板式橡胶支座的设计计算

合集下载

支座规范

支座规范

中华人民共和国交通行业标准JT/T 4-2004代替JT/T 4--1993,JT3132.3--90公路桥梁板式橡胶支座2004-03-17发布 2004-06-1实施中华人民共和国交通部发布公路桥梁板式橡胶支座1 范围本标准规定了公路桥梁板式橡胶支座产品的分类、技术要求、试验方法、检验规则以及标志、包装、储存、运输、安装和养护的要求。

本标准适用于公路桥梁所用矩形、圆形板式橡胶支座。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 528硫化橡胶或热塑性橡胶拉伸应力应变性能的测定(eqv IS037:1994) GB/T 912碳素结构钢和低合金结构钢热轧薄钢板及钢带GB/T 1682硫化橡胶低温脆性的测定---单试样法(eqv lS0812:1991)GB/T 3280不锈钢冷轧钢板GB/T 3512硫化橡胶或热塑性橡胶热空气加速老化和耐热试验(eqv IS0188:1998)GB/T 6031硫化橡胶或热塑性橡胶硬度的测定(10~100IRHD)(idt IS048:1994) GB/T 7759硫化橡胶或热塑性橡胶在常温、高温和低温下压缩永久变形的测定(eqv ISO 815:1991)GB/T 7760硫化橡胶与金属粘合的测定——单板法(eqv IS0813:1986)GB/T 7762硫化橡胶耐臭氧老化试验——静态拉伸试验法(neq IS01431/1:1989)GJB 3026聚四氟乙烯大型板材规范HG/T 2198硫化橡胶物理试验方法的一般要求HG/T 2502 5201硅脂JT 391公路桥梁盆式橡胶支座JJG 175非金属拉力、压力和万能试验机检定规程JTG 1362公路钢筋混凝土及预应力混凝土桥涵设计规范3 产品分类及代号3.1产品分类3.1.1按结构型式分为:a)普通板式橡胶支座区分为矩形板式橡胶支座(代号GJZ)、圆形板式橡胶支座(代号GYZ);b) 四氟滑板式橡胶支座区分为矩形四氟滑板橡胶支座(代号GJZF4)、圆形四氟滑板橡胶支座(代号GYZF4)。

板式橡胶支座的设计计算

板式橡胶支座的设计计算

7.3 板式橡胶支座的设计计算板式橡胶支座的设计计算包括确定支座尺寸,验算支座受压偏转角情况及验算支座的抗滑稳定性。

1.确定支座的平面尺寸桥梁支座设计过程实际上是一个成品支座选配的过程,一般可根据主梁的实际情况,先假设板式橡胶支座的平面尺寸或直径d ,然后根据板式橡胶支座的构造规定(加劲板与支座边缘的最小距离不应小于5mm )确定加劲钢板尺寸b a l l ×b a l l 00×或直径,从而计算出加劲钢板的面积0d b a e l l A 00×=或。

然后根据橡胶支座的压应力不超过它们相应的压应力限值的要求来验算假设的平面尺寸是否满足设计要求。

橡胶支座压应力按式(7.1)计算:4/20d A e π= c eckA R σσ≤=(7.1) 式中:——支座有效承压面积(承压加劲钢板面积);e A ck R ——支座使用阶段的压力标准值,车道荷载应计入冲击系数;c σ2.确定支座的厚度现(见图7.8),因此要确定支座的厚度h 生的支座剪切变形值。

显然,水平位移之间应满足下列关系:l ∆l ∆][ααtg t tg el ≤∆=式中,[]αtg 为橡胶片的容许剪切角正切值,对于硬度为55°~60°的氯丁橡胶,规范规定,当不计汽车制动力作用时采用0.5,计及汽车制动力时可采用0.7。

因此上式可写成:不计制动力时 t l e ∆≥2 (7.2)计入制动力时 l e t ∆≥43.1 (7.3) 式中:t e ——支座橡胶层总厚度,u es es l es e t t n t t ,,)1(+−+=;u es t ,、、——分别为支座上、下层和中间层橡胶层厚度;l es t ,es t n ——加劲钢板层数;l ∆——g l ∆=∆(不计制动力时)或bk F g l ∆+∆=∆(计入制动力时);g ∆——上部结构由温度、混凝土收缩和徐变等作用标准值引起的支座的水平位移; Fbk ∆——由车道荷载制动力引起的一个支座上的水平位移。

支座的设计

支座的设计
3 桥墩构造设计
3.1 桥墩类型和主要材料
1、 上部构造为装配式预应力混凝土空心板; 2、 预制板全长:(伸缩缝宽4cm); 3、 桥墩型式:圆端型实体重力式桥墩; 4、 桥墩材料:墩帽用C25钢筋混凝土,墩身和基础用20号片
石混凝土; 5、 地基:岩石地基,地基容许承载力。
3.2 桥墩截面尺寸拟定
2.3 支座平面尺寸的确定
橡胶支座的平面尺寸。a×b要由橡胶板本身的抗压强度、梁 部或墩台顶混凝土的局部承压强度等三方面因素全面考虑后来 确定。在一般情况下,尺寸a×b多由橡胶支座的强度来控制。
对于橡胶板 式中:—支座压力标准值,汽车荷载应计入冲击系数;
—橡胶支座使用阶段的平均压应力限值,;S应 在范围内取用。
3.6m,对于实体桥墩,不考虑活载冲击力。
单孔单列 双孔双列
3、纵向力计算
1 汽车制动力
制动力按布置载荷载长度内的一行汽车车道荷载的10%计算,且制动 力不得小于90KN,本桥为双向两车道,采用一个车道的汽车重力。
Fb不应小于90KN,取90KN。 ②制动力对墩身各截面产生的弯矩
1——1截面 5——5截面 基底截面
1、偏心距计算
1——1截面 组合II
式中y——截面重心至偏心方向截面边缘的距离。 满足规范要求。
5——5截面 组合II
满足规范要求。
2、强度计算
按《桥规》(JTG D2004)中第3.0.2条的规定,对1——1、5——5 截面强度进行验算。
1——1截面 组合I
m--截面形状系数,对箱形或矩形截面取8; ;
15.46
515.9
1.488
15.46
17.51
725.4
1.648
17.51

