数、百分数的互化.九、折扣、利息和纳税“几折”或“几成”就是表示十分之几,也就是百分之几十.利息=本金×利率×时间整数的性质一、因数和倍数:2×3=6,2和3是6的因数,6是2和3的倍数.因数和倍数是相互依存的.不能单独地说谁是因数,或谁是倍数.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身.一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.2、3、5的倍数的特征.二、奇数和偶数:自然数中是2的倍数的数叫做偶数.最小的偶数是0;除2和0外,其余的偶数都是合数.不是2的倍数的自然数叫做奇数,最小的奇数是1.奇数不全部是质数.三、质数和合数1、质数和合数只有1和它本身两个因数的数叫做质数,也叫素数.如:2、3、5、7、11……除了1和它本身两个因数外还有别的因数的数叫做合数.如:4、6、8、9、10……1既不是质数也不是合数,因为它只有一个因数.最小的质数是2,最小的合数是4.2、分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.比如:30=2×3×5,2、3和5是20的质因数.把一个合数用质因数相乘的形式表示出来,叫做分解质因数.一般用短除法.3、公因数和最大公因数几个数公有的因数称为这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.四、互质数公因数只有1的两个数叫做互质数.1和任何非零自然数是互质数,比如:1和3,1和6……两个质数是互质数,比如:2和3,7和11……相邻的两个自然数也是互质数,比如:3和4,8和9……五、公倍数和最小公倍数几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.六、求最大公因数和最小公倍数的方法一般采用短除法.如果两个数是倍数关系,则大数是它们的最小公倍数,小数是它们的最大公因数;如果两个数是互质关系,则它们的最大公因数是1,最小公倍数是两数的积.七、近似值求近似值的方法根据具体情况不同有以下三种:(1)四舍五入法,(2)进一法,(3)去尾法.第二部分数的运算四则运算的意义和法则减法是加法的逆运算,除法是乘法的逆运算,乘法是加法的简便运算.二、四则运算的法则相同计数单位上的数才能相加或者想减.0不能做除数.四则混合运算一、四则混合运算的运算顺序只有乘除或只有加减的算式,从左往右依次计算.既有乘除,又有加减的算式,先乘除,后加减.有小括号的,先算小括号里面.二、运算定律加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c三、运算性质减法运算性质:a-(b+c+d)=a-b-c-d除法运算性质1:被除数、除数同时乘或除以相同的数(0除外),商不变.除法运算性质2:a÷(b÷c)=a÷b×c四、估算五、算盘和电子计算器第三部分式与方程一、用字母表示数用字母可以表达数量关系、运算定律和计算公式.a2表示两个a相乘,即a×a;而2a表示两个a相加,即a+a.a3表示三个a相乘,即a×a×a;而3a表示三个a相加,即a+a+a.二、简易方程含有未知数的等式叫做方程.方程一定是等式,但等式不一定是方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.方程的解是个数,解方程是一个过程.解方程时不仅要注意书写的格式,还要养成检验的好习惯.三、列方程解决问题第四部分比和比例一、应理解掌握的概念1、比的意义:两个数相除又叫做两个数的比.2、比值:比的前项除以后项所得的商,叫做比值.3、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变.4、比例的意义:表示两个比相等的式子叫做比例.5、比例的基本性质:在比例里,两个外项的积等于两个内项的积.6、解比例:求比例中的未知项,叫做解比例.7、比例尺:图上距离和实际距离的比,叫做这幅图的比例尺(比例尺是一个比).8、正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫正比例关系.用字母表示为: yx=k(一定).9、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.用字母表示为:xy=k(一定).二、应掌握运用的方法1、比和比例的联系和区别2、比、分数和除法的联系和区别3、求比值和化简比的区别:求比值是将前项除以后项,所得的结果是一个数;化简比是将一个比化成最简整数比,所得的结果是一个比.4、比例尺是比的概念的实际应用.比例尺分为线段比例尺和数值比例尺.数值比例尺:1:70000或 1,表示图上1厘米,相当于实际70000厘米(即700米).线段比例尺:1厘米,相当于实际距离100米.5、判断两种量是成正比例、反比例还是不成比例的方法:(1)找出题目中哪两种量是相关联的; (2)根据这两种相关联的量与第三个量的关系列出数量关系式;(3)看第三个量是比值(商)还是积,若比值(商)一定,就是正比例;若积一定就是反比例.第五部分 解决问题三、分数(百分数)问题1、分数(百分数)问题的分类(1)求甲数是乙数的几分之几(百分之几),就是求两个数的倍数关系.方法是:甲数÷乙数. (2)求一个数的几分之几(百分之几)是多少.用乘法来算.(3)已知一个数的几分之几(百分之几)是多少,求这个数.这是上面第二类题目的逆运算.可以用除法或列方程解.