板式橡胶支座重量计算公式(二)

板式橡胶支座重量计算公式(二)

板式橡胶支座重量计算公式(二)板式橡胶支座重量计算公式概述板式橡胶支座是一种用于承受和调节建筑结构荷载的装置。

在设计过程中,需要计算支座的重量,以确保其具备足够的承载能力。

本文将介绍板式橡胶支座重量的计算公式,并通过示例进行解释说明。

计算公式一般计算公式一般而言,板式橡胶支座的重量主要由橡胶本身和加强材料构成,其中橡胶的重量可根据其密度和体积进行计算,加强材料的重量可以通过其密度、长度、宽度和厚度计算。

橡胶重量计算公式橡胶重量(kg)= 橡胶密度(kg/m³) * 橡胶体积(m³)加强材料重量计算公式加强材料重量(kg)= 加强材料密度(kg/m³) * 加强材料体积(m³)支座重量计算公式支座重量(kg)= 橡胶重量(kg) + 加强材料重量(kg)举例说明假设某板式橡胶支座的橡胶密度为1400 kg/m³,橡胶体积为m³,加强材料密度为2500 kg/m³,加强材料尺寸为 m * m * m。

首先,根据橡胶重量计算公式,计算橡胶的重量:橡胶重量 = 1400 kg/m³ * m³ = 70 kg然后,根据加强材料重量计算公式,计算加强材料的重量:加强材料重量= 2500 kg/m³ * ( m * m * m) = 8 kg最后,根据支座重量计算公式,计算支座的总重量:支座重量 = 70 kg + 8 kg = 78 kg因此,该板式橡胶支座的重量为 78 kg。

结论本文介绍了板式橡胶支座重量的计算公式,并通过一个示例进行了解释说明。

在实际设计中,根据具体的橡胶材料和加强材料的参数,可以使用上述公式计算支座的重量,从而确保其满足承载要求。

钢板支座计算

钢板支座计算

1、已知条件: 底板宽度:a =底板长度:b =支座设计高度:H=支座球半径大小:r=底板设计厚度:t = 立板及筋板厚度:t0 底板螺栓孔径:D = 橡胶垫厚度:d0= 最大支反力:R = 对应支座水平力:Vx 对应支座水平力: 支座水平合力: V= 钢材强度设计值:f =210N/mm^2加肋板与立板焊缝高度:hf= 柱的轴心抗压强度设计值:fcc =10.625N/mm^2(按C25混凝土计算)(fcc =0.85×12.5=10.625) 加劲板宽度:e =(a -t0)÷2=113mm 立板与筋板计算高度:h =H -r -t -t0-d0=126mm 底板螺栓孔的面积:A0=4×3.142×(D÷2)^2=2828mm^22、支座底板厚度及立板、筋板厚度验算: 底板净面积:Apb=a ×b -A0=54772mm^2砼柱的分布反力:δc=(R/Apb)+(6*V*H)/(a*a*a)=8.26N/mm^2≤1.5fcc底板两相邻支撑板的对角线长度:a1={[(a -t0)÷2]^2+[(b -t0)÷2]^2}^0.5=160mm b1为支座底板中心到a1的垂直距离;b1=[(a -t0)÷2]×[(b -t0)÷2]÷a1=80mmb1/a1=0.50故弯矩系数:α=底板弯矩:Mmax =α*δc*a1^2=12660N*mm 底板厚度:tpb ≥(6Mmax/f)^0.5=19.0mm支座节点板厚度 t ≥ 0.7×tpb=13mm3、支座节点板间焊缝计算: ①一般取支座底板的0.7倍计算。

②双面焊缝计算:δfs =(δM^2+τv^2)^0.5≤[δ]=160N/mm^2垂直加劲肋与支座立板的垂直角焊缝的计算长度:Lwv =h -2Hf =90mm铰接压力支座计算书偏心弯矩:M =R÷4×(e÷2)=5367500N*mm剪力:V =R÷4=1750N在偏心矩M 作用下垂直焊缝的正应力:δM =6M÷(2×0.7×h f ×Lwv^2)=157.77N/mm^2在剪力V 作用下垂直角焊缝的剪应力:τv =V÷(2×0.7×hf×Lwv)=0.77N/mm^2所以:δfs = (δM^2+τv^2)^0.5 =158≤[δ]=160N/mm^24、支座底板与节点板和垂直加劲肋的水平连接焊缝,一般采用角焊缝,焊角尺寸hf 在6~10mm 范围内。

公路桥梁板式橡胶支座尺寸表

公路桥梁板式橡胶支座尺寸表

板式橡胶支座一、公路桥梁板式橡胶支座规格系列1、范围本标准规定了板式橡胶支座的要求、规格系列及选用。

本标准适用于承载力小于5000kN 的公路桥梁用矩形、圆形平板式橡胶支座。

2、规范性引用文件下列文中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

JT/T4 一2004 公路桥梁板式橡胶支座JTG D60 一2004 公路桥涵设计通用规范JTG D62 一2004 公路钢筋混凝土及预应力混凝土桥涵设计规范3、支座要求3 . 1支座产品分类、代号、结构、技术要求、试验方法、检验规则及标志、包装、贮存、运输、安装和养护均应满足JT/T4 一2004的要求.3. 2 支座使用阶段平均压应力бC=10M Pa ( S <7时бC=8M Pa);橡胶硬度60 ( IRHD )时,其常温下剪变模量G = 1.OMpa 。

剪变模量随温度下降而递增,当累年最冷月平均温度的平均值O ~-10℃时为寒冷地区,G = 1 . 2MPa ;当低于-10 ℃时为严寒地区,G = 1.5MPa ;当低于-25 ℃时,G = 2 . 0 MPa 。

全国气温分区图见JTG D60 一2004附录B。

3.3支座橡胶弹性体体积模量Eb= 2000 MPa。

支座与混凝土接触时,摩擦系数μ= 0 . 3 ,与钢板接触时,摩擦系数μ=0 .2 。

聚四氟乙烯板与不锈钢板接触(加硅脂)时,μf=0 . 06 ,当温度低于-25 ℃时,μf值增大30 % ,当不加硅脂时,μf应加倍。

若有实测资料时,也可按实测资料采用。

3.4 橡胶支座剪切角α 正切值,当不计制动力时,tan α不大于0 .5 ,当计入制动力时,tan α不大于0 .7.3.5 橡胶支座的计算和验算均应满足JTG D62 一2004的要求。

网架矩形橡胶支座节点技术手册

网架矩形橡胶支座节点技术手册

网架矩形橡胶支座节点技术手册板式橡胶支座是由多层橡胶片和薄钢板粘合硫化而成。

它除了能将上部网架结构的垂直集中压力传给柱、墙或梁外,还能适应网架结构所产生的水平位移和转角。

板式橡胶支座节点,构造简单、经济、安装方便,适用于大中跨度的网架。

用于网架结构的板式橡胶支座连接节点的板式橡胶支座,分为氯丁橡胶支座和天然橡胶支座。

气温不低于-25℃的地区可采用氯丁橡胶支座;气温在-25℃至-40℃的地区可采用天然橡胶支座。

板式橡胶支座的设计指标,应按以下要求确定:(1)橡胶支座所用的胶料的物理机械性能指标,应按下表采用:(2)橡胶支座(成品)的物理力学性能指标,应按下表采用:橡胶支座的抗压弹性模量随支座形状系数而变化,具体按下表采用:表中公式:形状系数参数说明:、为橡胶支座短边长度和长边长度,可参考下文中表格确定;为支座中间层橡胶片的厚度。

(3)橡胶支座中间加劲用薄钢板,应采用符合国家标准《碳素结构钢技术条件》(GB/T700-88)规定的Q235钢或符合国家标准《低合金结构钢》(GB/T1591-1994)规定的Q345钢和Q390钢。

其屈服点、抗拉强度及厚度的偏差均应符合国家标准《普通碳素结构钢和低合金结构钢薄钢板技术条件》(GB912)的有关规定。

薄钢板的厚度不应小于2mm。

平面尺寸应比橡胶板每边小5mm。

浇注橡胶前,必须对钢板除锈、去油污、清擦干净,并将周边应仔细加工,以防粘结不良和避免产生应力集中。

设计板式橡胶支座时,应按要求计算确定,同时应满足以下的构造要求:(1)板式橡胶支座的平面尺寸短边()与长边()之比,一般可在1:1~1:1.5的范围内采用。

为便于支座的转动,短边应放置在平行于网架跨度的方向,长边则垂直于网架跨度的方向;同时应根据工程地质条件、抗震设防要求以及网架下部支承情况等,正确选用和合理布置橡胶支座。

(2)板式橡胶支座的总厚度应根据网架跨度方向的伸缩量和网架支座转角的要求来确定,一般可在短边长度的1/10~3/10的范围内采用,且不宜小于40mm。

板式橡胶支座的设计与计算

板式橡胶支座的设计与计算
现: Ee = 5.4GeS 2
矩形支座:S =
l0al0b
2tes (l0a + l0b )
圆形支座:
S=
d0
4tes
Qingdao Technological University
第七章 梁式桥支座
4. 验算支座的抗滑移稳定性:
——保证支座与砼间有足够的摩擦力来抵抗水平力 板式橡胶支座: (1)不计制动力时:
Qingdao Technological University
第七章 梁式桥支座
1、确定支座的平面尺寸
——由橡胶板的抗压强度和梁部或墩台顶砼的局 部承压强度确定
对橡胶板:
σ
=
Rck Ae
≤σc
(7.1)
Qingdao Technological University
第七章 梁式桥支座
对混凝土: Ncj ≤ lalb βRab /γm
⎧ ⎪
µRGk
≥ 1.4Ge
⋅ Ag
⋅ ∆l te
⎨ ⎪⎩
µRck

1.4Ge

Ag

∆l te
+ Fbk
思考题
1、桥梁支座的功能是什么?公路桥支座有哪些 类型?
2、详述板式橡胶支座和盆是橡胶支座的构造? 板式橡胶支座和盆式橡胶支座的活动机理分 别是什么?后者有哪些优点?
3、桥梁支座布置时应依据什么原则? 4、如何设计板式橡胶支座?
36℃,安全设计等级取二级。边主梁人群最大支点反力 17.7KN,车道集中荷载最大支点反力110.70KN,车道均 布 荷 载 最 大 支 点 反 力 44.5KN , 恒 载 支 点 反 力 标 准 值 =157.00KN。假设梁的抗弯刚度B=0.19877×107KN/m2, 确定:支座的型号和规格。