(4)求一个数比另一个数多(或少)几分之几(百分之几).方法是:“一个数比另一个数多(或少)的部分”÷单位“1”(另一个数).如:5比4多百分之几 方法是:(5-4)÷4=25%(5)已知一个数比另一个数多(或少)几分之几(百分之几),求这个数;这是上面第四类题目的逆运算,可以用除法或列方程解.2、用分数、百分数解决问题,关键的一条是弄清数量与分率之间的对应关系(即弄清谁是谁的几分之几或百分之几),所以一定要注意两个对比.比如下面的四道题,就要学会区分.1)一堆煤5吨,用去 1 5 ,还剩( )( ) . 2)一堆煤5吨,用去 15,还剩( )吨. 3)一堆煤5吨,用去1 5 吨,还剩( )( ) . 4)一堆煤5吨,用去15吨,还剩( )吨. 3、用百分数解决生活中的问题:发芽率、合格率、出勤率等等. 发芽率=发芽种子数 试验种子总数 ×100% 合格率= 合格产品数产品总数×100%出勤率=实际出勤人数 应出勤人数 ×100% 花生出油率= 花生油质量花生质量×100%第六部分 量与计量第七部分 图形与几何线同一平面上的两条直线或平行或相交.1、垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.2、平行线:在同一平面内不相交的两条直线叫做平行线.平行线之间的距离处处相等.角一、角的定义角:从一点引出两条射线所组成的图形叫做角.角的大小跟两条边张开的程度有关,跟两边长短无关.二、角的分类锐角:大于0°而小于90°的角.直角:等于90°的角.钝角:大于90°而小于180°的角.平角:等于180°的角.周角:等于360°的角.平面图形一、平行四边形和梯形(四边形)1、定义:两组对边分别平行并且相等的四边形叫做平行四边形.平行四边形具有不稳定性.2、长方形和正方形是特殊的平行四边形,因为长方形和正方形具备平行四边形的所有特征;正方形是特殊的长方形.二、三角形(由三条线段围成的图形)(每相邻两条线段的端点相连)1、按角分:锐角三角形、直角三角形、钝角三角形2、按边分:等腰三角形(只有两条边相等的三角形)、等边三角形(每个内角都是60°)、不等边三角形(三条边都不相等的三角形).3、三角形具有稳定性.三、圆(封闭的曲线图形)1、圆的各部分名称:半径(r)、直径(d)、圆心(O)2、圆的特点:同圆或等圆内,有无数条直径和半径,并且所有的直径都相等,所有的半径都相等;任何一个圆,不管有多大,它的周长永远是直径的π倍.圆的位置由圆心决定;圆的大小由半径决定.圆的周长和直径的比值是个固定的值,叫做圆周率.3、圆是轴对称图形,对称轴是直径所在的直线.圆的对称轴有无数条.温馨提醒(1)三角形和梯形面积计算都要“÷2”,因为在推导三角形和梯形面积公式时,都是用两个完全一样的图形拼成平行四边形,因此要“÷2”才是三角形和梯形的面积.(2)半圆的周长和圆的周长的一半的区别.半圆周长等于πd2 +d =(π2+1)d =(填空题可直接用此公式) 圆周长的一半等于πd2= 立体图形温馨提醒(1)圆锥的体积是与它等底等高的圆柱体积的13 ;圆柱的体积是与它等底等高的圆锥体积的3倍.(2)如果一个圆柱和一个圆锥体积相等,底面积也相等,那么圆锥的高是圆柱的3倍. (3)如果一个圆柱和一个圆锥体积相等,高也相等,那么圆锥的底面积是圆柱的3倍.二、图形与变换1、轴对称图形:图形沿着一条直线折叠后,直线两旁的图形能完全重合.2、图形平移3、图形旋转:顺时针、逆时针4、图形的放大与缩小三、图形与位置第八部分统计与概率一、数据的收集和整理二、统计表和统计图:统计数据除了可以分类整理成统计表外,还可以制成统计图.1、统计表:单式统计表和复式统计表2、统计图:(1)条形统计图:用直条的长短表示数量的多少,能清楚地看出数量的多少;(2)折线统计图:用折线起伏表示数量增减变化,从图中不仅能看出数量的多少,还能清楚地看出数量增减变化的情况.(3)扇形统计图:用整个圆表示总数量,用圆内各个扇形的大小表示各部分数量占总量的百分数的统计图;它的特点是:从图中能清楚地看出部分与总量、部分与部分之间的关系.附录π≈2π=3π=4π=5π=6π=7π=8π=9π=10π=102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361。
小学六年级数学总复习资料1-6年级数学知识点汇总
目录第一部分:(一)常用的数量关系式(二)小学数学图形计算公式(三)常用单位换算第二部分:第一章数和数的运算概念(一)整数(二)小数(三)分数(四)百分数运算的意义(一)整数四则运算(二)小数四则运算(三)分数四则运算(四)运算定律(五)运算法则应用(一)整数和小数的应用(二)分数和百分数的应用第二章度量衡(一)长度、(二)面积、(三)体积和容积、(四)质量、(五)时间第三章代数初步知识(一)用字母表示数、(二)简易方程、(三)解方程、(四)列方程解应用题(五)比和比例第四章几何的初步知识(一)线和角、(二)平面图形、(三)立体图形第五章简单的统计(一)统计表、(二)统计图小学1—6年级数学知识点汇总常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、速度×时间=路程路程÷速度=时间路程÷时间=速度3、单价×数量=总价总价÷单价=数量总价÷数量=单价4、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率5、加数+加数=和和一一个加数=另一个加数6、被减数一减数=差被减数一差=减数差十减数=