板式橡胶支座的单位

板式橡胶支座的单位

板式橡胶支座的单位一、引言板式橡胶支座是一种新型的桥梁支座,其具有良好的减震和隔振效果,被广泛应用于桥梁、隧道等工程中。

本文将从单位制、结构特点、材料选择、设计计算等方面进行详细介绍。

二、单位制板式橡胶支座的单位制主要包括长度单位、质量单位和力学单位。

在国际标准体系下,长度单位采用米(m),质量单位采用千克(kg),力学单位采用牛顿(N)。

三、结构特点板式橡胶支座由上下两个钢板和中间的橡胶垫组成。

钢板通常为Q235或Q345钢板,厚度在10mm至50mm之间。

橡胶垫通常为天然橡胶或合成橡胶,硬度在40-70之间。

其厚度根据设计要求而定。

四、材料选择4.1 钢板钢板是构成板式橡胶支座的主要材料之一。

通常采用普通碳素结构钢Q235或高强度低合金结构钢Q345作为材料。

其中Q235钢板具有良好的可焊性和塑性,适用于厚度较小的板式橡胶支座;Q345钢板具有较高的强度和韧性,适用于厚度较大的板式橡胶支座。

4.2 橡胶垫橡胶垫是板式橡胶支座的核心材料,其主要作用是减震和隔振。

常用的橡胶材料包括天然橡胶、丁腈橡胶、氯丁橡胶等。

其中天然橡胶具有良好的弹性和耐磨性,但价格较高;丁腈橡胶具有良好的耐油性和耐候性,适用于工业环境中使用;氯丁橡胶具有良好的耐水性和耐化学腐蚀性能。

五、设计计算5.1 承载力计算板式橡胶支座承载力主要由钢板和橡胶垫共同承担。

钢板承受垂直荷载时产生弹性变形,而橡胶垫则承受剪切变形。

根据杆件理论,板式橡胶支座的承载力可以通过以下公式计算:F = k * A * Δ其中,F为板式橡胶支座的承载力(N);k为刚度系数(N/m);A为钢板的面积(m²);Δ为板式橡胶支座的弹性变形量(m)。

5.2 变形计算板式橡胶支座在受到荷载作用时会产生一定的变形。

根据杆件理论,板式橡胶支座的变形可以通过以下公式计算:δ = F * L / k其中,δ为板式橡胶支座的变形量(m);F为荷载作用下的承载力(N);L为钢板长度(m);k为刚度系数(N/m)。

板式橡胶支座介绍

板式橡胶支座介绍

板式橡胶支座70年代中期,由铁道部科学研究院主持,常熟橡胶厂参加了板式橡胶支座的研制生产,并把我厂小批量试制的产品,进行一系列的试验和实地试用,为我国铁路、公路桥梁应用橡胶支座积累了大量科学数据和实践经验。

1982年,铁道部在全国首家对我厂板式橡胶支座进行了唯一的部级的技术鉴定。

从此开始,板式橡胶支座的应用和生产如雨后春笋,应用面之广、品种开发之快前所未有,至目前板式橡胶支座产品品种,按支座形状划分有矩形板式橡胶支座(GJZ、GJZF4)、圆形板式橡胶支座(GYZ、GYZF4);球冠圆板橡胶支座(TCYB);坡形橡胶支座。

按橡胶种类划分的氯丁橡胶支座(CR)、天然橡胶支座(NR)、三元乙丙橡胶支座(EPDM)。

按结构型式分有普通橡胶支座、聚四氟乙烯滑板橡胶支座。

我厂生产的“永恒”牌橡胶支座,先后在国内著名的桥梁上被采用,如唐山滦河大桥、柳州二桥、郑州黄河大桥、东营黄河大桥、九江长江大桥、重庆长江大桥、嘉陵江大桥、哈尔滨松花江大桥、广东南海西樵大桥、南昌新八一桥等等。

随着城市市政建设的加快,在全国众多大城市的城市立交桥、高架桥也纷纷使用“永恒”产品,其中著名的北京多座立交桥、天津多座立交桥、上海南浦、杨浦大桥和高架道路、广州六二三高架道路、南京长江大桥立交等。

还使用于全国首条沪嘉高速公路的配套工程,沈大、成渝、杭甬、沪宁高速公路的桥梁、立交桥上使用了数以万计的“永恒”橡胶支座。

从85年起,还被选用于出口配套孟加拉国、伊拉克、也门、坦桑尼亚等援外桥梁工程,91~93年经香港费雷雪纳德公司(FREYSSINET)检测中心检测质量符合英国BS5400标准,配套使用于澳门新澳凼大桥的工程。

我厂是铁道部、交通部首批认可的生产部标系列产品的专业厂,产品严格按中华人民共和国铁道部TB1893-1987《铁路桥梁板式橡胶支座》和中华人民共和国交通部标准JT/T4-1993《公路桥梁板式橡胶支座》组织生产。

并能提供聚四氟乙烯滑板橡胶支座的全套附件。

支座的设计与验算

支座的设计与验算


(2)确定支座的厚度

支座厚度 = 橡胶层总厚度te + 金属加劲薄板的总厚度矩形支座圆形支座
la la te 10 5
d d te 10 5
la —— 矩形支座短边尺寸; d —— 圆形支座直径。
(3)验算支座随梁偏转时不发生脱空和局部承压

支座竖向平均压缩变形应满足
la 0.07te 2
μ——摩擦系数;μ=0.3(支座与混凝土), μ=0.2(支座与钢板) RGk——结构自重引起的支座反力标准值; Fbk——结构自重和0.5倍汽车荷载引起的支座反力标准值;
四、支座的设计与验算

计算每个支座所承受的竖向力、水平力、位移和转角。 选定支座的各部分尺寸并进行强度、稳定等各项验算。
2、板式橡胶支座的设计与计算
(1)确定支座有效承压面积Ae
Ae
Rck
c

Rck——支座使用阶段的压力标准值。 [σc]——支座使用阶段的平均压应力限值。 [σc]=10MPa
θ —— 由上部结构挠曲在支座顶面引起的倾角 la —— 矩形支座短边尺寸或圆形支座直径
(4)验算支座的抗滑稳定性

为保证橡胶支座与梁底或墩台顶面间不发生相对滑动,应满足: 不计汽车制动力时 计入汽车制动力时
RGk 1.4Ge Ag
l te
l Rck 1.4Ge Ag Fbk te

公路桥梁板式橡胶支座设计选型及计算教学文案

公路桥梁板式橡胶支座设计选型及计算教学文案

公路桥梁板式橡胶支座设计选型及计算公路桥梁板式橡胶支座设计选型及计算张忠效郑秀琦(北京建达道桥咨询有限公司驻赣办,江西南昌 330029)摘要:从工程设计出发,论述了公路桥梁板式橡胶支座材料、形状、尺寸的选用及计算方法,并结合实际工作经验,对支座选型时易范的错误和一些经验数值进行了集中讲解和列举,还特别提出了支座橡胶层总厚度和四氟滑板支座选型的计算方法,可供设计参考。

关键词:公路桥梁;板式橡胶支座;选型;计算方法;实例分析中图分类号:U443.36 文献标识码:ASpecification Choice and the Computational Method of Plate Type Elastomeric Pad Bearing for Highway Bridges in DesignZHANG Zhong-hao,ZHENG Xiu-qi(Beijing jianda road and bridge consulting company’s Office in JiangXi,Nanchang 330029,China) Abstract: Embarking from the engineering design, the article discusses how to select the material, the shape, the size of the plate type elastomeric pad bearing and calculate them. It also introduces some mistakes easy to commited and some experience value of selecting the plate type elastomeric pad bearing from actual project. The article especially elaborates the computational method of the thickness of latex's plate type elastomeric pad bearing and the choice of polytetrafluoroethylene slide plate type pad bearing. It is hoped that it can provide some references for the bridge design.Key words: Highway bridges;Plate type elastomeric pad bearings;Specification choice;Computational method;Analyze the typical example桥梁支座的主要功能是将上部结构反力可靠地传递给墩台,并同时完成梁体结构受力所需的变形(水平位移及转角)。

公路桥梁板式橡胶支座尺寸表

公路桥梁板式橡胶支座尺寸表

板式橡胶支座一、公路桥梁板式橡胶支座规格系列1、范围本标准规定了板式橡胶支座的要求、规格系列及选用。

本标准适用于承载力小于5000kN 的公路桥梁用矩形、圆形平板式橡胶支座。

2、规范性引用文件下列文中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

JT/T4 一2004 公路桥梁板式橡胶支座JTG D60 一2004 公路桥涵设计通用规范JTG D62 一2004 公路钢筋混凝土及预应力混凝土桥涵设计规范3、支座要求3 . 1支座产品分类、代号、结构、技术要求、试验方法、检验规则及标志、包装、贮存、运输、安装和养护均应满足JT/T4 一2004的要求.3.2 支座使用阶段平均压应力бC=10M Pa ( S <7时бC=8M Pa);橡胶硬度60 ( IRHD )时,其常温下剪变模量G = 1.OMpa 。

剪变模量随温度下降而递增,当累年最冷月平均温度的平均值O ~-10℃时为寒冷地区,G = 1 . 2MPa ;当低于-10 ℃时为严寒地区,G = 1.5MPa ;当低于-25 ℃时,G = 2 . 0 MPa 。

全国气温分区图见JTG D60 一2004附录B。

3.3支座橡胶弹性体体积模量Eb= 2000 MPa。

支座与混凝土接触时,摩擦系数μ= 0 . 3 ,与钢板接触时,摩擦系数μ=0 . 2 。

聚四氟乙烯板与不锈钢板接触(加硅脂)时,μf=0 . 06 ,当温度低于-25 ℃时,μf值增大30 % ,当不加硅脂时,μf应加倍。

若有实测资料时,也可按实测资料采用。

3.4 橡胶支座剪切角α 正切值,当不计制动力时,tan α不大于0 .5 ,当计入制动力时,tan α不大于0 .7.3.5 橡胶支座的计算和验算均应满足JTG D62 一2004的要求。

桥梁支座详解全攻略,图文+计算详解

桥梁支座详解全攻略,图文+计算详解

桥梁支座详解全攻略,图文+计算详解!桥梁支座设置于上部结构与墩台之间,主要作用就是将上部结构的各个荷载传递到墩台上,今天小编就和大家一起来学习学习桥梁支座都有什么类型,构造都是什么样子,在桥梁工程中又如何计算?第一节概述1. 支座的作用和要求位置:支座设置在桥梁的上部结构与墩台之间。

作用:把上部结构的各种荷载传递到墩台上,并能够适应活载、温度变化、混凝士收缩与徐变等因素所产生的变位(位移和转角),使上下部结构的实际受力情况符合设计的计算图式。

支座型式和规格的选用,要考虑的因素包括桥梁跨径、支点反力、对建筑高度的要求、适应单向和多向位移及其位移量的需要,以及防震、减震的需要。

2. 支座的布置桥梁支座的布置方式:主要根据桥梁的结构型式及桥梁的宽度确定。

简支梁桥一端设固定支座,另一端设活动支座。

铁路桥梁由于桥宽较小,支座横向变位很小,一般只需设置单向(纵向)活动支座。

公路梁桥由于桥面较宽,要考虑支座横桥向移动的可能性。

连续梁桥每联(由两伸缩缝之间的若干跨组成)只设一个固定支座。

为避免梁的活动端伸缩量过大,固定支座宜布置在每联长度的靠中间支点处。

但若该处墩身较高,则应考虑避开,或采取特殊措施,以避免该墩顶承受过大的水平力。

曲线连续梁桥的支座布置会直接影响到梁的内力分布,同时,支座的布置应使其能充分适应曲梁的纵、横向自由转动和移动的可能性。

曲线箱梁中间常设单支点支座,仅在一联范围内的梁的端部(或桥台上)设置双支座,以承受扭矩。

有意将曲梁支点向曲线外侧偏离,可调整曲梁的扭矩分布。

当桥梁位于坡道上时,固定支座应设在较低一端,以使梁体在竖向荷载沿坡道方向分力的作用下受压,以便能抵消一部分竖向荷载产生的梁下缘拉力;当桥梁位于平坡上时,固定支座宜设在主要行车方向的前端。