被减数7、因数×因数=积积÷一个因数=另一个因数8、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=aXa2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=aXaXa3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b:宽h:高)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长nd=直径r=半径)(1)周长=直径×n=2×n×半径C=nd=2nr(2)面积=半径×半径×n9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2nr或nd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷315、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价一成本利润率=利润÷成本×100%=(售出价÷成本一1)×100% 涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1一20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
完整版)新人教版小学数学总复习知识点汇总
完整版)新人教版小学数学总复习知识点汇总新人教版小学数学总复知识点汇总第一部分:数和数的运算一、整数1.自然数、负数和整数1) 自然数是用来表示物体个数的数字,如1、2、3,其中1是自然数的基本单位,任何一个自然数都是由若干个1组成。
自然数中最小的是1,没有最大的自然数。
2) 负数和正数是表示相反意义的量。
正整数:1、2、3、4、……,是自然数。
零:既不是正数,也不是负数。
负整数:-1、-2、-3、-4……是负数。
2.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿等都是计数单位。
每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
3.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
4.数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1) 如果数a能被数b(b≠0)整除,a就叫做b的倍数,b 就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
例如,因为35能被7整除,所以35是7的倍数,7是35的约数。
2) 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如,10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.3) 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
例如,3的倍数有:3、6、9、12等,其中最小的倍数是3,没有最大的倍数。
4) 个位上是2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
5) 个位上是5或0的数,都能被5整除,例如:5、30、405都能被5整除。
6) 一个数的各位上的数的和能被3整除,这个数就能被3整除。
例如:12、108、204都能被3整除。
7) 一个数各位数上的和能被9整除,这个数就能被9整除。
8) 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
9) 能被2整除的数叫做偶数。
最小的偶数是2.不能被2整除的数叫做奇数。
人教版小学数学1-6年级总复习知识点
人教版小学数学一至六年级复习资料【目录】第一部分常用的数量关系---------------------------1第二部分小学数学图形计算公式---------------------1第三部分常用单位换算-----------------------------1第四部分基本概念------------------------------2第一章数和数的运算--------------------------------2第二章度量衡--------------------------------------8第三章代数初步知识--------------------------------9第四章空间与图形----------------------------------11第五章简单的统计---------------------------------14【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
小学数学总复习大全
小学数学总复习大全第一部分:数的认识和运算一、数的认识1. 自然数:包括0、1、2、3、4、5、6、7、8、9……,以及它们的顺序和大小关系。
2. 整数:包括正整数、0和负整数,如3、2、1、0、1、2、3……3. 分数:表示一个整体被等分后的部分,如1/2、3/4等。
4. 小数:表示整数与分数之间的数,如0.5、2.75等。