桥梁的使用效果,与支座能否准确地发挥其功能有着密切的关系,因此在安放支座时,应使成桥后的上部结构的支点位置与下部结构的支座中线对齐。

如果考虑到工后徐变,可能需要设置预偏量。

桥梁板式橡胶支座的设计计算

桥梁板式橡胶支座的设计计算
板式橡胶支座通常由若干层橡胶片与钢板 (以 钢板作为刚性加劲物) 组合而成 。各层橡胶与其上 下钢板经加压硫化牢固粘接成为一体 。
这种支座在竖向荷载作用下 ,嵌入橡胶片之间 的钢板将限制橡胶的侧向变形 ,垂直变形则相应减 少 ,从而可以大大提高支座的竖向刚度 (抗压刚度) 。 此时 ,支座的竖向总变形即为各层橡胶片变形的总 和 。橡胶片之间嵌入的钢板在阻止胶层侧向膨胀的 同时 ,对支座的抗剪刚度几乎没有什么影响 。支座 在水平力作用下 ,加劲橡胶支座所产生的水平位移 取决于橡胶片的净厚 。为了防止加劲钢板的锈蚀 , 板式橡胶支座上下面及四周均有橡胶保护 。 3 板式橡胶支座应满足如下条件 3. 1 支座橡胶层总厚度σ1
(10) 桥面纵坡 :i = 0. 41 % (11) 每片主梁的汽车制动力 T (汽车荷载采用 : 汽车 —超 20 级) : 汽车制动力取一辆重车的 30 % ,即 T = (550kN ×30 %) / 10 = 16. 5kN (全幅桥为 10 片梁)
4. 2 支座最大位移量计算
(1) 温度变化产生的位移量 : Δlt = - Δt ×αt ×l
钢束总压力 :
Py = 17 ×(140 ×10 - 6 m2) ×(1395 ×106N/ m2)
= 3320100 N
= 3320. 1kN (7) 跨中截面面积 :Ah = 6274cm2
48
辽 宁 交 通 科 技 2005
(8) 主梁最大支点反力 :Nmax = 347. 5 kN (9) 主梁恒载支点反力 :Nmin = 162. 5 kN
列支座主要规格参数表》,选用平面尺寸为 la ×lb =
200 ×250mm ,支座形状系数 S = 11. 11 。
根据

板式橡胶支座设计与计算

板式橡胶支座设计与计算

(备注: Q235钢)
1931520000 mm4
Kc
3Ec Ic
H
3 c
9549.4
kN/mm
肋板支座处截面高度h1= 肋板螺栓球处截面高度h2=
支座高度H=
钢材弹性模量E=
截面惯性矩I=
201600.0
16
300 200 400 206000 20833333.3
N/mm
mm
(备注: 侧移方
mm
向)
mm
N/mm2 mm4
悬臂柱抗侧移刚度
3E I Kc H 3
= 组合刚度:
K 1 11 K1 K2
201.2 201.2
kN/mm kN/mm
悬臂钢柱基本参数:
柱截面尺 寸a=
柱截面尺 寸b=
柱截面壁 厚t=
悬臂柱长 度Hc=
砼弹性模 量EC=
截面惯性 矩Ic=
悬臂柱抗 侧移刚度
Kc
3Ec Ic
H
3 c
=
基本参数: 600
(备注:
侧移方
mm
向0 206000
mm N/mm2
悬臂砼柱基本参数:
柱截面尺寸a= 柱截面尺寸b= 悬臂柱长度Hc=
600 400 1500
悬臂柱抗 侧移刚度 计算
(备注:
侧移方
mm
向)
mm
mm
砼弹性模量EC= 截面惯性矩Ic=
31500 7200000000
(备注: N/mm2 C30砼)
mm4
悬臂柱抗侧移刚度
Kc
3Ec Ic
H
3 c
=
固定钢支座基本参数: 肋板截面厚度b=

板式橡胶支座dm3计算公式

板式橡胶支座dm3计算公式

板式橡胶支座dm3计算公式
板式橡胶支座是建筑结构中的一种重要支座,主要用于减震和传递荷载。

在计算板式橡胶支座dm3时,需要掌握一定的计算公式。

下面是板式橡胶支座dm3计算公式及其解释:
1. 荷载计算公式
荷载计算公式是板式橡胶支座dm3计算的重要基础,其计算公式如下:Q = k * Δ
其中,Q为荷载大小,单位为kN;k为支座刚度系数,单位为kN/mm;Δ为变形量,单位为mm。

2. 支座刚度系数计算公式
支座刚度系数是指支座承受荷载产生弹性变形的能力,其计算公式如下:
k = (E * A) / H
其中,E为橡胶支座的弹性模量,单位为MPa;A为支座的横截面积,
单位为mm²;H为支座的厚度,单位为mm。

3. 橡胶支座的弹性模量计算公式
弹性模量是指材料在受力时产生的弹性变形比例,是衡量材料抗弯曲、抗拉伸的重要参数。

橡胶支座的弹性模量计算公式如下:
E = (P1-P2) / (ε1-ε2)
其中,P1和P2分别为材料两个不同应力状态下的应力,单位为MPa;ε1和ε2分别为材料两个不同应力状态下的应变,无量纲。

4. 支座变形量计算公式
支座的变形量是指在承受荷载时产生的变形情况,是支座设计中需要
考虑的重要参数。

支座的变形量计算公式如下:
Δ = Q / k
其中,Q为荷载大小,单位为kN;k为支座刚度系数,单位为kN/mm。

以上就是板式橡胶支座dm3计算公式的详细介绍。

在实际应用中,需
要根据具体情况进行合理的参数选择和计算,以确保支座能够正常承
受荷载并产生预期的减震效果。

板式橡胶支座重量计算公式(一)

板式橡胶支座重量计算公式(一)

板式橡胶支座重量计算公式(一)
板式橡胶支座重量计算公式
1. 橡胶支座重量的概述
在建筑和桥梁工程中,橡胶支座广泛应用于减震和隔振的工作。

为了正确设计和安装橡胶支座,我们需要计算其重量。

本文将介绍板
式橡胶支座重量的计算公式,并通过具体的例子进行解释。

2. 板式橡胶支座重量的计算公式
板式橡胶支座的重量可以通过以下公式计算:
重量 = 密度× 基座面积× 厚度
其中,密度是指橡胶的密度,基座面积是指橡胶支座底部的面积,厚度是指橡胶支座的厚度。

3. 实例解释
假设我们有一个板式橡胶支座,橡胶密度为g/cm³,基座面积为100 cm²,厚度为5 cm。

我们可以通过上述公式计算出它的重量。

重量= g/cm³ × 100 cm² × 5 cm = 750 g
因此,该板式橡胶支座的重量为750克。

结论
通过以上实例,我们对板式橡胶支座重量的计算公式有了更深入
的了解。

在实际工程中,通过准确计算橡胶支座的重量,我们可以更
好地设计和安装结构,提高整体工程的可靠性和稳定性。

对于不同类型的橡胶支座,其重量计算公式可能会有所差异。

因此,在具体应用中,我们需要结合实际情况选择合适的计算公式。

希望本文对您理解和应用板式橡胶支座重量的计算公式有所帮助。

如果您有任何疑问或需要进一步了解,请随时与我们联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.8cm
=
18 10
= la 10

te

la 5
= 18 5
=
3.6cm
由上述分析可知,按计入制动力和不计入制动力计算的橡胶厚度最大值为 0.70cm,小
于 1.8cm,因此橡胶层总厚度 te 的最小值取 1.8cm。由于定型产品中,对于平面尺寸为 18cm
×25cm 的板式橡胶支座中, te 只有 2cm,2.5cm,3.0cm,3.5cm 四种型号, te 暂取 2cm。
与支座边缘的最小距离不应小于 5mm)确定加劲钢板尺寸 l0a × l0b 或直径 d0 ,从而计算出
加劲钢板的面积 Ae = l0a × l0b 或 Ae = πd0 2 / 4 。然后根据橡胶支座的压应力不超过它们相
应的压应力限值的要求来验算假设的平面尺寸是否满足设计要求。橡胶支座压应力按式 (7.1)计算:
将式(7.5)代入式(7.3),则可得式(7.3)的另一表达式:
te≥
0.7
∆g − Fbk
2Ge l a l b
同时,考虑到橡胶支座的稳定性,《桥规》规定te应满足下列条件:
(7.6)
矩形支座
la 10

te

la 5
( la 为矩形支座短边尺寸)
圆形支座
d 10

te

d 5
(d 为圆形支座的直径)
C la
假设本算例中支座水平放置,且不考
虑混凝土收缩与徐变的影响。温差 ∆t =36
l 19.5m lˊl la
℃引起的温度变形,由主梁两端均摊,则
图 7.10 计算长度示意图
la C
每一支座的水平位移 ∆ g 为:
式中:
∆g
=
1 α ′ ⋅ ∆t ⋅ l′ = 2
1 ×10−5 × 36 × (19.5 + 0.2) 2
Fbk
=
Fb′k 10
= 90 10
= 9 .0KN
因此,计入制动力时,橡胶厚度 te 的最小值为:
式中:
te

∆g 0.7 − Fbk
= 0.7 −
0.35 9 ×103
= 0.61 cm
2G e l a lb
2 ×1.0 ×106 × 0.2 × 0.18
Ge ——1.0Mpa。
此外,从保证受压稳定考虑,矩形板式橡胶支座的橡胶厚度 te 应满足:
梁端转角θ 可表示为:
由(7.8)和(7.12)两式可解得:
θ
=
1 la
(δ c,2
− δ c,1 )
(7.12)
δ c,1
=
δ c,m