5. 质数与合数:质数是只能被1和它本身整除的数,如2、3、5、7等;合数是除了1和它本身外,还能被其他数整除的数,如4、6、8、9等。
二、数的运算1. 加法:将两个数相加得到它们的和,如3 + 4 = 7。
2. 减法:从一个数中减去另一个数得到它们的差,如7 4 = 3。
3. 乘法:将两个数相乘得到它们的积,如3 × 4 = 12。
4. 除法:将一个数分成若干等分,得到每个等分的大小,如12÷ 4 = 3。
5. 混合运算:加减乘除混合在一起的运算,如2 + 3 × 4 5 ÷ 2。
6. 分数运算:分数的加减乘除运算,如1/2 + 3/4 = 5/4。
7. 小数运算:小数的加减乘除运算,如0.5 × 2.75 = 1.375。
8. 质数与合数的运算:质数和合数的加减乘除运算,如2 + 3 = 5。
9. 整数运算:整数的加减乘除运算,如3 2 = 5。
小学数学总复习大全第二部分:计量单位与时间一、计量单位1. 长度单位:千米、米、分米、厘米、毫米,用于测量物体的长短。
2. 面积单位:平方千米、平方米、平方分米、平方厘米,用于测量物体的表面积。
3. 体积单位:立方米、立方分米、立方厘米,用于测量物体的体积。
4. 质量单位:吨、千克、克,用于测量物体的重量。
5. 容量单位:升、毫升,用于测量液体的体积。
6. 时间单位:年、月、日、时、分、秒,用于测量时间的长短。
二、时间1. 时间的表示:通过小时、分钟、秒来表示时间,如2小时30分钟。
小学数学毕业总复习公式定义大全
小学数学毕业考试总复习资料第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
(a+b)+c=a+(b+c)3、乘法交换律:两数相乘,交换因数的位置,积不变。
a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
(a×b)×c=a×(b×c)5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(a+b)×c=a×c + b×c6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?含有未知数的等式叫方程式。
9、什么叫一元一次方程式?含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
能约分的要先约分,再把约分后的分子、分母相乘。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
小学数学总复习大全
小学数学总复习大全小学阶段的数学学习是打基础的重要时期,为了帮助同学们更好地进行总复习,提高数学成绩,下面为大家整理了一份小学数学总复习的大全。
一、数与代数1、整数整数包括正整数、零和负整数。
我们要掌握整数的读法、写法、大小比较以及四则运算。
例如,加法和减法互为逆运算,乘法和除法互为逆运算。
2、小数小数由整数部分、小数点和小数部分组成。
要了解小数的性质,即小数的末尾添上“0”或去掉“0”,小数的大小不变。
还要学会小数的加减法和乘除法。
3、分数分数表示把一个整体平均分成若干份,取其中的一份或几份。
要明白分数的基本性质,即分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。
4、四则运算加法、减法、乘法和除法是四则运算。
在计算时,要遵循先乘除后加减的顺序,如果有括号,要先算括号里面的。
5、简易方程用字母表示数可以简明地表达数量关系。
方程是含有未知数的等式,解方程的依据是等式的性质。
二、图形与几何1、平面图形(1)长方形:对边相等,四个角都是直角,周长=(长+宽)×2,面积=长×宽。
(2)正方形:四条边都相等,四个角都是直角,周长=边长× 4,面积=边长×边长。
(3)三角形:由三条线段围成的图形,内角和是 180 度,面积=底×高÷ 2。
(4)平行四边形:对边平行且相等,面积=底×高。
(5)梯形:只有一组对边平行的四边形,面积=(上底+下底)×高÷ 2。
(6)圆:圆的周长=直径×π 或半径× 2×π,面积=半径×半径×π。
2、立体图形(1)长方体:有 6 个面,相对的面完全相同,12 条棱,相对的棱长度相等,8 个顶点。
表面积=(长×宽+长×高+宽×高)× 2,体积=长×宽×高。
(2)正方体:6 个面完全相同,12 条棱长度相等,8 个顶点。
小学数学总复习知识点总结(内部资料完整版)
小学数学总复习知识点总结(内部资料)目录第一章数和数的运算 (5)一、概念 (5)(一)整数 (5)(二)小数 (7)(三)分数 (8)(四)百分数 (8)二、方法 (8)(一) 数的读法和写法 (8)(二) 数的改写 (9)(三) 数的互化 (10)(四) 数的整除 (11)(五) 约分和通分 (11)三、性质和规律 (11)(一) 商不变的规律 (11)(二) 小数的性质 (11)(三) 小数点位置的移动引起小数大小的变化 (11)(四) 分数的基本性质 (11)(五) 分数与除法的关系 (12)四、运算的意义 (12)(一) 整数四则运算 (12)(二) 小数四则运算 (13)(三) 分数四则运算 (13)(四) 运算定律 (14)(五) 运算法则 (14)(六)运算顺序 (16)第二章度量衡 (16)一、长度 (16)(一) 什么是长度 (16)(二) 长度常用单位 (16)(三) 单位之间的换算 (16)二、面积 (16)(一)什么是面积 (16)(二) 常用的面积单位 (17)三、体积和容积 (17)(一) 什么是体积、容积 (17)(二) 常用单位 (17)(三) 单位换算 (17)四、质量 (17)(一) 什么是质量 (17)(二) 常用单位 (18)(三) 常用换算 (18)五、时间 (18)(一) 什么是时间 (18)(二) 常用单位 (18)(三) 单位换算 (18)六、货币 (18)(一) 什么是货币 (18)(二) 常用单位 (18)(三) 单位换算 (19)第三章代数初步知识 (19)一、用字母表示数 (19)(一) 用字母表示数的意义和作用 (19)(二) 用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式 (19)(三) 用字母表示数的写法 (21)(四) 将数值代入式子求值 (21)二、简易方程 (21)方程和方程的解 (21)三、解方程 (21)四、列方程解应用题 (21)(一) 列方程解应用题的意义 (21)(二) 列方程解答应用题的步骤 (22)(三) 列方程解应用题的方法 (22)(四) 列方程解应用题的范围 (22)五、比和比例 (22)(一) 比的意义和性质 (22)(二) 比例的意义和性质 (23)第四章几何的初步知识 (24)一、线和角 (24)(一) 线 (24)(二) 角 (24)二、平面图形 (25)(一) 长方形 (25)(二) 正方形 (25)(三) 三角形 (25)(四) 平行四边形 (26)(五) 梯形 (26)(六) 圆 (26)(七) 扇形 (27)(八) 环形 (27)(九) 轴对称图形 (28)三、立体图形 (28)(一) 长方体 (28)(二)正方体 (28)(三) 圆柱 (29)(四) 圆锥 (29)(五) 球 (30)第五章简单的统计 (30)一、统计表 (30)(一) 意义 (30)(二) 组成部分 (30)(三)种类 (30)(四) 制作步骤 (30)二、统计图 (31)(一) 意义 (31)(二) 分类 (31)第一章数和数的运算一、概念(一)整数1.整数的意义自然数和0都是整数。
小学数学1-6年级上下册知识点汇总总复习
一年级(上)1.数一数2.比一比:“同样多”、“多”、“少”以及“长”、“短”、“高”、“矮”。
3. 1~5的认识和加减法:⑴1~5的认识(基数、读写、数序、比大小、序数、组成)⑵1~5的加减法(加减法含义、计算)⑶0的认识(表示起点、没有)和加减法。
4.认识物体和平面图形:长方体、正方体、圆柱和球等立体图形与长方形、正方形、三角形和圆等平面图形。
5.分类:单一标准的分类和不同标准的分类6.6~9的认识和加减法:(1)6、7的认识和加减法(数数、数序、比大小、序数、写数、组成)。
(2)8、9的认识和加减法(出现了“一图两式”和“一图四式”、渗透统计思想、比多比少内容)(3)10的认识和有关10的加减法(省略了10的序数意义、填未知加数)。
(4)连加、连减和加减混合计算。
(5)整理和复习。
7.11~20各数的认识:数数、读数、数序和大小、序数、写数、个位和十位、10加几和十几加减几(不退位)、十几减十。
8.认识钟表:认识钟面、认识整时、认识半时。
9.20以内的进位加法:9加几(“点数”、“接着数”、“凑十”和“根据具体题目选择特殊方法”),8、7、6加几(“拆小数,凑十数”、“拆大数,凑小数”和“交换加数的位置”),5、4、3、2加几和“用数学”。
一年级(下)1.位置:用“上、下,前、后,左、右”描述物体的相对位置;根据行、列确定物体的位置。
2.20以内的退位减法:十几减9;十几减几;用数学。
3.图形的拼组:平面图形的特征;立体图形的关系4.100以内数的认识:数的认识(它包括:数数、数的组成、数位的含义、数的顺序)和加减(大小比较、整十数加一位数和相应的减法)。
5.认识人民币:认识人民币的单位元、角、分,知道1元=10角,1角=10分;简单的计算。
6.100以内的加法和减法(一):口算整十数加、减整十数;口算两位数加、减一位和整十数;用加法和减法解决简单的问题。
7.认识时间:认识几时几分(5分5分数、1分1分数)。
小学数学1-6年级总复习资料大全
小学数学1-6年级总复习资料大全
一、数的认识
1.1 整数
•整数的概念
•整数的比较
•正数、负数的概念
•整数加减法
•整数乘除法
1.2 分数
•分数的概念
•带分数的概念
•分数加减法
•分数乘法
•分数除法
1.3 分数与小数的转化
•分数转化为小数
•小数转化为分数
二、算式与方程
2.1 算式
•算式的概念
•算式的基本性质
•算式加减乘除法
•算式的化简
2.2 方程
•方程的概念
•一元一次方程
•解方程的方法
•方程的应用
三、图形与几何
3.1 图形
•点、线、面的概念
•直线、射线、线段的概念
•角、三角形、四边形、多边形的概念
•圆的概念
•圆和圆的位置关系
3.2 常见图形的计算
•正方形、长方形、三角形、梯形、圆的面积计算
•三角形、梯形、圆的周长计算
四、概率与统计
4.1 统计
•统计的概念
•调查和统计资料的搜集
•统计资料的整理和分析
•统计图表的制作和分析
4.2 概率
•概率的概念
•随机事件的概念与性质
•概率计算的基本方法
•概率的意义和应用
以上为小学数学1-6年级总复习资料大全,涵盖了小学数学的各个知识点,可供同学们进行方便的复习与查阅。
(完整版)小学数学总复习知识点整理(最全)
(完整版)小学数学总复习知识点整理(最全)总复习小学数学复习资料第一章数和数的运算一概念(一)整数1 .整数的意义自然数和0基本上整数。
2 .自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一具物体也没有,用0表示。
0也是自然数。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……基本上计数单位。
每相邻两个计数单位之间的进率基本上10。
如此的计数法叫做十进制计数法。
4. 数位计数单位按照一定的顺序罗列起来,它们所占的位置叫做数位。
5.数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就讲a能被b 整除,或者讲b能整除a 。
假如数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,因此35是7的倍数,7是35的约数。
一具数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一具数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一具数的各位上的数的和能被3整除,那个数就能被3整除,例如:12、108、204都能被3整除。
一具数各位数上的和能被9整除,那个数就能被9整除。
能被3整除的数别一定能被9整除,然而能被9整除的数一定能被3整除。
一具数的末两位数能被4(或25)整除,那个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一具数的末三位数能被8(或125)整除,那个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
小学数学知识点总复习资料汇总-小学数学知识点总结大全(精华版)
小学毕业数学知识点总复习资料汇总常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1 倍数×倍数=几倍数几倍数÷1 倍数=倍数几倍数÷倍数= 1 倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S :面积 a :边长)周长=边长× 4 C=4a面积=边长×边长S=a ×a2、正方体(V: 体积a: 棱长)表面积=棱长×棱长×6 表=a×a×6S体积=棱长×棱长×棱长V=a ×a×a3、长方形(C:周长S :面积 a :边长)周长=( 长+宽) ×2C=2(a+b)面积=长×宽S=ab4、长方体(V: 体积s: 面积a: 长宽h: 高)b:(1) 表面积( 长×宽+长×高+宽×高) ×2 S=2(ab+ah+bh)(2) 体积=长×宽×高V=abh5、三角形(s:面积:底h :高)a面积=底×高÷2 s=ah ÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a :底h :高)面积=底×高s=ah7、梯形(s:面积 a :上底:下底:高)b h面积=(上底+下底) ×高÷2 ×h ÷2s=(a+b)8、圆形(S:面积 C :周长лd= 直径r= 半径)(1) 周长=直径×л=2×л×半径C= лd=2лr(2) 面积=半径×半径×л9、圆柱体(v: 体积h: 高s :底面积底面半径c: 底面周长)r:(1) 侧面积=底面周长×高=ch(2 лr 或л d) (2) 表面积=侧面积+底面积×2体积=底面积×高(4)体积=侧面积÷2×半径(3)10、圆锥体(v: 体积高s :底面积底面半径)h: r:体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式( 和+差) ÷2=大数和-差) ÷2=小数(13、和倍问题和÷( 倍数-1) =小数小数×倍数=大数( 或者和-小数=大数) 14、差倍问题差÷( 倍数-1) =小数小数×倍数=大数或小数+差=大数()15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=( 售出价÷成本-1) ×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1 -20%)常用单位换算长度单位换算1 千米=1000 米1 米=10 分米分米=10 厘米1 米=100 厘米厘米=10 毫米11面积单位换算1 平方千米=100 公顷公顷=10000 平方米 1 平方米=100 平方分米11 平方分米=100 平方厘米平方厘米=100 平方毫米1体( 容) 积单位换算1 立方米=1000 立方分米立方分米=1000 立方厘米立方分米=1 升111 立方厘米=1 毫升立方米=1000 升1重量单位换算1 吨=1000 千克千克=1000 克 1 千克=1 公斤1人民币单位换算1 元=10 角角=10 分元=100 分11时间单位换算1 世纪=100 年 1 年=12 月大月(31 天) 有:1\3\5\7\8\10\12 月小月(30 天) 的有:4\6\9\11 月平年2 月28 天, 闰年2 月29 天平年全年365 天, 闰年全年366 天 1 日=24 小时1 时=60 分 1 分=60 秒时=3600 秒1基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0 都是整数。
小学数学复习资料知识点+公式
小升初数学复习资料基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习资料汇总第一章数与代数第一节数的认识一、整数1、整数的意义1、像-2、-1、0、1……这样的数称为整数。