la' θ 2
为确保支座偏转时,橡胶支座与梁底不发生脱空而出现局部承压的现象,则必须满足条 件:
δ c,1 ≥ 0
即:
δ c,m
=
Rck te Ae Ee
+
Rck te Ae Eb
不计制动力时
µRGk
≥ 1.4Ge
⋅ Ag
⋅ ∆l te
(7.3.15)
计入制动力时 式中:
µRck
≥ 1.4Ge ⋅ Ag
⋅ ∆l te
+ Fbk
RGk ——结构自重引起的支座反力标准值;
(7.3.16)
Rck ——由结构自重标准值和 0.5 倍汽车荷载标准值(计入冲击系数)引起的支座反
力;
∆l ——由温度、混凝土收缩、徐变引起的支座水平位移,但不包括制动力引起的水
为公路Ⅱ级:车道均布荷载 qk =7.875KN/m,按计算跨径推 得集中荷载Pk=178.5kN。人群
荷载为 3.0kN/m2,计算温差为 36℃,安全设计等级取二级。由例题 4.7 知,边主梁在人群
荷 载 作 用 下 , 最 大 支 点 反 力 R0,rk = 17.7KN , 车 道 集 中 荷 载 作 用 下 最 大 支 点 反 力
∆ Fbk
= ter
= te
τ Ge′
=
Fbk te 2Gel a lb
(7.5)
其中:
r 、τ ——分别为作用于一个支座上的制动力所引起的剪切角和剪应力;
Ge′ ——车道荷载作用时橡胶支座的动态剪变模量,可取 Ge′ = 2Ge ;
Ge——支座剪变模量,常温下Ge =1.0MPa;
Fbk ——作用于一个支座上的制动力。
式中:
σ
=
Rck Ae
≤σc
(7.1)
Ae ——支座有效承压面积(承压加劲钢板面积);
Rck ——支座使用阶段的压力标准值,车道荷载应计入冲击系数;
σ c ——支座使用阶段的平均压应力限值,σ c =10.0Mpa。
2.确定支座的厚度
梁的水平位移要通过全部橡胶片的剪切变形来实 现(见图 7.8),因此要确定支座的厚度 h,首先要知 道主梁由于温度变化、混凝土收缩、徐变及制动力产
∆ g ——上部结构由温度、混凝土收缩和徐变等作用标准值引起的支座的水平位移;
∆ Fbk ——由车道荷载制动力引起的一个支座上的水平位移。
当板式支座在横桥向平行于墩台帽横坡或盖梁横坡设置时,计算支座橡胶层总厚度时, 应计入支座压力值平行于横坡方向的分力产生的剪切变形;当支座直接设置于不大于 1%纵 坡的梁底面时,应计入在支座顶面由支座承压力标准值顺纵桥向分力产生的剪切变形。
Fb′k = (qk l + pk ) ×10% = (7.875 ×19.5 + 178.5) ×10% = 33.21KN
由于 Fb′k 小于公路Ⅱ级汽车荷载制动力最低限值 90KN,故 Fb′k 取 90KN 计算。由于本例中
有五根 T 梁,每根 T 梁设 2 个支座,共有 10 个支座,且假设桥墩为刚性墩,各支座抗推刚 度相同,因此制动力可平均分配,因此一个支座的制动力为:
支座应力为:σ = Rck = 329.90 ×10−3 = 10.21MPa ≈ 10 MPa Ae 0.17 × 0.19
满足规范要求。 通过验算可知,混凝土局部承压强度也满足要求(过程略),因此所选定的支座的平面
尺寸满足设计要求。
(2)确定支座高度
支座的高度由橡胶层厚度和加劲钢
板厚度
两部分组成,应分别考虑计算。
不计制动力时
te ≥ 2∆l
(7.2)
计入制动力时
te ≥ 1.43∆l
(7.3)
式中:
te——支座橡胶层总厚度, te = tes,l + (n − 1)tes + tes,u ;
tes,u 、 tes,l 、 tes ——分别为支座上、下层和中间层橡胶层厚度;
n——加劲钢板层数;
∆l —— ∆l = ∆ g (不计制动力时)或 ∆l = ∆ g + ∆ F bk (计入制动力时);
平位移;
Fbk ——汽车荷载引起的制动力标准值;
Ag ——支座平面毛面积。
对于聚四氟乙烯滑板式支座的摩擦力产生的剪切变形不应大于支座内橡胶层容许的剪 切变形,即:
不计制动力时
µ f RGk ≤ Ge ⋅ Ag ⋅ tan α
(7.3.17)
计入制动力时
µ f RCk ≤ Ge ⋅ Ag ⋅ tanα
确定橡确定:
式中:
ts
=
K p Rck (tes,u + tes,l ) Aeσ s
(7.7)
ts ——支座加劲钢板厚度,不得小于 2mm;
Kp——应力校正系数,取 1.3;
tes,u , tes,l ——块加劲钢板上、下橡胶层厚度;
σ s ——加劲钢板轴向拉应力限值,可取钢材屈服强度 0.65 倍。
形)为:
δ c,m
=
1 2

c,1
+ δc,2 )
=
Rck te Ae Ee
+
Rck te Ae Eb
(7.8)
式中:
Ae、Rck、te——意义同前; Eb — — 橡 胶 弹 性 体 体 积 模 量 , 取
2000Mpa; Ee——支座抗压弹性模量(MPa)。
Ee与支座形状系数s有关,按下列公式计算: Ee=5.4GeS2
(1)确定支座的平面尺寸
由于主梁肋宽为 18cm,故初步选定板式橡胶支座的平面尺寸为 la =18cm,lb =20cm(顺
桥),则按构造最小尺寸确定 l0a =17cm, l0b =19cm。
首先根据橡胶支座的压应力限值验算支座是否满足要求,支座压力标准值:
Rck = R0,g + R0, pk + R0,qk + R0,rk = 157 + 110.70 + 44.5 + 17.7 = 329.90 KN
矩形支座
s=
l0al0b
2tes (l0a + l0b )
R ck
δ c,1 θ
δ cm
l'a / 2 la
δ c,2 h
图 7.9 支座偏转图示
(7.9) (7.10)
圆形支座 式中:
s = d0 4tes
l0a ——矩形支座加劲钢板短边尺寸;
(7.11)
l0b ——矩形支座加劲钢板长边尺寸;
d0——圆形支座钢板直径; tes——支座中间层单层橡胶厚度。
≥ la' θ 2
(7.13)
若计算结果
δ
c,m

l
a' θ 2
,则需重新修改支座尺寸。
此外,为限制支座竖向压缩变形,不致影响支座稳定,《桥规》(JTG D62)还规定
δ c,m ≤ 0.07te 。
4.验算支座的抗滑稳定性
相关文档
最新文档