2、整数分为正整数,0,负整数。
3、正整数,0又称为自然数,而且是最小的自然数。
4、整数的个数是无限的,既没有最大的整数,也没有最小的整数。
2、自然数1、我们在数物体的时候,用来表示物体个数的1、2、3……叫做自然数。
2、一个物体也没有,用0表示。
3、0也是自然数,而且是最小的自然数,没有最大的自然数。
4、自然数既可以表示事物的多少(即基数),也可以表示事物的次序(即序数)。
3、正数与负数:表示两种相反意义的量。
1、0既不是正数,也不是负数。
2、不管是什么数(整数,分数,小数,百分数)都有正数与负数之分。
3、正数>0>负数4、计数单位1、一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
5、数位1、计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
2、数位是指各个计数单位所占的位置;每个数位上的数都有相应的计数单位;位数是指一个自然数中含有数位的个数。
6、读法和写法:1、读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、大于0的整数的大小比较1、比较两个整数的大小,如果位数不同,那么位数多的数就大;如果位数相同,左起第一位上的数大的那个数就大;左起第一位上的数相同,就比较左起第二位上的数,左起第二位上的数大的那个数就大,以此类推。
2、负数:负号前面的数越大就越小。
8、改写和省略尾数1、根据需要,有时需将一个较大的数改成用万或亿做单位的数,改写时只要在万位或者亿位右下方点上小数点,然后把小数末尾的0去掉,再写上“万”或者“亿”字,改写的数是原数的准确的数,用“=”连接。
2、有时根据实际需要把一个数某一位后面的尾数省略,求他的近似数。
3、用“四舍五入”法求一个数的近似数,要看所省略的尾数的最高位,如果尾数最高位上的数不满5时,就直接把尾数都舍去;如果尾数最高位上的数大于或等于5时,把尾数舍去后,向他的前一位进一(注:在用“四舍五入”法求一个数的近似数时,也会用到“进一法”和“去尾法”,主要用于解决实际问题)。
近似数与原数用“. ”连接。
9、0的作用。
1、表示占位;表示起点;表示界限。
2、根据读法规则,每级末尾的0都不读,其它数位有一个0或连续几个0,都只读一个零;在写数上,要符合“一个零都不读出来”的条件,就要把0放在级尾,六位数中包含万级和个级两个级尾,即要把0放在万级或个级的级尾;要符合“只读一个零”的条件,那么在个级首或个级中间有一个0或连续几个0;要符合“只读两个零”,那么在个级首或个级中间同时出现0。
10、数的整除1、因数与倍数1、整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a 能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
2、倍数和约数是相互依存的。
3、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
4、一个数的倍数的个数是无限的,其中最小的倍数是它本身。
没有最大的倍数。
5、个位上是0、2、4、6、8的数,都能被2整除。
6、个位上是0或5的数,都能被5整除。
7、一个数的各位上的数的和能被3整除,这个数就能被3整除。
8、一个数各位数上的和能被9整除,这个数就能被9整除。
9、能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
10、一个数的末两位数能被4(25)整除,这个数就能被4(25)整除。
11、一个数的末三位数能被8(125)整除,这个数就能被8(125)整除。
2、奇数与偶数。
1、能被2整除的数叫做偶数。
2、不能被2整除的数叫做奇数。
3、自然数中只有奇数与偶数。
4、关系式:1.偶数±偶数=偶数。
2.奇数±奇数=偶数。
3.奇数±偶数=奇数。
4.偶数用代数式2n,2n±2表示。
5.偶数×偶数=偶数。
6.偶数×奇数=偶数。
7.奇数×奇数=奇数。
8.奇数用代数2n-1,2n+1表示。
3、质数(素数)与合数1、按一个数约数的个数,非0自然数可分为1、质数、合数三类。
2、一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
3、100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
4、一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
5、1不是质数也不是合数。
6、自然数除了0和1外,不是质数就是合数。
7、如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
8、每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
4、公因数(或叫公约数)和最大公因数(或叫最大公约数)(公因数有最大,公倍数只有最小)1、几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数。
2、公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1、1和任何自然数互质。
2、相邻的两个自然数互质。
3、两个不同的质数互质。
4、当合数不是质数的倍数时,这个合数和这个质数互质。
5、两个合数的公约数只有1时,这两个合数互质。
6、如果几个数中任意两个都互质,就说这几个数两两互质。
较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
7、如果两个数是互质数,它们的最大公约数是1。
5、公倍数和最小公倍数。
1、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
2、求最大公约数与最小公倍数一般采用短除法。
注:1、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数,那么较小数就是这两个数的最大公因数。
2、如果两个数是互质数,那么这两个数的积就是它们的最小公倍数,而1就是这两个数的最大公因数。
3、几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
6、分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数;把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。
二、小数1、小数的意义。
1、把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
2、计数单位:一位小数表示十分之几,计数单位就是十分之一;两位小数表示百分之几,计数单位就是百分之一;三位小数表示千分之几,计数单位就是千分之一……3、构成:一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
4、读法:读小数时,整数部分仍然按整数的读法读,小数点读作“点”,小数部分的数按数位顺序依次读出每个数位上的数字,小数点后面的“0”有几个读几个。
5、写法:在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
写小数时,仍然按整数的写法写,整数部分是零的要写“0”,小数点要写在个位右下角,然后依次写出小数部分每一个数位上的数字。
6、整数和小数都是按照十进制计数法写出的数。
2、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变3、小数的分类1、纯小数:整数部分是零的小数,叫做纯小数。
2、带小数:整数部分不是零的小数,叫做带小数。
3、有限小数:小数部分的数位是有限的小数,叫做有限小数。
4、无限小数:小数部分的数位是无限的小数,叫做无限小数。
5、无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
6、循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
7、一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
8、纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
9、混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
10、写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
4、小数点位置移动引起的小数变化:1、小数点向右移动一位、二位、三位……,原来的数分别扩大10倍、100倍、1000倍……。
2、反之小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……。
即原来的数就缩小到它的十分之一,百分之一,千分之一……3、位数不够时,必须添加“0”补足位数5、互化。
1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2、分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3、纯循环小数化为分数:把第一个循环节的数字组成的数作为分子,分母由数字9组成,9的个数等于循环节的个数。
4、混循环小数化为分数:其分子是小数点右边第一个数字到第一个循环节末位的数字所组成的数减去不循环数字所组成的差,分母由数字9和0组成,9的个数等于循环节的位数,0的个数等于不循环部分的位数。
6、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……三、分数1、分数的意义。
1、把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
ab=a÷b=a:b。
2、在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的分类1、真分数:分子比分母小的分数叫做真分数。
真分数小于1。
2、假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
3、带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、假分数与带分数互化:,假分数化带分数,分母不变,用分子除以分母所得的商作为带分数的整数部分,余数作为带分数的分子;带分数化假分数是分母不变,用带分数的整数部分乘以分母所得的积加上分子所得的和作分子。